文档库 最新最全的文档下载
当前位置:文档库 › 单电源运放滤波器设计

单电源运放滤波器设计

这节非常深入地介绍了用运放组成的有源滤波器。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。

这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。

这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意:

1. 滤波器的拐点(中心)频率

2. 滤波器电路的增益

3. 带通滤波器和带阻滤波器的的Q值

4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)

不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。

3.1 一阶滤波器

一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性

3.1.1 低通滤波器

典型的低通滤波器如图十三所示。

图十三

3.1.2 高通滤波器

典型的高通滤波器如图十四所示。

图十四

3.1.3 文氏滤波器

文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。

图十五

3.2 二阶滤波器

二阶滤波电路一般用他们的发明者命名。他们中的少数几个至今还在使用。有一些二阶滤波器的拓扑结构可以组成低通、高通、带通、带阻滤波器,有些则不行。这里没有列出所有的滤波器拓扑结构,只是将那些容易实现和便于调整的列了出来。

二阶滤波器有40dB 每倍频的幅频特性。

通常的同一个拓扑结构组成的带通和带阻滤波器使用相同的元件来调整他们的Q 值,而且他们使滤波器在Butterworth 和Chebyshev 滤波器之间变化。必须要知道只有Butterworth 滤波器可以准确的计算出拐点频率,Chebyshev 和Bessell滤波器只能在Butterworth 滤波器的基础上做一些微调。

我们通常用的带通和带阻滤波器有非常高的Q 值。如果需要实现一个很宽的带通或者带阻滤波器就需要用高通滤波器和低通滤波器串连起来。对于带通滤波器的通过特性将是这两个滤波器的交叠部分,对于带阻滤波器的通过特性将是这两个滤波器的不重叠部分。

这里没有介绍反相 Chebyshev 和 Elliptic 滤波器,因为他们已经不属于电路集需要介绍的范围了。

不是所有的滤波器都可以产生我们所设想的结果――比如说滤波器在阻带的最后衰减幅度在多反馈滤波器中的会比在Sallen-Key 滤波器中的大。由于这些特性超出了电路图集的介绍范围,请大家到教科书上去寻找每种电路各自的优缺点。不过这里介绍的电路在不是很特殊的情况下使用,其结果都是可以接受的。

3.2.1 Sallen-Key滤波器

Sallen-Key 滤波器是一种流行的、广泛应用的二阶滤波器。他的成本很低,仅需要一个运放和四个无源器件组成。但是换成Butterworth 或Chebyshev 滤波器就不可能这么容易的调整了。请设计者参看参考条目【1】和参考条目【2】,那里介绍了各种拓扑的细节。

这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。

图十六

3.2.2 多反馈滤波器

多反馈滤波器是一种通用,低成本以及容易实现的滤波器。不幸的是,设计时的计算有些复杂,在这里不作深入的介绍。请参看参考条目【1】中的对多反馈滤波器的细节介绍。如果需要的是一个单位增益的But terworth 滤波器,那么这里的电路就可以给出一个近似的结果。

图十七

3.2.3 双T滤波器

双T 滤波器既可以用一个运放也可仪用两个运放实现。他是建立在三个电阻和三个电容组成的无源网络上的。这六个元件的匹配是临界的,但幸运的是这仍是一个常容易的过程,这个网络可以用同一值的电阻和同一值的电容组成。用图中的公式就可以同时的将R3 和C3 计算出来。应该尽量选用同一批的元件,他们有非常相近的特性。

3.2.3.1 单运放实现

图十八

如果用参数非常接近的元件组成带通滤波器,就很容易发生振荡。接到虚地的电阻最好在E-96 1%系列中选择,这样就可以破坏振荡条件。

图十九

3.2.3.2 双运放实现

典型的双运放如图20到图22所示

图二十

图二十一

(注:可编辑下载,若有不当之处,请指正,谢谢!)

集成运算放大器的设计方法

集成运算放大器的设计方法 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是

单电源供电集成运放的应用

单电源供电集成运算放大器的电路及其应用 一、单电源运放应用:基础知识 大多数集成运算放大器电略部采用正、负对称的双电源供电,在只有一组电源的情况下,集成运算放大器也能正常工作。图1所示为两种采用单电源供电的供电电路。 采用单电源对集成这算放大器供电的常用方法是,把集成运算放大器两输入端电位抬高(且通常抬高至电源电压的一半,即E+/2),抬高后的这个电位就相当于双电源供电时的“地”电位,因此在静态工作时,输出端的电位也将等于两输入端的静态电位,即E+/2。 图中,集成运算放大器两输入端抬高的电压由R4、R5对电源分压后产生,约等于E+ /2;C2为滤波电容;C1和C3分别为输入、输出隔直电容。为了减小输入失调电流的影响,图1(a)中R1应等于R2与R4的并联值,图1(b)中R1应等于R2与R3的并联值。 图1(a)为反相输入方式,电路的交流放大倍数为R4/R3=100倍;图1(b)为同相输入方式,电路的交流放大倍数为R3/R2=10倍。 单电源运放应用图集(一):基础知识 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC +,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。 1. 2 虚地

单电源运放滤波器设计

这节非常深入地介绍了用运放组成的有源滤波器。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。 这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。 这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意: 1. 滤波器的拐点(中心)频率 2. 滤波器电路的增益 3. 带通滤波器和带阻滤波器的的Q值 4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell) 不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。 3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性 3.1.1 低通滤波器 典型的低通滤波器如图十三所示。

单电源运放运用

我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。

运算放大器电路大全运算放大器电路大全

1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆 幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3 V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。 1. 2 虚地 单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二的电路可以用来产生V CC/2的电压,但是他会降低系统的低频特性。

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用 图电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计

如图所示,恒流原理分析过程如下: U5B(上图中下边的运放)为电压跟随器,故; 由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:; 而; ; 有以上等式组合运算得: 当参考电压Vref固定为时,电阻R30为,电流恒定输出。 该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。 但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。 4) 整流电路中的应用 图整流电路 上述电路是一个整流电路,将输入的一定频率的脉冲整流成固定的电平电压,再用此电压控制4-20mA电流的输出电流。 该电路功能类似一些DAC功能的接口。 5)热电阻测量电路 图热电阻测量电路 上图的电路是典型的热电阻/电偶的测量电路,其测量思路为:将1-10mA的恒流源加于负载,将会在负载上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后将信号送入ADC接口。 该电路应用时,要注意在输入端施加保护,可以并TVS,但要注意节电容对测量精度的影响,当然,如果在一些低成本场合,上述电路图可简化为下电路 图热电阻测量简化电路 6)电压跟随器 在运放的使用中,电压跟随器是一种常见的应用,该电路的好处是:一是减小负载对信号源的影响;二是提高信号带负载的能力。 图电压跟随器

单电源运放与滤波电路

我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V 和正负5V 也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om 以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC +,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明V oh 和V ol。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3 节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是Rail-To-Rail 的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。 1. 2 虚地 单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二 的电路可以用来产生VCC/2 的电压,但是他会降低系统的低频特性。

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U对应的端子为“-”,当输入U单独加于该端子时,输出电压与输入电压U 反相,故称它为反相输入端。U+对应的端子为“ + ”,当输入U+单独由该端加入时,输出电压与q 同相,故称它为同相输入端。 输出:U0= A(U+-UJ ; A称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益Ad=x ;输入阻抗r i=x ;输出阻抗r o=0;带宽f BW=^;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U与输入电压之间满足关系式:Ub= Ad (L+- L U),由于A ud=^,而U 为有限值,因此,U— UL^O o即U〜U-,称为“虚短”。 由于r i二X,故流进运放两个输入端的电流可视为零,即I IB = 0,称为“虚断” 这说明运放对其前级吸取电流极小

上述两个特性是分析理想运放应用电路的基本原则, 可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路, 比例电路又分为反向比 例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 对于理想运放,该电路的输出电压与输入电压之间的关系为: U 。訓 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R'= R // R F 。 输出电压u 0与输入电压 U 称比例关系,方向相反,改变比例系数,即改变两 个 电阻的阻值就可以改变输出电压的值。 反向比例电路对于输入信号的负载能力 有一定的要求。 (b) 同向比例电路 4所示,跟反向比例电路本质上差不多,除了同向接地的 同向比例电路如图 一段是反向输入端: 图3反向比例电路电路图 图4同相比例电路电路图

opa350电路设计

opa350电路设计 OPA350是一款高精度、低噪声的运算放大器,在电路设计中有着广泛的应用。本文将对OPA350电路设计进行详细介绍,包括其特点、应用场景以及设计注意事项等。 1. OPA350的特点 OPA350是一款单电源运算放大器,适用于各种低功耗应用。其具有低输入偏置电流、低偏置电压、高共模抑制比以及高增益带宽积等优点。此外,OPA350还具有低噪声和低失真的特性,能够提供高品质的信号放大和处理。 2. OPA350的应用场景 OPA350广泛应用于精密测量、仪器仪表、传感器信号放大、滤波器和运算放大器等领域。例如,在传感器信号放大方面,OPA350能够对微弱的传感器信号进行放大,提高信号的可靠性和精度。另外,在滤波器设计中,OPA350能够提供高精度的滤波效果,满足不同应用的需求。 3. OPA350电路设计注意事项 在设计OPA350电路时,需要注意以下几点: (1) 电源电压选择:OPA350适用于单电源供电,通常工作在3V至5V的电压范围内。根据具体应用需求,选择合适的电源电压。(2) 输入和输出阻抗匹配:为了保证信号的传输质量,需要将输入和

输出阻抗与OPA350的特性进行匹配,以最大限度地减小信号损失和失真。 (3) 输入和输出电容选择:在OPA350电路设计中,输入和输出电容的选择很关键。适当的电容能够提高电路的稳定性和性能。 (4) 温度和环境条件考虑:在实际应用中,需要考虑环境温度和工作条件对OPA350性能的影响。合理设计散热和保护措施,确保电路的可靠性和稳定性。 (5) 反馈电阻选择:在运算放大器电路设计中,反馈电阻的选择对电路增益和性能有很大影响。根据具体应用需求,选择合适的反馈电阻值。 OPA350是一款性能优异的运算放大器,具有广泛的应用场景。在进行OPA350电路设计时,需要根据具体应用需求选择合适的电源电压、输入输出阻抗匹配、输入输出电容、温度环境条件考虑以及反馈电阻等。通过合理设计和优化,可以充分发挥OPA350的优势,提供高精度和可靠的信号放大和处理功能。

差分放大电路 单电源

差分放大电路单电源 差分放大电路单电源是一种常用的电路,可以将两个输入信号的差值放大,同时抑制共模信号,从而提高电路的抗干扰能力。本文将从电路原理、设计方法和应用实例等方面介绍差分放大电路单电源的相关知识。 一、电路原理 差分放大电路单电源由两个运算放大器组成,如图1所示。其中,运放A1和A2构成差动放大器,输入信号为V1和V2,输出为差分信号Vout。运放A3为缓冲放大器,将Vout信号放大输出。 差分放大电路单电源的原理是利用差动放大器对于共模信号的抑制作用,将两个输入信号的差值放大。在理想情况下,差动放大器对于共模信号的抑制作用可以达到无限大,从而实现完美的差分放大。 二、设计方法 差分放大电路单电源的设计方法包括增益计算、电源选择和滤波器设计等方面。 1. 增益计算 差分放大电路单电源的增益计算方法如下: G = -Rf/Rin

其中,G为电路的增益,Rf为反馈电阻,Rin为输入电阻。 2. 电源选择 差分放大电路单电源需要选择合适的电源电压,以保证运放工作在稳定的工作区域。 3. 滤波器设计 差分放大电路单电源需要设计合适的滤波器,以滤除高频噪声和低频杂波,提高电路的抗干扰能力。 三、应用实例 差分放大电路单电源广泛应用于各种测量和控制系统中,如温度测量、压力测量、振动测量等。 以温度测量为例,差分放大电路单电源可以将两个温度传感器的输出信号进行差分放大,从而得到温度差值。此外,差分放大电路单电源还可以抑制共模噪声,提高测量系统的精度和稳定性。 四、总结 差分放大电路单电源是一种常用的电路,可以将两个输入信号的差值放大,同时抑制共模信号,从而提高电路的抗干扰能力。差分放大电路单电源的设计方法包括增益计算、电源选择和滤波器设计等

单电源运放电路

单电源运放电路 一、概述 单电源运放电路是指在电路中只有一个正电源,没有负电源的情况下 使用的运放电路。这种电路常见于便携式设备中,因为它可以减小设 备体积和成本。 二、单电源运放的特点 1. 只有一个正电源,没有负电源。 2. 输出信号不能超过正电源和地之间的范围。 3. 不能直接连接负载。 三、解决单电源运放的问题 1. 偏置电压:由于单电源运放没有负电源,会导致输出信号出现偏置。解决方法是添加偏置网络或使用带有输入偏置的运放。 2. 输出信号范围:由于输出信号不能超过正电源和地之间的范围,需 要添加一个参考电压来限制输出范围。 3. 直接连接负载:由于单电源运放不能直接连接负载,需要添加一个 耦合器来隔离直流偏置并提供交流通路。 四、常用的单电源运放配置 1. 非反向比例放大器:将输入信号乘以一个系数并输出。常用于音频

处理和传感器接口等应用。 2. 反向比例放大器:将输入信号取反并乘以一个系数并输出。常用于信号放大和电压调节等应用。 3. 滤波器:将输入信号通过一个滤波器并输出。常用于音频处理和信号处理等应用。 五、单电源运放的优缺点 1. 优点: (1)体积小,成本低。 (2)适合便携式设备。 (3)易于设计和实现。 2. 缺点: (1)输出范围受限制。 (2)偏置电压会影响精度。 (3)不能直接连接负载。 六、应用案例 单电源运放常见于便携式设备中,如移动电话、MP3播放器等。以移动电话为例,它需要使用单电源运放来处理音频信号并驱动扬声器。在这种情况下,单电源运放可以减小设备体积和成本,并提供高品质的音频输出。 七、总结

单电源运放是一种适合便携式设备的运放电路,它具有体积小、成本低等优点。但是它也存在着输出范围受限制、偏置电压会影响精度等缺点。在设计单电源运放电路时需要注意解决这些问题,并根据具体应用需求选择合适的电路配置。

自-运放单电源设计方法

运算放大器(op-amp)简称运放以其优异的性能价格比,高集成度、可靠性,几乎任何需要添加信号增益、调理功能的电子系统都可应用运算放大器。经历几十年的发展,虽然现在已有单电源型运放产品(如AD875x系列),但有些场合仍希望将双电源型运放改为单电源下工作。这一点是可以实现的,只是需要在输入端加信号基准电平提升电路,输出端的静态电平也不再为零,因此由双电源改用单电源接法后更适合放大交流信号。 1运算放大器种类 ﻫ一般来说,对于高阻抗信号源的应用电路、采样—保持电路、带通滤波器等应选用高输入阻抗型运放(如LF156)。对弱信号精密测量、高增益交流放大器、汽车电子及工业控制系统等应选用高精度运放(如OPA379 )。对于快速变化的输入信号系统、A/D和D/A转换器、通讯和视频系统等应选用高速运放(如AD827)。对于袖珍仪器、手机等以电池供电的便携式电子产品宜选用低电压/低功耗运放(如EL2071C)。对于无特殊要求的场合可采用通用型运放(如uA741)。 ﻫ 2 运放参数的确定 运放参数种类繁多,在考虑性价比的基础上选用最合适的运放是设计者要考虑的问题。可优先考虑以下几个参数: ﻫ带宽BW对小信号而言,运放闭环带宽与闭环增益的乘积存在“增益带宽积”不变的关系,其乘积等于单位增益带宽;对大功率信号而言,一般比单位增益带宽小约100倍;运放一3dB闭环带宽应高于信号的最高工作频率。 ﻫ优值系数,转换速率SR大则运放交流特性佳上限频率高,如高速运放一般SR>10V/μs;输入偏流(inputbi asicu rrent)I(BS)失调电压(input ofsetvoltage)Vos 越小则运放直流特J性越好。

模拟电路运算放大器设计

模拟电路运算放大器设计 摘要: 本文将介绍模拟电路中的运算放大器设计。首先介绍运算放大器的基本概念和原理,然后探讨运算放大器的几种典型电路连接方式,并通过实例详细说明设计运算放大器的步骤和方法。最后,总结运算放大器设计的关键要点和常见应用领域。 第一章:引言 在现代电子技术中,运算放大器(Operational Amplifier,简称Op Amp)被广泛应用于模拟电路中,用于信号放大、滤波、积分、微分等功能。它具有高放大倍数、低失调电压和电流、宽频带等特点,被誉为模拟电路中的“万金油”。本章将简要介绍运算放大器的基本概念和原理。 第二章:运算放大器的基本概念和原理 2.1 运算放大器的定义 运算放大器是一种电子放大器,具有两个输入端和一个输出端,可以对输入信号进行放大、整形和处理。其核心部件是差分放大器,通过负反馈进行运算控制。 2.2 运算放大器的输入输出特性

运算放大器的输入阻抗很高,输出阻抗很低,使得输入和输出之间的耦合极小。同时,通过调整反馈电阻和输入电阻的比例关系,可以实现不同的增益和频率响应。 第三章:运算放大器的电路连接方式 3.1 非反馈运算放大器 非反馈运算放大器通过将输出端直接连接到输入端,实现信号放大和增强,但容易产生失真和不稳定现象。 3.2 反馈运算放大器 反馈运算放大器是最常用的一种连接方式,通过引入反馈电阻,实现对放大倍数、频率响应和稳定性的控制。有极性反馈和无极性反馈两种类型。 3.3 单电源运算放大器 单电源运算放大器源自运算放大器的直流工作点限制,通过引入稳压电路实现对单电源供电的要求。 第四章:运算放大器设计实例 4.1 根据需求确定运算放大器的参数 根据实际应用需求,如增益、输入输出电阻要求以及带宽限制等,确定运算放大器的参数。 4.2 电路设计和元件选取

模拟滤波器设计及运放选择

1、模拟滤波器设计流程 模拟滤波器设计流程——(一)基本概念 预备知识 基本的电子电路常识,信号与系统中的频域,零极点,传递函数,拉普拉施变换等概念。 一.模拟滤波器分类 由于知识所限,这里我们只谈谈模拟滤波器。从频域上可以划分为低通滤波器,高通滤波器,带通滤波器,带阻滤波器和全通滤波器等。 这种划分方式便于做系统模型分析。而按照应用来划分不外乎就是滤波,均衡,延时等。按照应用来划分的方式不是很容易说清楚,因 此我们还是应当将应用指标要求对应到不同的滤波器类型上面。 二.设计模拟滤波器 怎样设计?需要指标要求,而指标的获得应该是从系统划分开始。对于滤波器的性能指标要求,系统往往会给出一个底线。 系统仿真在这一步尤为关键,系统仿真不仅可以给出滤波器的指标,也可以验证不同类型滤波器对性能的影响。如果能够使用matlab 作为仿真工具,这一步就会变得很简单,simulink提供了不同类型滤波器的model,直接调用就可以了。当然,如果你对各种类型滤 波器的优缺点非常了解,那就很容易确定适合的滤波器类型了,后面的事就是具体的电路实现,这里不再详述。不过能够做一下系统仿 真要更保险一点,毕竟在后期电路实现的时候还会出现很多非理想因素,如果前期能购通过系统仿真为各个模块指标留出足够的裕量, 这是是很明智的。 三.模拟滤波器类型 上面说的是如何选择滤波器的方法,那么各种类型的滤波器在指标和性能上又有什么区别呢?第一步,我们首先要了解滤波器的关键指 标有哪些.。 性能指标包括两方面的内容:频域上我们关心的是截止频率fc,3dB带宽BW,中心频率f0,带外抑制度(阻带衰减),通频带纹波等; 时域上有冲激响应,阶越响应,群时延等等。不同类型的滤波器性能优缺点就表现为其中的几项。应用的需求可以直接反映为对截止频率,阻带频率,抑制度,以及时延等特性的要求。 预告:后面准备用一个贴对各种类型的滤波器特性做简单的总结和介绍,和滤波器选择方法;再用一个贴介绍我做过的一个滤波器设计 流程。敬请关注! 模拟滤波器设计流程——(二)分类 滤波器设计(on chip)可能算是我这几年工作接触最多的一个方向了。然而到现在我还是觉得很难去给出一个模拟滤波器的基本概括,因为感觉其中涉及的东西太多,自己了解的东西还是太肤浅。 最开始做滤波器的时候比较盲目,领导分配了指标却不知道从何处入手,只能找些参考资料来看看。关于模拟滤波器的分类这一话题,不同的资料有不同的说法,不知道该信谁的,也不知道究竟应该怎样去理解书中的知识,简单概括一下就是“抓瞎”。滤波器的类型,阶次,拓扑结构等等概念经常是混淆不清。当时很多电路感觉都是硬着头皮在做的,好在都还没出什么问题。做多了几次,有些觉悟了,问题还是很多,但对于滤波器也有了点自己的理解方式。 从我的观点来看,理解滤波器的分类首先具备基本的系统设计与信号处理知识。这两个背景知识对于理解滤波器相关概念和设计方法也是非常重要的 书本上经常提到的那些滤波器不外乎有源,无源,低通,高通,带通,带阻等等。有源与无源之分,无非就是看滤波器有无电源供电;而低通,高通等等分类方法,则是根据有用信号所占据的频段来划分的,信号的频段决定了你所选择的滤波器究竟是低通还是高通海市别的什么。 我们常常看到诸如butterworth型,chebychev型等滤波器,关于这种分类方式,以我的理解来看,指的是滤波器的零极点位置;不同的零极点位置决定了滤波器在带外抑制度,(带内/带外)纹波,幅频/相频特性,以及群时延等性能指标。当然掌握这些滤波器的基本特点有利于我们设计电路的时候选择合适的类型。对于不同类型的滤波器,其极点个数

运算放大器应用电路的设计与制作(1)

运算放大器应用电路的设计与制作 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

相关文档
相关文档 最新文档