文档库 最新最全的文档下载
当前位置:文档库 › DNA第一代,第二代,第三代测序的介绍

DNA第一代,第二代,第三代测序的介绍

DNA第一代,第二代,第三代测序的介绍
DNA第一代,第二代,第三代测序的介绍

原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。如此每管反应体系中便合成以各自

的双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。Sanger法因操作简便,得到广泛的应用。后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。

荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时

不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。

杂交测序技术杂交法测序是20世纪80年代末出现的一种测序方法, 该方法不同于化学降解法和Sanger 法, 而是利用 DNA杂交原理, 将一系列已知序列的单链寡核苷酸片段固定在基片上, 把待测的 DN A 样品片段变性后与其杂交, 根据杂交情况排列出样品的序列

序检测速度快, 采用标准化的高密度寡核苷酸芯片能够大幅度降低检测的成本,具

有部分第二代测序技术的特点。但该方法误差较大, 且不能重复测定

焦磷酸测序(pyrosequencing)技术是近年来发展起来的一种新的DNA序列分析技术,它通过核苷酸和模板结合后释放的焦磷酸引发酶级联反应,促使荧光素发光并进行检测。既可进行DNA序列分析,又可进行基于序列分析的单核苷酸多态性(SNP)检测及等位基因频率测定等。

1 焦磷酸测序技术的原理及步骤

焦磷酸测序是由DNA聚合酶(DNA polymerase)、三磷酸腺苷硫酸化酶(ATP sulfurylase)、荧光素酶(1ueiferase)和双磷酸酶(apyrase)4种酶催化同一反应体系的酶级联化学发光反应,反应底物为5’-磷酰硫酸(APS)和荧光素。反应体系还包括待测序DNA单链和测序引物。在每一轮测序反应中,加入1种dNTP,若该dNTP与模板配对,聚合酶就可以将其掺入到引物链中并释放出等摩尔数的焦磷酸基团(PPi)。硫酸化酶催化APS和PPi形成ATP,后者驱动荧光素酶介导的荧光素向氧化荧光素的转化,发出与ATP量成正比的可见光信号,并由Pyrogram TM转化为一个峰值,其高度与反应中掺人的核苷酸数目成正比。根据加入dNTP类型和荧光信号强度就可实时记录模板DNA的核苷酸序列。在实验过程中用a-硫化的三磷酸腺苷(dATPotS)代替三磷酸腺苷(dATP)以有效地被DNA聚合酶利用,而不被虫荧光素识别。由于SpdATPetS可以降低dATPotS降解产物的浓度,近年来,单链DNA结合蛋白(single strand DNA binding protein,SSBP)和纯化Spisomer dATPaS的使用dATPotS降解产物抑制双磷酸酶活性的这一问题得到较好解决,使得测序长度可达100 bp,拓展了该技术在遗

罗氏454的GS FLX测序技术利用了焦磷酸测序原理,主要包括以下步骤:1)文库准备将基因组DNA打碎成300-800 bp长的片段 ( 若是sn RNA 或 PCR 产物可以直接进入下一步 ) ,在单链DN A的3’端和5’端分别连上不同的接头。

2)连接带接头的单链 DNA 被固定在DNA 捕获磁珠上。每一个磁珠携带一个单

链 DNA片段。随后扩增试剂将磁珠乳化,形成油包水的混合物,这样就形成了许多只包含一个磁珠和一个独特片段的微反应器。

3)扩增每个独特的片段在自己的微反应器里进行独立的扩增 (乳液PCR),从而排除了其它序列的竞争。整个DNA片段文库的扩增平行进行。对于每一个片段而言,扩增产生几百

万个相同的拷贝。乳液 PC R 终止后,扩增的片段仍然结合在磁珠上。

4)测序携带D NA 的捕获磁珠被放入PTP板中进行测序。 PTP 孔的直径 ( 29 μm ) 只能容纳一个磁珠 ( 20 μm ) 。放置在 4个单独的试剂瓶里的 4种碱基,依照 T、A、C、G的顺序依次循环进入 PTP板,每次只进入一个碱基。如果发生碱基配对, 就会释放一个焦磷酸。这个焦磷酸在ATP 硫酸化酶和荧光素酶的作用下,释放出光信号,并实时地被仪器配置的高灵敏度 CCD 捕获到。有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列

与其它第二代测序平台相比,454 测序法的突出优势是较长的读长,目前GS FLX 测序系统的序列读长已超过400 bp 。虽然454平台的测序成本比其他新一代测序平台要高很多,但对于那些需要长读长的应用,如从头测序,它仍是最理想的选择。

Solexa测序技术

Illumna公司的新一代测序仪Genome Analyzer最早由Solexa公司研发,利用合成测序 (Sequencing by Synthesis)的原理,实现自动化样本制备及大规模平行测序。Genome Analyzer技术的基本原理是将基因组DN A 打碎成约100-200个碱基的小片段,在片段的两个末端加上接头 ( adapter )。将DNA片段变成单链后通过接头与芯片表面的引物碱基互补而使一端被固定在芯片上。另外一端随机和附近的另外一个引物互补,也被固定住,形成桥状结构。通过30轮扩增反应,每个单分子被扩增大约1 000 倍,成为单克隆的 DNA簇,随后将DNA 簇线性化。在下一步合成反应中,加入改造过的 DNA聚合酶和带有4种荧光标记的d

NTP。在DNA 合成时,每一个核苷酸加到引物末端时都会释放出焦磷酸盐,激发生物发光蛋白发出荧光。用激光扫描反应板表面,在读取每条模板序列第一轮反应所聚合上去的核苷酸种类后,将这些荧光基团化学切割,恢复3’端黏性,随后添加第二个核苷酸。如此重复直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DN A 片段的序列Genome Analyzer系统需要的样品量低至100ng ,文库构建过程简单,减少了样品分离和制备的时间,配对末端读长可达到2×50 bp ,每次运行后可获得超过20 G B的高质量过滤数据,且运行成本较低,是性价比较高的新一代测序技术。SOLiD 测序技术

SOLiD 全称为Supported Oligo Ligation Detetion ,是 ABI(应用生物系统)公司于2007年底推出的全新测序技术,目前已发展到SOLiD 3 Plus。与454和Solexa的合成测序不同,S OLiD 是通过连接反应进行测序的。其基本原理是以四色荧光标记的寡核苷酸进行多次连接

合成,取代传统的聚合酶连接反应。具体步骤包括:

1)文库准备 SOLiD 系统能支持两种测序模板:片段文库 ( fragment library )或配对末端文库( mate-paired library) 。片段文库就是将基因组DNA打断,两头加上接头,制成文库。该文库适用于转录组测序、RNA定量、mi RNA研究、重测序、3’,5’RACE 、甲基化分析及 ChIP 测序等。配对末端文库是将基因组 D NA 打断后,与中间接头连接,环化,然后用 EcoP15 酶切,使中间接头两端各有27bp的碱基,最后加上两端的接头,形成文库。该文库适用于全基因组测序、SNP 分析、结构重排及拷贝数分析等。

2)扩增 SOLiD用的是与 454 技术类似的乳液 PCR 对要测序的片段进行扩增。在微反应器中加入测序模板、PCR反应元件、微珠和引物,进行乳液PCR ( emulsion PCR ) 。 PCR反应结束后,磁珠表面就固定有拷贝数目巨大的同一DNA模板的扩增产物。

3)微珠与玻片连接乳液PCR 完成之后,变性模板,富集带有延伸模板的微珠,

微珠上的模板经过3’修饰,可以与玻片共价结合。 SOLiD系统最大的优点就是每张玻片能容纳更高密度的微珠,在同一系统中轻松实现更高的通量。含有 DNA 模板的磁珠共价结合在SOLiD玻片表面,SOLiD测序反应就在SOLiD玻片表面进行。每个磁珠经SOLiD测序后得到一条序列。

4)连接测序 SOLiD连接反应的底物是8碱基单链荧光探针混合物。探针的5’端用4种颜色的荧光标记,探针3’端第1、2 位碱基是 ATCG 4种碱基中的任何两种碱基组成的碱基对,共 16 种碱基对,因此每种颜色对应着4种碱基对。

3 - 5 位是随机的3个碱基。6 - 8 位是可以和任何碱基配对的特殊碱基。单向SOLiD测序包括5轮测序反应,每轮测序反应含有多次连接反应, 得到原始颜色序列。SOLiD序列分析软件根据“双碱基编码矩阵”把碱

基序列转换成颜色编码序列,然后与 SOLiD原始颜色序列进行比较。由于双碱基编码规则中一种颜色对应4种碱基对,前面碱基对的第二个碱基是后面碱基对的第一个碱基, 所以一个错误颜色编码就会引起连锁的解码错误,改变错误颜色编码之后的所有碱基。SOLiD序列分析软件可以对测序错误进行自动校正,最后解码成原始序列。因为SOLiD系统采用了双碱基编码技术,在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能,得到的原始碱基数据的准确度大于 %,而在 15X 覆盖率时的准确度可以达到 9 % ,是目前新一代基因分析技术中准确度最高的。

超高通量是 SOLiD系统最突出的特点,目前SOLiD3单次运行可产生 50 GB 的序列数据, 相当于17倍人类基因组覆盖度。

第二代测序技术的应用

1)从头测序( de-novo sequencing) 对于基因组未被测序过的生物,其基因组测序需要从头测序。由于受测序读取长度的限制,新一代测序技术中只有454技术能独立完成复杂基因组如真核生物基因组的从头测序工作。 Solexa和SOLiD技术只能完成简单生物如细菌的基因组的从头测序。在复杂基因组的从头

测序中,将Sol xa /S O L i D 与 45 4 技术或传统的Sanger测序技术结合,分别利用它们的高通量和较长读长的优势,可以大大降低测序成本,提高测序速度。

2)重测序如果对照一个参考基因组,新一代测序技术可以短时间内非常轻松的完成一个基因组的重测序

3)SNP研究 SNP全称是Single Nucleotide Polymorphism,意即单核苷酸多态性, 是指不同个体的基因组上单个核苷酸的变异,包括替换、缺失和插入。SNP 是指变异频率大于1 % 的单核苷酸变异,人体许多表型差异、对药物或疾病的易感性等等都可能与SNP有关

4)转录组及表达谱分析基因表达谱指细胞在特定的条件下表达的所有基因。以往的基因表达谱分析主要依靠基因芯片技术,该技术需要依赖已知的基因序列来设计探针,通过荧光标记和杂交,根据荧光的强度计算表达量的多少,误差较大, 而且无法检测未知基因的表达量。第二代测序技术可对单个细胞样品中的所有RNA 即整个转录组进行整体测序,对每个细胞中表达 1 - 5000 0个拷贝mRNA 的基因都能够检测,该技术还可以检测以前没发现过的基因或新的转录本( transcript ),定量测定基因的表达模式。

5)小分子 RNA ( miRNA )研究非编码的小分子RN A参与了许多重要的生物发育过程,它们的序列长度很短,只有 18-40个核苷酸,第二代测序方法还能发现新的小分子 RNA。

6)转录调控研究染色体免疫共沉淀 ( chromatin immunoprecipitation ,ChIP ) 技术是研究蛋白-DNA相互作用的重要方法

第三代测序技术的三种技术平台介绍

第三代测序技术的三种技术平台介绍 随着生物学的发展,人们对基因的功能研究更加透彻,为了进一步研究和改造基因的目的需要详细了解生物的基因组全序列,因为DNA序列是改造基因的基础,这就要求具有高效的DNA测序技术。DNA测序技术到目前为止已经发展到了第三代测序技术。 最早的Sanger测序在人类基因组计划中立下赫赫战功,但也给基因组测序贴上了数亿美元的价格标签,让人生畏。这两年发展迅猛的第二代测序仪——Illumina的Genome Analyzer、Roche 454的GS系列以及ABI的SOLiD系统——让人类基因组重测序的费用蹭地降低到10万美元以下。现在,能对单个DNA分子进行测序的第三代测序仪也加入到这场比赛中,让竞争更加激烈。 目前,第三代测序主要有三种技术平台。两种通过掺入并检测荧光标记的核苷酸,来实现单分子测序。Helicos的遗传分析系统已上市,而Pacific Biosciences准备在明年推出单分子实时(SMRT)技术。第三种Oxford Nanopore的纳米孔(nanopore)测序还尚未有推出的时间表,但有可能是这三种当中最便宜的。纳米孔测序的优势在于它不需要对DNA进行标记,也就省去了昂贵的荧光试剂和CCD照相机。 最近,Oxford Nanopore T echnologies的Hagan Bayley及他的研究小组正致力于改善纳米孔。根据他们之前的工作,他们以a-溶血素来设计纳米孔,并将环式糊精共价结合在孔的内侧(下图)。当核酸外切酶消化单链DNA后,单个碱基落入孔中,它们瞬间与环式糊精相互作用,并阻碍了穿过孔中的电流。每个碱基ATGC以及甲基胞嘧啶都有自己特有的电流振幅,因此很容易转化成DNA序列。每个碱基也有特有的平均停留时间,它的解离速率常数是电压依赖的,+180 mV的电位能确保碱基从孔的另一侧离开。

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

一、二、三代测序技术

一代、二代、三代测序技术 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa

technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成本长读取长度的方向发展。不同于第二代测序依赖于DNA模板

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

三代测序技术的比较

一代、二代、三代测序技术 张祥瑞 2013/04/22 11:43 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把 DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序

一代、二代、三代测序技术

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和 ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

第三代基因测序技术比较与总结

第三代基因测序技术比较与总结 [摘要]在第二代测序技术的协助下,个人基因组图谱正在如火如荼地绘制中。 在第二代测序技术的协助下,个人基因组图谱正在如火如荼地绘制中。但第二代测序技术很快就遇上了强劲的对手——第三代测序技术,也被称为“下、下一代的测序(next-next-generation sequencing)”。第三代测序技术是基于纳米孔(nanopore)的单分子读取技术,有着更快的数据读取速度,应用潜能也势必超越测序。 2012年2月5日,基因组科学家们齐聚美国佛罗里达州的基因组生物和技术进展会议,来了解哪家公司的第三代测序技术能实现人类基因组的3分钟测序或以5000美元的价格出售。尽管科学家们对公布的数据表示谨慎乐观,但他们对于此类测序仪的优越之处仍心存疑虑。 Complete Genomics 在2008年10月,美国加利福尼亚州的Complete Genomics公司曾宣称他们将在2009年以5000美元的价格售卖人类基因组,但当时没有公布支持数据。在这次会议上,该公司公布了一个人类基因组,据称是用9台仪器在8天内完成的。 该公司的CEO,Clifford Reid表示,他们将254GB的数据拼接成草图,覆盖某个匿名男性基因组的92%,每个碱基平均读取了91次。与目前应用中的高速测序,即第二代测序类似,Complete Genomics也产生短的DNA读长。通过对每个碱基的多次测序,它的目标是排除悄悄混入的可能错误。Reid认为这项技术非常准确,碱基错误的概率低于0.33%。这与目前的测序仪相当。 Complete Genomics并不出售测序仪,但用自己的测序仪来完成所有的内部工作。这让某些科学家质疑,但另一些却深受鼓舞。 速度和费用成为Complete Genomics的最大卖点。该公司并没有透露基因组测序的确切费用,但据称每个基因组的原材料费用低至1000美元。它的目标是在上个月推出市场,今年对1000个基因组进行测序,明年测序数量达到20000个。 Pacific Biosciences 在Complete Genomics做报告前的一小时,Pacific Biosciences的首席技术官Stephen Turner展示了大肠杆菌的完整基因组,并称每个碱基的平均读取了38次,准确率大于99.9999%。 Pacific Biosciences利用了单分子技术和DNA聚合酶,在反应的同时读取测序产物。尽管目前仪器的读取速度仅为3 碱基/秒,但它的目标是在2013年前实现三分钟读完人类基因组。它还有望实现更长的读长。Tuner表示大肠杆菌

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

第三代测序技术单分子即时测序

第三代测序技术:单分子即时测序 ?718? 第三代测序技术:单分子即时测序 刘岩吴秉铨 DNA测序技术是分子生物学研究中最常用的技术,它的出现极大地推动了生物学的 发展。从人类基因组计划 (humangenomeproject),到人类基因组单倍型图计划 (HapMap),再到人类癌症基因组及个体基因组计划,第一代和第二代DNA 测序技术功不可没。特别是近几年发展起来的第二代DNA测序技术则使得DNA测序进 入了高通量、低成本的时代。目前,基于单分子读取技术的第三代测序技术已经出现,该 技术测定DNA序列更快,并有望进一步降低测序成本,为人类从基因水平深入理解疾病 的发生、发展、诊断和治疗提供新的手段,使个体化医疗成为现实。本文回顾了测序技术 发展过程,并对第三代测序技术的特点和优势进行详细论述。 一、第一代DNA测序(first—generation DNA sequencing) 成熟的DNA测序技术始于20世纪70年代中期,1977年Maxam和Gil bert…报道了通过化学降解测定DNA序列的方法。同一时期,Sanger等拉1 发明了双脱氧链终止法,基本原理是利用4种双脱氧核苷酸(ddNTP)代替脱氧核苷 酸(dNTP)作为底物进行DNA合成反应。一旦ddNTP掺入到DNA链中,由于 核糖的第3位碳原子上不含羟基,不能与下一核苷酸反应形成磷酸二酯键,DNA合成链 的延伸反应被终止,生成了若干长度仅相差单个碱基的DNA片段。在4个DNA合成反 应体系中,分别加入一定比例的带有放射性同位素标记的某种ddNTP,通过单碱基分 辨率的凝胶电泳分离不同长度的DNA片段和放射自显影后,可以根据电泳带的位置确定 待测DNA分子的序列。 20世纪90年代初出现的荧光自动测序技术也是基于Sanger等¨1原理。但 用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了DNA测序的速度 和准确性,将DNA测序带入自动化测序的时代,这些技术统称为第一代DNA测序技术。随后,平板电泳分离技术被毛细管电泳所取代,并且通过更高程度的并行化使得同时进行 测序的样本数量成倍增加。目前应用最广泛的ABI3730系列自动测序仪,即是基于 毛细管电泳和荧光标记技术的DNA测序仪,在一次运行中可分析96个样本。

测序技术回顾与第三代测序技术展望

测序技术回顾与第三代测序技术展望 摘要:DNA测序技术是分子生物学实验中的重要的实验手段。几十年来,测序技术发展飞快,本文简述了测序技术的发展历程,详述了以单分子测序和基因组光学图谱技术为代表的第三代测序技术。 关键词:DNA测序技术;单分子测序;基因组光学图谱技术 The sequencing technology review and the third-generation sequencing future perspective Abstract:DNA sequencing technology is one of most important experiment methods in molecular biology field. For several decades, sequencing technology has been developing quickly. In the paper, it briefly introduces the development process of sequencing technology, and recommends the single molecule sequencing technology and Optical mapping solutions in detail, which are the representatives of the third generation sequencing technology. Key words:DNA sequencing;Single-molecule sequencing;Optical mapping solutions 1953年Watson和Crick揭示了DNA的双螺旋结构[1],这大大激励了人们对DNA序列的探索。于是DNA测序技术应运而生,是现代分子生物学中重要的实验手段。DNA测序技术及伴随产生的基因操纵技术它极大地推动了生命科学的发展[2][3]。现介绍DNA测序技术的发展历史及第三代测序技术中两个代表性的技术单分子测序和基因组光学图谱技术。 一、DNA测序技术的发展历史 DNA测序技术迄今经历了三代的发展。DNA测序技术成熟于上世纪70年代中后期,随后的20多年第一代测序技术测出了不少简单的小型基因组。1990年提出人类基因组计划(Human Genome Project ,HGP),逐步诞生了高通量第二代测序技术。近年来,单分子等第三代测序技术开始出现,也预示着测序技术将应用更广,测序的成本越低[4][5]。 1.1第一代测序技术 1975年Sanger和Coulson发明了“Plus and Minus”(俗称“加减法”)测定DNA 序列[6];1977年Maxam and Gilbert发明了化学降解法测序[7];1977年Sanger引入ddNTP(双脱氧核苷三磷酸),发明了著名的双脱氧链终止法[8]。双脱氧链终止法有效控制了化学降解法中化学毒素和同位素的危害,在随后的二十多年得到

三代测序

第一代测序技术 1977年,Sanger发明的DNA双脱氧核苷酸末端终止测序法(chainter?minatorsequencing)和和报道的DNA化学降解测序法(chemicaldegradationse?quencing)为代表的第一代测序技术诞生,但由于化学降解法的程序复杂,后来逐渐被Sanger测序法代替。 Sanger测序法原理: 双脱氧核苷酸没有3′-OH,且DNA聚合酶对其没有排斥性。当添加放射性同位素标记的引物时,在聚合酶作用下ddNTP被合成到链上,但其后的核苷酸无法连接,合成反应也随之终止,后续再根据各个合成片段的大小不同进行聚丙烯酰胺凝胶电泳分离,放射自显影后,便可根据片段大小排序及相应泳道的末端核苷酸信息读出整个片段的序列信息。通过调节加入的dNTP和ddNTP的相对量即可获得较长或较短的末端终止片段。 一代测序的特点:速度快,但是一次只能测一条单一的序列,且最长也就能测1000-1500bp。所以被广泛应用在单序列测序上。 在小型的细菌基因组测序、质粒测序、细菌人工染色体末端测序、突变位点验证等研究领域中较为常见。 第二代测序技术 第二代测序技术也称为新一代测序技术NGS(Next Generation Sequencing),相比第一代测序技术,总体往高通量、低成本方向发展。第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成末端的标记来确定DNA的序列。其特点是能一次并行几十万到几百万条DNA分子的序列测定,且一般读长较短。 通过物理或是化学的方式将DNA随机打断成无数的小片段(250-300bp),之后通过建库)富集了这些DNA片段。接下来将建完的库放入测序仪中测序,测序仪中有着可以让DNA片段附着的区域,每一个片段都有独立的附着区域,这样测序仪可以一次检测所有附着的DNA序列信息。最后通过生物信息学分析将小片段拼接成长片段。 第二代测序技术平台主要包括Roche/454 FLX、Illumina/HiSeq/MiSeq、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。 1、Illumina原理: 桥式PCR+4色荧光可逆终止+激光扫描成像

三代测序原理技术比较

三代测序技术和原理介绍 导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger 法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。

第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger 测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

第三代测序技术简介

第三代测序技术简介z 2011-09-25 17:27:45|分类:Biology |标签:|字号大中小订阅 如果有人告诉你用显微镜实时观测单分子DNA聚合酶复制DNA,并用它来测序,你一定会认为他异想天开,没有一点生物的sense。 我最初就是这样认为的,然而它不仅可以实现,而且已经实现了!这个就是被称为第三代的测序技术,Pacific Biosciences公司推出的“Single Molecule Real Time (SMRT?) DNA Sequencing”(单分子实时DNA测序)。 我有幸在NIH听到了这个技术发明人Stephen Tur ner博士的讲座,根据自己粗浅的理解记录整理一下。 要实现单分子实时测序,有三个关键的技术。 第一个是荧光标记的脱氧核苷酸。显微镜现在再厉害,也不可能真的实时看到“单分子”。但是它可以实时记录荧光的强度变化。当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。当它与DN A链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DN A聚合酶的活性,并且在荧光被切除之 后,合成的DNA链和天然的DN A链完全一样。 第二个是纳米微孔。因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。这种强大的荧光背景使单分子的荧光探测成为不可能。Pacific Biosciences公司发明了一种直径只有几十纳米的纳米孔[zero-mode waveguides (ZMWs)],单分子的DNA聚合酶被固定在这个孔内。在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。而当某一种荧光标记的脱氧核苷酸被掺入到DN A链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止(见图)。 第三个是共聚焦显微镜实时地快速地对集成在板上的无数的纳米小孔同时进行记录。由于我对显微原理的物理知识匮乏,而Pacific Biosciences公司又没有非常强调在这方面的发明,不做进一步探讨。 他们还对这一技术进行进一步的优化。 第一个是把双链DNA环化反复测序。人们可以在双链DN A的两头连上发夹结构的DNA adaptor,从而使DNA环化。而DNA 聚合酶就能够以环化的DNA作为模板滚环复制,反复测一段DN A序列。这种反复测序,纠正了偶尔出现的复制错误,从而使 测序精度非常高。 第二个是激发光中断测序法。DNA聚合酶虽然很稳定,但是在强大的激发光作用下酶也是有一定寿命的。如果把激发光中断一段时间,在这段时间内DNA聚合酶继续复制DNA,当激发光重新开启以后,人们就可以测到长DNA链后面的序列。 第三代测序技术非常可怕。1、它实现了DNA聚合酶内在自身的反应速度,一秒可以测10个碱基,测序速度是化学法测序的2万倍。2、它实现了DNA聚合酶内在自身的processivity(延续性,也就是DNA聚合酶一次可以合成很长的片段),一个反应就可以测非常长的序列。二代测序现在可以测到上百个碱基,但是三代测序现在就可以测几千个碱基。这为基因组的重复序列的拼接提供了非常好的条件。3、它的精度非常高,达到99.9999%。 此外,它还有两个应用是二代测序所不具备的。 第一个是直接测RNA的序列。既然DNA聚合酶能够实时观测,那么以RNA为模板复制DNA的逆转录酶也同样可以。RNA的 直接测序,将大大降低体外逆转录产生的系统误差。

第三代测序技术简介

第三代测序技术简介 如果有人告诉你用显微镜实时观测单分子DNA聚合酶复制DNA,并用它来测序,你一定会认为他异想天开,没有一点生物的sense。 我最初就是这样认为的,然而它不仅可以实现,而且已经实现了!这个就是被称为第三代的测序技术,Pacific Biosciences 公司推出的“Single Molecule Real Time (SMRT?) DNA Sequencing”(单分子实时DNA测序)。 我有幸在NIH听到了这个技术发明人Stephen Turner博士的讲座,根据自己粗浅的理解记录整理一下。 要实现单分子实时测序,有三个关键的技术。 第一个是荧光标记的脱氧核苷酸。显微镜现在再厉害,也不可能真的实时看到“单分子”。但是它可以实时记录荧光的强度变化。当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样。 第二个是纳米微孔。因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。这种强大的荧光背景使单分子的荧光探测成为不可能。Pacific Biosciences公司发明了一种直径只有几十纳米的纳米孔[zero-mode waveguides (ZMWs)],单分子的DNA聚合酶被固定在这个孔内。在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止(见图)。 第三个是共聚焦显微镜实时地快速地对集成在板上的无数的纳米小孔同时进行记录。由于我对显微原理的物理知识匮乏,而Pacific Biosciences公司又没有非常强调在这方面的发明,不做进一步探讨。

第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介

第三代测序技术(单分子实时DNA测序)与第二代测序技 术(高通量测序技术)简介 第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介 第三代测序技术简介 如果有人告诉你用显微镜实时观测单分子DNA聚合酶复制DNA,并用它来测序,你一定会认为他异想天开,没有一点生物的sense。 我最初就是这样认为的,然而它不仅可以实现,而且已经实现了~这个就是被称为第三代的测序技术,Pacific Biosciences公司推出的“Single Molecule Real Time (SMRT) DNA Sequencing”(单分子实时DNA测序)。 我有幸在NIH听到了这个技术发明人Stephen Turner博士的讲座,根据自己粗浅的理解记录整理一下。 要实现单分子实时测序,有三个关键的技术。 第一个是荧光标记的脱氧核苷酸。显微镜现在再厉害,也不可能真的实时看到“单分子”。但是它可以实时记录荧光的强度变化。当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样。 第二个是纳米微孔。因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。这种强大的荧光背景使单分子的荧光探测成为不可能。Pacific Biosciences公司发明了一种直径只

有几十纳米的纳米孔[zero-mode waveguides (ZMWs)],单分子的DNA聚合酶被固定在这个孔内。在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止(见图)。 1 第三个是共聚焦显微镜实时地快速地对集成在板上的无数的纳米小孔同时进行记录。由于我对显微原理的物理知识匮乏,而Pacific Biosciences公司又没有非常强调在这方面的发明,不做进一步探讨。 他们还对这一技术进行进一步的优化。 第一个是把双链DNA环化反复测序。人们可以在双链DNA的两头连上发夹结构的DNA adaptor,从而使DNA环化。而DNA聚合酶就能够以环化的DNA作为模板滚

相关文档
相关文档 最新文档