文档库 最新最全的文档下载
当前位置:文档库 › 数控加工刀具轨迹规划

数控加工刀具轨迹规划

数控加工刀具轨迹规划
数控加工刀具轨迹规划

数控加工刀具轨迹规划

CNC加工中心刀具的选择与切削用量的确定

CNC加工中心刀具的选择与切削用量 的确定 收藏此信息打印该信息添加:佚名来源:未知 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用C AD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 1.数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。 根据刀具结构可分为: 1)整体式; 2)镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 3)特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为: 1)高速钢刀具; 2)硬质合金刀具; 3)金刚石刀具; 4)其他材料刀具,如立方氮化硼刀具,陶瓷刀具等 从切削工艺上可分为 : 1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 2)钻削刀具,包括钻头、铰刀、丝锥等; 3)镗削刀具; 4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 1)刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 2)互换性好,便于快速换刀; 3)寿命高,切削性能稳定、可靠; 4)刀具的尺寸便于调整,以减少换刀调整时间; 5)刀具应能可靠地断屑或卷屑,以利于切屑的排除; 6)系列化,标准化,以利于编程和刀具管理。 2.数控加工刀具的选择

数控铣床对刀具的要求及铣刀的种类

数控铣床对刀具的要求及铣刀的种类 班级:09机制学号:姓名: 一、对刀具的要求 在切削加工时,刀具切削部分与切屑、工件相互接触的表面上承受很大的压力和强烈的摩擦,刀具切屑区产生很高的温度,受到很大的应力。在加工余量不均匀的工件或断续加工时,刀具还受到强烈的冲击和振动,因此刀具材料应具备以下基本要求: 1.高的硬度和耐磨性刀具材料的硬度必须比工件材料的硬度要高,一般都在60HRC以上。耐磨性是指材料抗磨损的能力。一般说来,刀具材料的硬度越高、晶粒越细、分布越均匀,耐磨性就越好。 2.有足够的强度和韧性切削过程中,刀具承受很大的压力、冲击和振动,刀具必须具备足够的抗弯强度和冲击韧性。一般说来,刀具材料的硬度越高,其抗弯强度和冲击韧性值越低,这两个方面的性能尝尝是矛盾的。一种好的刀具材料,应根据它的使用要求,兼顾以上两方面的性能,并有所侧重。 3.耐热性高耐热性是指刀具材料在高温下保持硬度、耐磨性、强度和韧性的性能,也包括刀具材料在高温下抗氧化、粘结、扩散的性能,故耐热性有时也称为热稳定性。良好的耐热性是衡量刀具材料切削性能的一项重要指标。 4.经济性经济性也是评价刀具材料切削性能的一项重要指标。有些刀具材料虽然单位成本较高,但因使用寿命长,分摊到每一个零件上的刀具成本就降低。除上述两点之外,铣刀切削刃的几何角度参数的选择及排屑性能等也非常重要,切屑粘刀形成积屑瘤在数控铣削中是十分忌讳的。总之,根据被加工工件材料的热处理状态、切削性能及加工余量,选择刚性好,耐用度高的铣刀,是充分发挥数控铣床的生产效率和获得满意的加工质量的前提。 二、刀具的分类 1.按直径分类 1)公制(mm)刀常用直径为:0.5、 1 、1.5 、2 、2.5、 3 、4 、5 、6、 8 、10 、12 、16 、20、 25、 28 、30 、32 、35、 40、 50 、63。 2)英制(INCh)刀常用直径为:1/8、1/4、1/2、3/16、5/16、3/8、5/8、3/4、1、1.5 、2。

复杂曲面五轴端铣加工刀具轨迹规划研究进展

第51卷第15期2015年8月 机械工程学报 JOURNAL OF MECHANICAL ENGINEERING Vol.51 No.15 Aug. 2015 DOI:10.3901/JME.2015.15.168 复杂曲面五轴端铣加工刀具轨迹规划研究进展* 樊文刚叶佩青 (清华大学机械工程系北京 100084) 摘要:五轴端铣加工是提高重点工业和国防领域复杂曲面类零部件加工质量和加工效率的重要手段。围绕刀位优化、刀路规划和刀轴矢量优化三个关键问题,综述近年来五轴端铣加工刀具轨迹规划技术的研究进展。根据刀具和工件曲面之间切触点数量,将五轴端铣加工刀位优化算法分为单点切触、多点切触和无切触点三类,并建立多点切触刀位优化的通用数学模型。然后系统梳理了刀路规划、全局干涉检测及刀轴矢量优化理论和方法。最后分析了当前研究存在的不足,指出五轴端铣加工刀具轨迹规划应该尽可能从整体角度出发,且应充分考虑机床的运动学和动力学特性,同时应加强多点切触加工理论和应用研究,使其在工程实际中真正发挥高效优势。 关键词:复杂曲面;五轴加工;端铣;刀路;研究进展 中图分类号:TP391 Research Progress in Tool Path Planning for Five-axis End Milling Machining of Sculptured Surfaces FAN Wengang YE Peiqing (Department of Mechanical Engineering, Tsinghua University, Beijing 100084) Abstract:Five-axis end milling machining is an important means to improve the processing quality and processing efficiency for parts with sculptured surfaces in the key industry and national defense areas. Around the three critical issues including tool positioning, tool path and tool orientation optimization, the recent research progress of tool path planning for five-axis end milling machining is summarized. Based on the number of the cutter contact (CC) point between the tool and the design surface, the tool positioning optimization strategy of five-axis end milling machining is divided into three categories that are single-point contact, multi-point contact and non-point contact. And the general mathematic model of the multi-point contact tool positioning optimization is established. The theories and methods of tool path, global interference detection and tool orientation optimization are systematically discussed. The deficiencies in current research are analyzed. It is pointed out that tool path planning of five-axis end milling machining should be carried out from the overall perspective as far as possible, and fully considers the kinematic and dynamic properties of machine tool. Meanwhile, the theory and application research for multi-point contact machining should be strengthened to indeed play its efficiency advantage in engineering practice. Key words:sculptured surface;five-axis machining;end milling;tool path;research progress 0 前言 复杂曲面类零部件广泛应用于航空航天、汽车、船舶、能源、国防等行业,这些曲面通常需要在五轴数控机床上依靠刀具和工件的相对切削运动才能产生,其制造技术水平对于国民经济发展和国防现代化建设都具有十分重要的意义。因此,《国家中长期科学和技术发展规划纲要(2006—2020)》[1]和国家自然科学基金委员会《机械工程学科发展战 *国家科技重大专项(2011ZX04004-012)和中国博士后科学基金(2014T70073,2012M510423)资助项目。20140815收到初稿,20150216收到修改稿略报告(2011—2020)》[2]均将复杂曲面类零部件的数字化制造技术列为制造业的优先主题之一。而“高档数控机床与基础制造装备”和“大型飞机”重大专项的开展,更是对关键复杂曲面类零部件的高效、精密制造技术提出了前所未有的迫切需求[3]。 五轴数控加工相比于三轴在提高加工质量和加工效率方面具有明显优势,增加的两个旋转自由度使刀轴姿态更加灵活,通过调整刀轴矢量不仅可以避免刀具与工件及夹具等的干涉,也使刀具和工件曲面之间能够获得更好的几何匹配,有利于增大加工带宽,提高实际加工效率。然而,五轴数控机床的这一运动特性和工件曲面的复杂性也给数控编程带来了新的挑战。刀具轨迹规划是复杂曲面五轴

数控加工常用刀具的种类及选择

数控加工常用刀具的种类及选择1.数牲加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。 2.1数控刀具的分类有多种方法 a.根据刀具结构可分为 (1)整体式; (2)镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种; (3)特殊型式,如复合式刀具、减震式刀具等。 b.根据制造刀具所用的材料可分为: (1)高速钢刀具; (2)硬质合金刀具; (3)金刚石刀具; (4)其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。 c.从切削工艺上可分为: (1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; (2)钻削刀具,包括钻头、铰刀、丝锥等;

(3)镗削刀具; (4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%一40%,金属切除量占总数的80%~90%。 2.2数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: (1)刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;互换性好,便于快速换刀; (2)寿命高,切削性能稳定、可靠; (3)刀具的尺寸便于调整,以减少换刀调整时间; (4)刀具应能可靠地断屑或卷屑,以利于切屑的排除; (5)系列化标准化以利于编程和刀具管理。 2.数控加工刀具的选择 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材科的性能、加 工工序切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

加工中心的刀具及参数选择

加工中心的刀具及参数选择 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为: ①整体式; ②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;

③特殊型式,如复合式刀具,减震式刀具等。 根据制造刀具所用的材料可分为: ①高速钢刀具; ②硬质合金刀具; ③金刚石刀具; ④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。 从切削工艺上可分为: ①车削刀具,分外圆、内孔、螺纹、切割刀具等多种; ②钻削刀具,包括钻头、铰刀、丝锥等; ③镗削刀具; ④铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。 二、数控加工刀具的选择 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因

数控车床常用刀具及选择

数控车床常用刀具及选择 1.数控刀具的结构数控车床刀具种类繁多,功能互不相同。根据不同的加工条件正确选择刀具是编制程序的重要环节,因此必须对车刀的种类及特点有一个基本的了解。在数控车床上使用的刀具有外圆车刀、钻头、镗刀、切断刀、螺纹加工刀具等,其中以外圆车刀、镗刀、钻头最为常用。 数控车床使用的车刀、镗刀、切断刀、螺纹加工刀具均有整体式和机夹式之分,除经济型数控车床 外,目前已广泛使用可转位机夹式车刀。 (1) 数控车床可转位刀具特点 数控车床所采用的可转位车刀,其几何参数是通过刀片结构形状和刀体上刀片槽座的方位安装组合形成的,与通用车床相比一般无本质的区别,其基本结构、功能特点是相同的。但数控车床的加工工序是自动完成的,因此对可转位车刀的要求又有别于通用车床所使用的刀具,具体要求和特点如下表所示。 表2-2 可转位车刀特点 (2) 可转位车刀的种类可转位车刀按其用途可分为外圆车刀、仿形车刀、端面车刀、内圆车刀、 切槽车刀、切断车刀和螺纹车刀等,见表2-3。 表2-3 可转位车刀的种类

端面车刀900、450、750 普通车床和数控车床 内圆车刀450、600、750、900、910、930、 950、107.50 普通车床和数控车床 切断车刀普通车床和数控车床 螺纹车刀普通车床和数控车床 切槽车刀普通车床和数控车床 (3) 可转位车刀的结构形式 ①杠杆式: 结构见图2-16,由杠杆、螺钉、刀垫、刀垫销、刀片所组成。这种方式依靠螺钉旋紧压靠杠杆,由杠杆的力压紧刀片达到夹固的目的。其特点适合各种正、负前角的刀片,有效的前角范围为-60°~ +180°;切屑可无阻碍地流过,切削热不影响螺孔和杠杆;两面槽壁给刀片有力的支撑,并确保转位精度。 ②楔块式: 其结构见图2-17,由紧定螺钉、刀垫、销、楔块、刀片所组成。这种方式依靠销与楔块的挤压力将刀片紧固。其特点适合各种负前角刀片,有效前角的变化范围为-60~+180。两面无槽壁,便于仿形切削 或倒转操作时留有间隙。 ③楔块夹紧式: 其结构见图2-18,由紧定螺钉、刀垫、销、压紧楔块、刀片所组成。这种方式依靠销与楔块的压下力将刀片夹紧。其特点同楔块式,但切屑流畅不如楔块式。 此外还有螺栓上压式、压孔式、上压式等形式。 2、刀片材料 刀具材料切削性能的优劣直接影响切削加工的生产率和加工表面的质量。刀具新材料的出现,往往

数控刀具种类_数控车床刀片型号

数控刀具种类_数控刀片型号 数控刀具是指与数控机床(包括加工中心、数控车床、数控镗铣床、数控钻床、自动线以及柔性制造系统)相配套使用的各种刀具的总称,是数控机床不可缺少的关键配套产品。在国外数控刀具发展很快,品种很多,已形成系列。在我国,由于对数控刀具的研究开发起步较晚,数控刀具成了工具行业中最薄弱的一个环节。数控刀具的落后已经成为影响我国国产和进口数控机床充分发挥作用的主要障碍。 数控刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括刀具及连接刀柄:刀柄要连接刀具并装在机床的动力头上,因此已逐渐标准化和系列化。近年来,快速发展的数控加工技术促进了数控刀具的发展。每当一种新型数控刀具产品的面市,会使数控加工技术跃上一个新台阶,产生巨大的经济和社会效益。 数控刀具的分类方法很多。一般可按下列方法进行分类。 1.按刀具切削部分的材料分 按刀具切削部分的材料可分为高速钢刀具、硬质合金刀具、陶瓷刀具、立方氮化硼刀具、金 刚石刀具和涂层刀具等。 2.按刀具的结构形式分 按刀具的结构形式可分为整体式、镶嵌式和特殊形式等。 (1)整体式。整体式包括钻头和立铣刀等。

(2)镶嵌式。镶嵌式包括刀片采用焊接和机夹式等。 (3)特殊形式。特殊形式包括复合式和减振式等。 3。按切削加工工艺分 按切削加工工艺可分为车削刀具、铣削刀具、钻削刀具和镗削刀具等。 (1)车削刀具。车削刀具包括外圆车刀、内孔车刀、切槽(断)刀、端面车刀、螺纹车刀等: (2)铣削刀具。铣削刀具包括面铣刀、立铣刀和螺纹铣刀等。 (3)钻削刀具。钻削刀具包括钻头、铰刀和丝锥等。 (4)镗削刀具。镗削刀具包括粗镗刀和精镗刀等。 数控加工刀具可分为常规刀具和模块化刀具两大类。 模块化刀具是发展方向。发展模块化刀具的主要优点:减少换刀停机时间,提高生产加工时间;加快换刀及安装时间,提高小批量生产的经济性;提高刀具的标准化和合理化的程度;提高刀具的管理及柔性加工的水平;扩大刀具的利用率,充分发挥刀具的性能;有效地消除刀具测量工作的中断现象,可采用线外预调。事实上,由于模块刀具的发展,数控刀具已形成了三大系统,即车削刀具系统、钻削刀具系统和镗铣刀具系统。 (1)从结构上可分为 ② 体式 ②镶嵌式可分为焊接式和机夹式。机夹式根据刀体结构不同,分为 可转位和不转位; ③减振式当刀具的工作臂长与直径之比较大时,为了减少刀具的振

数控加工中刀具的应用分析标准版本

文件编号:RHD-QB-K9331 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 数控加工中刀具的应用分析标准版本

数控加工中刀具的应用分析标准版 本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 在数控加工中,正确的刀具选择至关重要,本文主要对选择刀具的注意事项以及刀具的优化应用进行了简单的介绍,旨在提高数控编程人员对于道具选择的精准度,从而保证零件的加工质量。 刀具的选择 数控加工中的刀具主要包括模块化刀具以及常规刀具两种。模块化刀具是刀具未来的主要发展方向,主要是由于模块化刀具的应用能够节约维护时间,并且使得刀具的标准化和合理化的程度有所提高,使刀具的性能得以充分的发挥,大大改善了刀具测量工作

出现的中断现象。 在数控加工中,刀具的选择是重中之重,正确的刀具选择能够使得机床的加工效率以及零件的加工质量得到很大程度上的提高。刀具的选择应该根据机床的性能、被加工零件的材料性能、加工工序以及加工量等等进行选择。 与普通机床相比,数控机床的主轴转速以及功率都十分高,所以对刀具的要求就更加严苛,要求刀具需具有较大的精度强度,耐用性良好,并且易于安装调整等等优点,所以刀具的结构必须合理,其几何参数以及材料性能都要合乎一定的标准。对于数控刀具的正确选择是保证数控车床的加工效率的基础之一。刀具的选择主要应该考虑以下方面: 1.1.零件材料的切削性能 选择刀具时要充分考虑金属、非金属材料的刚

刀具轨迹生成与动态切削过程仿真

刀具轨迹生成与动态切削过程仿真五坐标数控加工 丁1,*,双qingzhen2,朱利民2 华中科技大学数字制造装备与技术国家重点实验室,,武汉430074; 上海交通大学机械系统与振动国家重点实验室,,上海200240 2009年10月9日2009年12月29日收到 五轴数控加工提供了一种有效、高效的方法来制造复杂形状的机械零件,这是一种有效的方法广泛应用于航空航天,能源和国防工业。其技术创新在最近备受关注岁月。在本文中,国家的最先进的技术,五轴加工工艺规划的总结和挑战从刀具路径生成,集成几何/机械仿真和分析的问题进行了分析加工稳定性分析。基于可访问性的刀具定位优化方法研究进展线接触和三点接触加工,刀具包络面形状控制和铣削稳定性预测详细介绍。最后,新兴趋势和未来的挑战进行了简要讨论。 关键词:五轴加工,刀具轨迹生成,集成几何/机械仿真,动力学仿真 引文: 在传统的三轴数控加工的翻译刀具的运动是允许的,而刀具方向可以改变一五轴机床因为另外两个旋转轴。优势五坐标数控加工主要依赖于控制工具取向:(1)零件间的碰撞可通过选择可访问的工具的方向,它提供了机器的能力复杂的形状,如航空航天,涡轮叶片和船用螺旋桨。(2)大的加工条带宽度如果工具方向被正确地规划,则可获得工具提示几何匹配的零件几何。再者,高效的刀面研磨可以应用于机器航空叶轮用一五轴机床。(3)在五轴加工中,切削条件可以得到改善。例如,它是可以缩短的工具悬挑长度如果工具定位优化。确定在一个密闭的空间中,当表面被机械加工时,安全和最短的刀具长度是非常有用的小直径铣刀可用于。切割区域的刀具,从而影响切削力,刀具磨损和机械加工表面质量也可以通过改变来控制刀具导向。 除了上述优点外,还有一些具有挑战性的五轴加工中的问题。自工具方向是可调的,很难像图像的复杂工具的空间运动。因此,它更难以生成无碰撞和高效率的刀具路径,这限制了它的广泛应用。此外,切割力预测和动力学模拟更为复杂因为所涉及的切削参数是随时间变化的在加工过程中。约五轴电流工作机械加工分为三类1类:刀具轨迹生成,集成几何/机械模拟动力学仿真,如图1所示。 刀具轨迹生成是计划的过程,相对于基于零件模型、加工方法和公差要求。刀具轨迹对切削效率和质量有很大的影响。它也是基金会集成的几何/机械模拟,这取决于切削几何与切削力模型的研究技术。切削几何反映了网格的状态在刀具和工件之间的材料清除过程。通过整合切割的几何形状和切削力模型,可以预测的瞬态切削力。切削力,然后可以应用到动态模拟,进给率优化,预测补偿变形。动态仿真目标是预测切削稳定性和加工表面基于切削力和动力学特性的研究机床夹具系统的研究。力学仿真有助于优化切削参数和刀具路径。

基于单调链的平面型腔行切刀具轨迹规划方法验证

18 本文将对基于单调链的平面型腔行切刀具轨迹生成算法进行实验,并通过实验对该种刀具轨迹规划算法生成的刀具轨迹与平面区域加工方法生成的刀具轨迹进行比较分析。 1 实验对象 实验中取一远红外线成像仪的盖子作为实验对 象。其实验模型如图1所示。 图1 实验模型 图2 XkN714立式数控床身铣床 2 刀具轨迹计算 在充分理解算法的基础上,以Matlab为工具,以红外线成像仪上盖为加工对象,算出该平面型腔的加工轨迹。 3 实验过程 3.1 实验条件 实验设备:采用XkN714立式数控床身铣床(见图2),主要参数见表1: 表1 机床主要参数 主轴最高转速 /r?min -1 最大进给速度/mm?min -1 工作台面/ mm 最大力矩/N?m 6000 1500 750×500 5.80 加工刀具:Ф6键铣刀。工件材料:铝。 3.2 NC程序编制 利用程序计算出刀具轨迹点后,将这些单独的点转化为刀具轨迹线。图3为平面区域加工方法生成的型腔行切轨迹,图4为基于单调链概念的平面型腔行切轨迹。从图中可看出平面区域加工方法生成的型腔行切轨迹产生了3次抬刀动作,而基于单调链概念的型腔行切轨迹在整个加工过程中没有产 生抬刀动作。 图3 平面区域加工方法生成的型腔行切轨迹 基于单调链的平面型腔行切刀具轨迹规划方法验证 杨春花 (云南机电职业技术学院机械工程系,云南 昆明 650203) 摘要: 基于单调链技术的型腔行切刀具轨迹的规划方法,特点在于用单调链的数目来抽象描述内外轮廓的多边形几何形状的复杂性,从而建立起抬刀次数与行切行距、内外轮廓多边形的几何形状,内外轮廓多边形的数目之间的具体关系式,并在此基础上,采用相应的算法规定,最大程度地减少了抬刀动作的次数。关键词: 数控加工;刀具轨迹;单调链;抬刀次数;行切行距;内外轮廓中图分类号: TG506 文献标识码:A 文章编号:1009-2374(2012)31-0018-03 2012年第31/34期(总第238/241期)NO.31/34.2012 (CumulativetyNO.238/241)

机加工刀具的选择

刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专

用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种; ②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。

cnc加工中心刀具大全及如何选择【全解】

cnc加工中心刀具大全及如何选择 内容来源网络,由深圳机械展收集整理! 更多相关内容,就在深圳机械展刀具展区! 首先我们来认识一下常用的cnc加工中心刀具: 平底刀:也称平刀或端铣刀。周围有主切削刃,底部为副切削刃。可以作为开粗及清角,精加工侧平面及水平面。有D16,D12,D1O,D8,D6,D4,D3,D2 ,D1.5,D1等。D表示切削刀刃直径。一般情况下,开粗时尽量选较大直径的刀,装刀时尽可能短,以保足够的刚度,避免弹刀。在选择小刀时,要结合被加工区域,确定刀锋长及直身部分长,选择现有的合适的刀。 圆鼻刀:也称平底R刀。可用于开粗、平面光刀和曲面外形光刀。一般角半径为R0.8和R5。一般有整体式和镶刀粒式的刀把刀。带刀粒的圆鼻刀也称飞刀,主要用于大面积的开粗,水平面光刀。有D50R5,D30R5, D25R5, D25R0.8, D21R0.8,D17RO.8等。飞刀开粗加工尽量选大刀,加工较深区域时,先装短加工较浅区域,再装长加工较深区域,以提高效率且不过切。 球刀:也称R刀。主要用于曲面中光刀(即半精加工)及光刀(即精加工)。常用的球刀有D16R8, D12R6, D10R5, D8R4, D6R3, D5R2.5(常用于加工流道),D4R2, D3R1.5, D2R1, D1R0.5。一般情况下,要通过测量被加工图形的内圆半径来确定精加工所用的刀具,选大刀光刀,小刀补刀加工。

如何选择cnc加工中心刀具: 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素选用刀具及刀柄。 刀具选择总的原则:安装调整方便刚性好,耐用度和精度高。在加工要求的前提下,选择较短的刀柄以提高刀具加工的刚性。选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。 1.平面零件周边轮廓的加工,常采用立铣刀。 2.铣削平面时,应选硬质合金刀片铣刀。 3.加工凸台、凹槽时,选高速钢立铣刀。 4.加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀。 5.对一些立体型面和变斜角轮廓外形的加工,采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。 6.在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保加工精度,切削行距一般取得很能密,故球头常用于曲面的精加工。 7.平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优选择平头刀。 8.在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标zhun刀柄以便使钻、镗、扩、铣削等工序用的标zhun 刀具,迅速准确地装到机床主轴或刀库上去。应尽量减少刀具数量;一把刀具装夹后应完成其所能进行的所有加工部位;粗精加工的刀具应分开使用即使是相同尺寸规格的刀具;先铣后钻;先进行曲面精加工再进行二维轮廓精加工;在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

CNC常用刀具及选择方法

CNC常用刀具及选择方法 栢图数控在powermill、ug数控编程与加工的教学内容中,不但要讲解常用的刀具,更需要讲解如何选择适合的刀具进行加工,下面我们就来讲讲CNC常用的部分刀具有哪些以及如何选择刀具进行加工。 首先我们来认识一下常用的数控铣刀具: 平底刀:也称平刀或端铣刀。周围有主切削刃, 底部为副切削刃。可以作为开粗及清角,精加工侧 平面及水平面。常用的有D16,D12,D1O,D8,D6, D4,D3,D2 ,D1.5,D1等。D表示切削刀刃直径。 一般情况下,开粗时尽量选较大直径的刀,装刀时 尽可能短,以保证足够的刚度,避免弹刀。在选择小刀时,要结合被加工区域,确定最短的刀锋长及直身部分长,选择本公司现有的最合适的刀。 圆鼻刀:也称平底R刀。可用于开粗、平 面光刀和曲面外形光刀。一般角半径为R0.8 和R5。一般有整体式和镶刀粒式的刀把刀。 带刀粒的圆鼻刀也称飞刀,主要用于大面积的 开粗,水平面光刀。常用的有D50R5,D30R5, D25R5, D25R0.8, D21R0.8,D17RO.8等。飞刀开粗加工尽量选大刀,加工较深区域时,先装短加工较浅区域,再装长加工较深区域,以提高效率且不过切。 球刀:也称R刀。主要用于曲面中光刀(即半精 加工)及光刀(即精加工)。常用的球刀有D16R8, D12R6, D10R5, D8R4, D6R3, D5R2.5(常用于加工流 道),D4R2, D3R1.5, D2R1, D1R0.5。一般情况下, 要通过测量被加工图形的内圆半径来确定精加工所用的刀具,尽量选大刀光刀,小刀补刀加工。

其次刀具的选购 现在刀具大多都商品化及标准化,选购时要索取刀具公司的规格图册,结合本厂的加工条件,选择耐用度高的刀具,以确保最佳的经济效益。如果本厂产品变化不大,那么刀具种类尽可能少而精。 在金属切削加工中,刀具材料也就是切削部分,要承受很大的切削力和冲击,并受到工件及切屑的剧烈摩擦,产生很高的切削温度。其切削性能必须要有以下方面。 (1)高的硬度:62HRC以上,至少要高于被加工材料的硬度。 (2)高的耐磨性:通常情况下,材料越硬、组织中碳物越多、颗粒越细、分布越均匀,其耐磨性就越高。 (3)足够的强度与韧性。 (4)高的耐热性。 (5)良好的导热性。 (6)良好的工艺性和经济性。 为了满足以上要求,现在的数控刀具一般由以下材料制成。 (1)高速钢。如WMOAI系列。 (2)硬质合金。如YG3等。 (3)涂层刀具。如TIC 、TIN 、A1203 等。

数控加工中心刀具长度补偿的研究

加工中心刀具补偿的研究摘要:数控加工中心加工一个零件往往需要数把刀,为了简化编程,CNC系统采用刀具长度补偿可使在备制零件的加工程序时,不必考虑刀具的实际长度.阐述了刀具长度补偿的原理,研究了数控系统使用长度补偿旨令G43(G44)和H完成长度补偿功能,提出了刀具运行的实际位呈与编程中指令位置的计算方法.论述了刀具民数在CNC 系统中的存分配,分析了刀具长度补偿的方式、特点及CNC系统中刀具长度补偿功能与其他指令的关系.结果表明:使用刀具长度补偿功能提高了加工效率。 加工中心是一种综合加工能力较强的设备,加工中心设置有刀库和自动换刀装置,在加工过程中由程序自动选刀和换刀,由于加工中心常用来加工形状复杂、工序多、精度要求较高、需用多种类型的普通机床和众多刀具、夹具且经多次装夹和调整才能完工的零件,因而加工一个零件需用十几把刀具甚至更多,由于每把刀具的长度都是不同的,在对被加工零件设置工件坐标系零点(一般为工件的卜表面)后,如果更换的刀具比编程时的标准刀具稍长则将使零件产生过切的现象Ul,反之使零件产生欠切的现象. 利用数控系统的刀具长度补偿功能,可以解决上述问题. 刀具长度补偿指令一般用于刀具轴向(Z向)的补偿,它使刀具在Z方向上的实际位移量比程序给定值增加或减少一个偏置值t2],这样在编制零件的加工程序时,不必考虑刀具的实际长度以及各把刀具不同的长度尺寸.另外,当刀具磨损、更换新刀或刀具安装有误差时,也可使用刀具长度补偿指令,以补偿刀具在长度方向上的尺寸变化,而不需要重新编 制加工程序、重新对刀或重新调整刀具.大大简化了编程,减少了工时,提高了效率。 1 CNC系统执行刀具长度补偿功能分析 1.1刀具长度补偿功能的运行分析 刀具长度补偿是通过执行含有G43 ( G44)和H指令来实现,其指令格式为G43Z_H_或G44Z_H_,即把编程的Z坐标值加上(或减去)H_

加工中心刀具选择技巧

加工中心刀具選擇技巧 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。 二、数控加工刀具的选择

五轴数控加工的刀具路径规划与动力学仿真

五轴数控加工的刀具路径规划与动力学仿真 【摘要】五轴数控作为航天、航空、国防、能源加工的重要方法,对提高制造水平以及工业技术具有重要作用。近年来,被广泛应用于各军事工业以及民用工业中,由于它在传统三轴加工的基础上增加两个自由度,所以用五轴加工能获得更好的加工质量与生产效率。本文结合五轴数控加工,对刀具路径规划以及动力学仿真进行了简要的探究和阐述。 【关键词】五轴数控加工;刀具路径;规划;动力学仿真 传统的三轴数控加工通过刀具平动实现各零件加工;五轴数控在三轴机床的基础上,增加了两个旋转轴,让刀具能在工作空间向任意方向移动。五轴数控加工的优势是通过控制刀轴,在改变刀轴方向的同时,从源头上避免零件与刀具干涉,进行叶轮整体与螺旋桨等相对复杂的零件加工,更好的匹配工件曲面以及刀具几何,在有效切宽的同时,进一步实现大型敞口曲面零件加工;在转变加工环境的同时,用刚度相对较低的刀具,减小刀具伸量。另外,控制刀轴方向还可以有效控制切削区域,在减小刀具磨损以及切削力的过程中,确保表面加工质量。但是由于旋转运动的引入,在刀轴更加灵活的同时,也增加了刀具规划的难度;由于进给速度不同,在瞬时变化的过程中,切削力与动力学等问题越来越复杂。 一、五轴数控加工的刀具路径规划 刀具路径规划作为整个数控的核心技术,在复杂的五轴刀具加工中,除了必须满足几何约束外,还必须整合物理因素以及动态特性。对于加工较难的工件,物理因素与动态特性主要取决于加工质量与效率,这也是刀具路径必须考虑的方面。在规划刀具路径时,必须在无干扰的基础上,通过改善刀轴方向,进一步扩大切削面积。 (一)干涉避免 目前,没有干涉的刀位规划可以分成:可达性以及后检测先规划的方法。干涉避免作为复杂曲面加工必须考虑几何约束。先生成后检测,是先生成刀具路径,再进行对应的干涉规划,通过改善刀轴方向,进一步避免干涉;而在可达性的基础上进行刀具规划,则是直接形成刀具路径的重要方法。先生成后检测的工作重心集中在调整刀轴方向以及检查干涉中。数控程序的刀位点通常有几万到十几万行,在检查中需要花费大量资源以及计算时间。所以研究重点必须放在检查干涉效率上。在复杂零部件加工时,后检测的方法需要不断调整刀轴方位,在干涉检查中,根据几何约束,进一步强化刀轴方向。 可达性规划方法,首先,应该在离散的触点中计算出对应的方向,再规划刀具路径,这种方法不仅可以正确判断零件的加工性,还可以有效减少刀具路径检测与调整。在刀具无干涉优化路径中,也可以根据机床刀轴方向,在努力克服刀轴方向难题的同时,计算刀轴需要的时间与资源。因此,研究重点必须放在刀具可达方向上。主要有:可视锥法与空间法,空间法的关键是映射到对应的空间。 (二)加工效率 到目前为止,五轴数控加工的重点仍是球头刀,由于效率不高,规划简单,所以必须调整姿态、位置,让刀触点轨迹接近理论曲面,进而不断扩大给定精度的宽度。对于敞口、平坦的曲面,如何充分利用五轴机床的潜力已逐渐成为当今研究的热点。在研究集中性圆环刀、平底刀加工,或者圆锥刀、圆柱刀加工时,根据数控加工要求,在靠点成形的过程中,有效控制刀具切削面积,提高加工效率,或者直接“宽行加工”。在这个过程中,单参数包络原理也就是五轴数控的加工成形原理,真实的加工误差就是包络面与工件曲面的法向误差。因此,怎样在单个刀位规划中,整合工件曲面与刀具包络面就成了非常重要的问题,甚至直接影响刀位精度。由于操作复杂性以及难度,很多数控加工单位都使用了简化处理的方法,把刀位规划成单个刀位,在工件曲面与刀具曲面优化中,根据优化模型真实反映加工进程,对刀位

数控加工中刀具的选择与切削用量的确定

数控加工中刀具的选择与切削用量的确定 摘要:现代刀具显著的特点是结构的创新速走加快。随着计算机应用领域的不断扩大,机械加工也开始运用数拉技术,这时刀具选择与切削用量提出了更高的要求。本文就扣何确定数控加工中的刀具选择与切削用全进行了探讨。 关键词:数控技术;机械加工;刀具选择 一、科学选择数控刀具 1、选择数控刀具的原则 刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率

的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要刚性好、精度高,而且要求尺寸稳定,耐用度高,断屑和排屑性能好的同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如硬质合金、陶瓷等)并使用可转位刀片。 2、选择数控车削用刀具 数控车削车刀常用的一般分成型车刀、仿形车刀、圆弧形车刀三类。成型车刀也称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形伏和尺寸决定。数控车削加工中,常见的成型车刀有小半径圆弧车刀、非矩形车槽刀和螺纹刀等。在数控加工中,应尽量少用或不用成型车刀。仿形形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如90°内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑并应兼顾刀尖本身的强度。圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该圆弧的圆心上。圆弧形车

相关文档