文档库 最新最全的文档下载
当前位置:文档库 › 直流小电动机调速系统

直流小电动机调速系统

直流小电动机调速系统
直流小电动机调速系统

题目直流小电机测速系统

一.题目要求

设计题目:直流小电动机调速系统

描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。

具体要求:1、电机速度分30r/m、60r/m、100r/m共3档;

2、通过按选择速度;

3、检测并显示各档速度。

实验器件:

实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及

电阻等

二.组分工

摘要

在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。

本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。

·关键词:直流电机单片机 PWM 转速控制

硬件部分

1.时钟电路

系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路

三个按键分别控制电机的不同转速,采用开环控制方法

3.电机控制与驱动部分

电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分

采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。

完整仿真电路图

软件部分

系统软件采用Keil集成开发环境开发

程序如下:

#include

sbit P2_0=P2^0; //数码管位

sbit P2_1=P2^1;

sbit P2_2=P2^2;

sbit P2_3=P2^3;

sbit P2_4=P2^4; //电机位

sbit keysp30=P1^1; //30

sbit keysp60=P1^2; //60

sbit keysp100=P1^3; //100

unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,

0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};

unsigned int spd; //电机转速

unsigned char ge,shi,bai,qian; //电机转速spd的各个位

unsigned int counter=0; //光电传感器脉冲数unsigned int pwm; //pwm占空比

unsigned int mid; //占空比设置值

unsigned int c; //设定多长时间计算一次速度

void display(); //数码管显示电机速度

void delay(); //延迟函数

void ctrlpwm(); //控制电机占空比

void speed(); //计算电机速度,放于motorspeed变量中void keys(); //按键扫描

void main()

{

P2=P2&0x0f;

vid=0;

initial();

while(1)

{

keys();

display();

ctrlpwm();

直流电动机调速系统

创新设计创新设计名称: 直流电动机调速系统设计

目录 目录 (1) 1 引言 (2) 1.1 设计背景 (2) 1.2 系统可实现的功能 (2) 2 总体方案设计 (3) 2.1 单片机选型方案 (3) 2.2 转速测量方案选择 (4) 2.3直流电机驱动电路介绍 (5) 2.4 PWM调宽方式的选择 (6) 2.5键盘的选择 (6) 2.6整体方案设计框图 (6) 3 硬件电路设计 (7) 3.1 系统的整体硬件框图 (7) 3.2 按键模块电路设计 (7) 3.3数码管显示模块电路设计 (8) 4系统软件设计 (10) 4.1 PWM输出程序设计 (10) 4.2 数字PID算法程序设计 (11) 4.3速度采集模块程序设计 (12) 4.4 按键设定程序设计 (13) 4.5 速度显示模块程序设计 (15) 5 总结 (16) 6参考文献 (17) 附录A系统原理图 (18)

1 引言 1.1 设计背景 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。本设计主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 1.2 系统可实现的功能 设计一个直流电机调速系统,要求系统具有如下功能:通过按键设定转速的大小,然后由单片机产生PWM控制信号,控制直流电机驱动器L298N,使电动机以一定的转速旋转,为实现闭环控制,通过外围器件为单片机提供测量转速的电平变化信号,单片机测得转速后,与设定的转速值相比较,通过数字PID算法产生控制信号,改变PWM输出的占空比,从而改变电动机转速,从而实现闭环控制,使电动机在一个转速值上较稳定的旋转。

实验一 直流电机调速系统的数学模型

实验一直流电机调速系统的数学模型 一、实验目的 1.通过实验掌握直流电机PWM开环调速控制方法。 2.掌握PWM功率放大H桥芯片LMD18200T的应用方法。 3.掌握开关电源PWM控制芯片SG3525A在直流调速系统中的应用。 4.掌握直流调速系统的数字模型的建立方法。 二、实验线路 实验线路如图1所示,所发的元件按图1所示焊接好,检查核对无误后,接上30V电源,在U4的2脚处断开与运放U3的连接,U4的2脚接一10K的电位器,称为PR1(图1中没画),电位器电源电压为5V,电位器的滑动端接U4的2脚,即Uc接电位器PR1的中点,调节该电位器PR1即可改变Uc的大小,实现直流电机的开环速度控制。 图1 实验电路 三、实验内容 1 PWM环节数学模型测定调节PR使SG3525A的13脚输出的PWM波形占空比为50%,测量SG3525A 2脚的输入电压及PWM环节的输出电压,填入表1。改变PR,按不同的占空比测量2脚的电压和PWM环节输出电压,填入表1。

表1 PWM 环节数学模型测试表 空比比 10% 20% 30% 40% 50% 60% 70% 80% 90% Vc(2pin) V 2电机参数的测量 1) 电势常数C E Φ的测定 用另一台电动机牵引被测电机运在额定转速, 测出电机的电势Ea ,则 电势常数:C E Φ=N a n E 。 (1) 2)电机转矩常数C m Φ 转矩常数可由C E Φ求出:Φ= ΦE m C C π30。 (2) 3)飞轮矩GD 2的测定 已知电机的运动方程为: dt dn GD T T l e 3752=- (3) 电机接可调稳压电源,测速发电机接数字示波器的Y 轴输入,调节稳压电源电压使电机运行在额定转速附近,测量此时的空载电流I O 。断开电源使电机自由行使,测出电机的下降时间t ?(若为指数下降曲线,则按其初始斜率求下降时间t ?),则电机的飞轮矩可由下式求出: GD 2 =t n I C o m ??Φ375 (4) 4)电枢电阻的测定 电机电枢接可调稳压电源,卡住电机轴不让转动,调节稳压电源使电机电流为额定电流,测出一组V 1,I 1 。电机轴转动一定位置,重复测量得另一组数据,V 2,I 2 。 测出4、5组数据。则电枢电阻a R 为: a R =n Rn R R ++21 (5) 5)电源内阻的测定 在H 桥输出端接电压表,电流表和可调负载电阻, 调节控制电压U C 使PWM 电路输出为额定电压的2 1,调节负载电阻使电流为额定电流I N ,保持控制电压不变,调节负载电阻,使负载约为额定电流的0.8倍,测 出电流I 1,测出电压为V 2,则按下式可算出电源的等效内阻: R pwm =2 112I I V V -- (6) 6)电枢电感的测定 自耦变压器输出与电机联接在如图所示。交流电流应大于额定值,测得电压,电流分别为U 和I ,则电枢电感a L 为:

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路 输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

直流小电动机调速系统

题目直流小电机测速系统 一.题目要求 设计题目:直流小电动机调速系统 描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。 具体要求:1、电机速度分30r/m、60r/m、100r/m共3档; 2、通过按选择速度; 3、检测并显示各档速度。 实验器件: 实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及 电阻等 二.组分工

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。 ·关键词:直流电机单片机 PWM 转速控制 硬件部分 1.时钟电路 系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路 三个按键分别控制电机的不同转速,采用开环控制方法 3.电机控制与驱动部分 电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分 采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。 完整仿真电路图

基于STC52单片机的直流电机PWM调速系统

实训报告 实训名称直流电机调速试验系别电子与电气工程学院专业、班级09测控C1 学生姓名、学号刘凡094821257 学生姓名、学号沈阳094821345 学生姓名、学号覃新造094820364 指导教师陈进 实训地点16号楼212室 实训日期2012 年5月20日

基于STC52单片机的直流电机PWM调速系统 摘要 本文介绍一种基于STC52单片机控制的PWM直流电机脉宽调速系统。系统以廉价的STC52单片机为控制核心,以直流电机为控制对象。从系统的角度出发,对电路进行总体方案论证设计,确定电路各个的功能模块之间的功能衔接和接口设置,详细分析了各个模块的方案论证和参数设置。整个系统利用52单片机的定时器产生1K左右的PWM脉冲,通过快速光耦6N137实现控制单元与驱动单元的强弱电隔离,采用4个9013和2个9012构成的H桥电路实现对直流电机的调速,用光电编码盘完成测速功能。 关键字STC52,PWM,光耦隔离,光电编码盘

1前言 1.1数字直流调速的意义 现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。 现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。 1.2研究现状综述 1.2.1电气传动的发展现状 20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,

三相异步电动机调速系统设计(精)

Anhui Vocactional & Technical College of Industry & Trade 毕业论文 三相异步电动机调速系统设计 Three-phase asynchronous motor drive system design 所在系院:电气与信息工程系 专业班级:、 机电一体技术 学生学号:43 学生姓名:叶海英 指导教师:王琳 ; 2013年3月23日 安徽工贸职业技术学院

毕业设计(论文)任务书系(院)专业班级 学生姓名学号 一、题目: 二、内容与要求: 》 三、设计(论文)起止日期: 任务下达日期:年月日 完成日期:年月日 指导教师签名: 年月日 四、教研室审查意见: 教研室负责人签名: 年月日 ~ 摘要

本文所讨论的是三相异步电动机的串级调速的基本原理与实现方法。对于一般交流电动机的调速,我们都是从电动机的定子侧引入控制变量(改变定子供电电压、频率)来实现的,这对于转子处于短路状态的三相笼型异步电动机是唯一的途径。但是,对于绕线式异步电动机来说,其转子绕组能够通过变量以实现调速。绕线式异步电动机转子侧的控制变量有电流、电动势、电阻等。通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势。在发挥绕线式异步电动机转子的可控性优势的基础上,提高调速性能需要从两方面着手: 1从节能角度考虑,应将损耗在转子附加电阻上的能量吸收,转化成别的有用的能量或反馈到电网,以提高传动系统的效率 2从高性能调速要求考虑,应用控制理论,将其组成闭环调速控制系统,满足调速精度、动态响应等指标的要求。 综合所述,利用串级调速系统,是使绕线式异步电动机实现高性能调速的有效办法。用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

基于PWM的电机调速系统

基于PWM勺电机调速系统 实验目的: 1. 学会并掌握可keil软件的使用; 2. 学会并掌握protues软件的使用; 3. 通过实验巩固单片机相关知识和检验自身动手能力 实验要求: 掌握单片机相关知识,利用调PWm空比的方式来控制直流电机的转速,并且在led 数码管上显示转速。 实验设备和仪器: 单片机最小系统 2. 直流电机 3. 示波器 实验内容: 本次实验设计是由小组五个成员共同完成基于PWM勺电机调速系统并完成实物搭建和撰写实验报告。本次实验小组共提供了两个方案,方案一和方案二,两个方案各自具有优缺点,详细内容会在下面给出。 方案一实验步骤:

1.利用protues画电路图,电路图如图1所示: 图1:方案一电路图 2.根据电路图编写C语言'代码: 代码如下: #include <> sbit PWM=P2A7; sbit CS3=P2A3; sbit CS2=P2A2; sbit CS1=P2A1; sbit CS0=P2A0; sbit key1=P1A。; sbit key2=P1A1; sbit key3=P1A2; sbit key4=P1A3; unsigned char timer1; unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

void Time1Config(); void main(void) ( Time1Config(); while(1) ( if(timer1>100) 验仿真,部分仿真结果如图2图3所示: 图2:仿真结果图(1) 图3:仿真结果图(2) 4. 实物验证结果如图4所示: 图4:方案一实物验证结果 实物验证可以明显感觉到电机转速的变化,由于每个开发板不同,相比仿真程序,对实物验证程序进行了略微的修改,最终能达到要求。

小直流电机调速控制系统1

小直流电机调速控制系统设计 一、前言 (一)、单片机控制调速系统发展现状 单片微型计算机的诞生是计算机发展史上的一个新的里程碑。近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。 (二)、课题来源 直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到广泛的应用。而以往直流电动机的控制只是简单的控制,很难进行调速,不能实现智能化。如今,直流电动机的调速控制已经离不开单片机的支持,单片机应用技术的飞速发展促进了自动控制技术的发展,使人类社会步入了自动化时代,单片机应用技术与其他学科领域交叉融合,促进了学科发展和专业更新,引发了新兴交叉学科与技术的不断涌现。现代科学技术的飞速发展,改变了世界,也改变了人类的生活。由于单片机的体积小、重量轻、功能强、抗干扰能力强、控制灵活、应用方便、价格低廉等特点,计算机性能的不断提高,单片机的应用也更加广泛特别是在各种领域的控制、自动化等方面。所以在本系统设计中我采用了由单片机控制单闭环直流电动机的调速控制系统。 二、总体设计方案: (一)系统总体结构 本课程设计所介绍的单片机控制直流电机调速系统,具有结构简单,输出档位可显示,反映灵敏等特点,其输出档位采用数码管显示,方面操作与观察,该设计控制器使用单片机AT89S52,数模转换DAC0832芯片,用二位共阳极LED 数码管以并口传送数据,实现档位的显示,能准确达到以上要求,同时在单片机最小系统中设计了总开关和按钮控制。利用DAC0832芯片进行数/模控制,输出的电压经放大后驱动小直流电机的速度进行数字量调节,并显示运行状态DJ—XX 和D/A输出的数字量。按钮S1,S2分别完成减一加一的功能,和拨码开关配合使用,使控制电机转速的档位转换更加灵活,简便。控制更加直接,易于掌握和操作。

三相异步电动机调速系统仿真

- - - 实验报告 课程名称:数字调速 实验项目:三相异步电机恒压频比调速系统仿真专业班级:自动化1303班 姓名:任永健学号:130302307 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

工业大学实验报告 (适用计算机程序设计类) 专业班级:自动化1303班学号:130302307 :任永健 实验名称:三相异步电机恒压频比调速系统仿真 1.实验目的: 熟悉SIMULINK环境。 建立三相异步电机恒压频比调速系统模型并仿真分析。 2.实验容: 设计并在simulinnk下搭建三相异步电机恒压频比环调速系统 3. 实验方案(程序设计说明) 异步电机的调速有多种方法,转速开环恒压频比控制是交流电动机变频调速最基本的一种控制转速方式,在一般的变频调速装置里面都嵌入有这项功能,工作方式为恒压频比的调速方式能满足大多数场合交流电动机调速控制的要求,使用起来也相对方便,是通用变频器的基本模式。但在低压时候需要一定的补偿电压,采用恒压频比控制,在基频以下的调速过程中的转差率会保持不变,电动机的所以会机械特性会相对较硬,电动机有较好的调速性能。 正选脉冲宽度调制三相逆变电路,是一种以三角波做载波的应用冲量等效原理而获得理想交流电源的电路装置,在调制比与载波比一定的条件下,通过调节外加直流电源的大小就可以获得在额定频率下产生额定电压的正选电压波,通过调节正弦波的频率就可以得到理想的电压频率波,而且调节输入正弦波的频率能得到线性的输出电压幅值。MATLAB在电气领域中的运用随处可见,在这里可以运用MATLAB里的Simulink仿真出具体的模型,通过示波器来观察具体的波形,从而进行进一步的分析。 4. 实验原理(系统的实现方案分析) 首先采用三相双极性SPWM逆变电路产生三相交流电源,全控型器件可以选用IGBT,这样通过调节外加直流电源的大小便可获的理想的输出交流电压源幅值,然后通过改变给定的频率信号来改变异步电机的转速,基本模型如下图所示

小直流电机调速控制系统方案

辽宁工业大学 单片机与接口技术课程设计(论文)题目:小直流电机调速控制系统 院(系): 专业班级: 学号: 学生: 指导教师: 教师职称: 起止时间:2014-6-30至2014-7-11

课程设计(论文)任务及评语 院(系):教研室:

目录 第1章绪论 (1) 第2章元器件的介绍 (2) 2.1AT89C51单片机 (2) 2.2ADC0809单片机 (4) 2.3DAC0832单片机 (5) 第3章方案设计 (7) 3.1总设计方案 (7) 3.2控制电路 (7) 3.3最小系统与显示器 (8) 3.3驱动电路 (8) 3.4外部中断设置 (9) 第4章程序代码 (10) 第5章课程设计总结 (36) 参考文献...................................................... (38) 附录...................................................... .. (39)

第1章绪论 单片微型计算机的诞生是计算机发展史上的一个新的里程碑。近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。 对直流电机调速器设计的研究,主要实现对电机的控制。本课程设计主要是通过对电位器的调节实现电机的加速、减速操作。并实现电路的仿真。为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示和测量。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。

第三章:电动机调速系统试题

复习资料三:电动机调速系统 一、填空题: 1、直流脉宽调速系统的控制方式一般采用转速负反馈和电流负反馈结构。 2、在变频器装置使用的三相逆变电路中,其晶闸管的导通时间通常采用120°和180°两种。 3、使用PWM技术在同一逆变器中可以实现调压和变频功能。 4、由脉宽调制变换器向直流电动机电枢供电的自动控制系统称为直流脉宽调速系统。 5、VVVF(变压变频)控制的特点是U1/f1=C。 6、静止变频装置的作用是把电压和频率恒定的电网电压变为电压和频率可调的交流电。 7、电流型变频器滤波环节采用电抗器。 8、电压型变频器滤波环节采用电容器。 9、双闭环调速系统中的ASR为转速调节器、ACR 电流调节器两者之间串级联接。 10、变频调速恒压频比控制方式的特点是U1/f1=C,实用中在低频时常采用定子压降补偿的方法增强带载能力。 11、为限定变频器的最大输出频率,可通过设定上限频率参数来实现。 12、交-直-交变频器装置三幅图的名称可控整流器调压、直流斩波器调压、PWM逆变器调压 13、步进电机的启动、停止、运行是依靠脉冲的数量、频率、和负载大小决定的 二、选择题 1、绝缘栅双极晶体管指的是( C ) A、MOSFET B、GTO C、IGBT D、GTR 2、VVVF(变压变频)控制的特点是( A ) A、u1/f1=C B、E1/ωs=C C、ωs=C D、u1=C 3、电力场效应管指的是( A ) A、MOSFET B、GTO C、IGBT D、GTR 4、电压负反馈加电流正反馈的直流调速系统中,电流正反馈环节是(A)反馈环节。 A、是补偿环节,而不是 B、不是补偿环节,而是 C、是补偿环节,也是 D、不是补偿环节,也不是 5、PWM变换器的作用是把恒定的直流电压调制成( D )。 A、频率和宽度可调的脉冲列 B、频率可调的脉冲列 C、宽度可调的脉冲列 D、频率固定、宽度可调的脉冲列 6、电压型变频器的直流回路滤波环节采用( A )。 A、电容器 B、电抗器 C、晶闸管 D、二极管 7、电力场效应管是理想的( A )控制型器件。 A)电压B)电流C)电阻D)功率 8、通用变频器一般由( A )组成。 A)整流器、滤波器、逆变器B)整流器、逆变器、放大器 C)整流器、逆变器D)逆变器 9、在变频调速U/f控制方式下,当输出频率比较低时,电机最大转矩Tmax相应减少,要求变频 器具有( C)功能。 A)频率偏置B)转差补偿C)定子压降补偿D)段速控制 10、双闭环直流调速系统在启动过程的第二阶段( B)。 A)ASR、ACR均处于饱和状态B).ASR处于饱和状态、ACR处于不饱和状态 C)ASR、ACR均处于不饱和状态D).ASR处于不饱和状态、ACR处于饱和状态 A)电压B)电流C)电阻D)功率 11、我国工频供电下,4极三相异步电动机的理想空载转速是( B) r/min。 A) 3000 B) 1500 C)1000 D) 750 12、输入量保持不变时,输出量却随着时间直线上升的环节为( B ). (A)比例环节(B)积分环节(C)惯性环节(D)微分环节 13、我国工频供电下,6极三相异步电动机的理想空载转速是( C) r/min. (A) 3000 (B) 1500 (C) 1000 (D) 750

单片机控制直流电机调速

第1章绪论 1.1课题背景 直流电机在当今生活的各方面应用越来越广泛,直流电机的调速控制是电机应用的一个重要技术保障。直流电机具有良好的调速性能、较大的起动转矩和过载能力强等许多优点,因此在许多行业中仍有应用。 为此,本文设计了一个直流电机控制系统,可以实现对直流电机转动速度和转动方向的高效控制。 1.2 毕业设计任务 本设计的目的是以单片机为核心设计出一个直流电机控制系统。本系统采用STC10F04作为控制单元,通过键盘实现对直流电机转动方向及转动速度的控制,并且将直流电机的转动速度动态显示在LED数码管上。 通过本课题,一方面我在查阅资料的基础上,了解STC10F04单片机控制的一些基本技术,掌握其控制系统的分析方法与实现方法,能对单片机外围电路设计进行系统学习与掌握;另一方面,通过设计直流电机控制系统的硬件电路,控制程序和相应的电路图,培养自己的自学和动手能力,从而为今后参加工作或进一步深造打下良好的基础。 设计的直流电机控制系统有以下功能: 1. 直流电机的启停控制 2.直流电机的正反转控制 3. 直流电机的加速控制 4. 直流电机的减速控制 5. 直流电机转速的动态显示 1.3方案的选择 直流电机在当今生活的各方面应用越来越广泛,直流电机的调速控制是电机应用的一个重要技术保障。直流电机具有良好的调速性能、较大的起动转矩和过

载能力强等许多优点,因此在许多行业中仍有应用。 目前,直流电机调速控制方法很多,随着计算机进入控制领域以及新型的电力电子功率元器件的不断出现,采用全控型的开关功率元件进行脉宽调制(pulse width modulation,简称PWM)已成为直流电动机新的调速方式。这种调速方法具有开关频率高、低速运行稳定、动态性能优良、效率高等优点,更重要的是这种调速方式很容易在单片机控制系统中实现,硬件比较简单,运算速度快,精度高,因此具有很好的发展前景。本设计采用单片机产生PWM脉宽信号来控制直流电机的转速。 1.4系统方案的实现 单片机最小系统主要由复位电路和时钟电路组成。复位电路为单片机系统提供可靠复位,使单片机能正常启动。时钟电路采用外部时钟方式,保证单片机个功能部件都是以时钟频率为基准,有条不紊地一拍一拍地工作。 键盘控制模块包括方向控制键、加速键和减速键、启停键,分别与单片机的P2.0、p2.1、p2.2和P2.3相连。实现对直流电机的控制。并且键盘上连接有发光二极管,以指示键盘状态。 数码显示模块采用共阴极数码管来动态显示直流电机的实际转动速度。利用I/O口为数码管的com端提供低电平。二号单片机的P1口提供数码管的段选信号,P2.6和P2.7控制数码管的位选信号。 测速模块采用开关霍尔片对安放在直流电机转盘上的小磁片的磁信号进行检测,直流电机转盘每次带动小磁片经过霍尔片时,其都将有脉冲信号从霍尔片输出。单片机外部中断口对信号进行采集。 直流电机驱动模块选用驱动芯片L298,驱动直流电机转动。该模块与单片机的P1.0—P1.3相连。 电源模块是通过将市电220V转变为直流12V和直流5V分别供给驱动模块和单片机模块。采用电源模块LM2576和L7805

直流电动机调速系统设计

课程设计任务书 学生:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.:中国电力,2005:41-49、 105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安

指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 1概述 (1) 2转速、电流双闭环直流调速系统的组成及其静特性 (1) 2.1转速、电流双闭环直流调速系统的组成 (1) 2.2 稳态结构框图和静特性 (2) 3双闭环直流调速系统的数学模型与动态过程分析 (3) 3.1双闭环直流调速系统的动态数学模型 (3) 3.2双闭环直流调速系统的动态过程分析 (4) 4转速电流双闭环直流调速系统调节器的工程设计 (6) 4.1转速和电流两个调节器的作用 (6) 4.2调节器的工程设计方法 (6) 4.2.1设计的基本思路 (7) 4.3 触发电路及晶闸管整流保护电路设计 (7) 4.3.1触发电路 (7) 4.3.2整流保护电路 (8) 4.3.2.1 过电压保护和du/dt限制 (8) 4.3.2.2 过电流保护和di/dt限制 (9) 4.4 器件选择与计算 (9) 5心得体会 (14)

三相异步电动机调速系统仿真

实验报告 课程名称:数字调速 实验项目:三相异步电机恒压频比调速系统仿真专业班级:自动化1303班 姓名:任永健学号:130302307 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

沈阳工业大学实验报告 (适用计算机程序设计类) 专业班级:自动化1303班学号:130302307 姓名:任永健 实验名称:三相异步电机恒压频比调速系统仿真 1.实验目的: 熟悉SIMULINK环境。 建立三相异步电机恒压频比调速系统模型并仿真分析。 2.实验内容: 设计并在simulinnk下搭建三相异步电机恒压频比环调速系统 3. 实验方案(程序设计说明) 异步电机的调速有多种方法,转速开环恒压频比控制是交流电动机变频调速最基本的一种控制转速方式,在一般的变频调速装置里面都嵌入有这项功能,工作方式为恒压频比的调速方式能满足大多数场合交流电动机调速控制的要求,使用起来也相对方便,是通用变频器的基本模式。但在低压时候需要一定的补偿电压,采用恒压频比控制,在基频以下的调速过程中的转差率会保持不变,电动机的所以会机械特性会相对较硬,电动机有较好的调速性能。 正选脉冲宽度调制三相逆变电路,是一种以三角波做载波的应用冲量等效原理而获得理想交流电源的电路装置,在调制比与载波比一定的条件下,通过调节外加直流电源的大小就可以获得在额定频率下产生额定电压的正选电压波,通过调节正弦波的频率就可以得到理想的电压频率波,而且调节输入正弦波的频率能得到线性的输出电压幅值。MATLAB在电气领域中的运用随处可见,在这里可以运用MATLAB里的Simulink仿真出具体的模型,通过示波器来观察具体的波形,从而进行进一步的分析。 4. 实验原理(系统的实现方案分析) 首先采用三相双极性SPWM逆变电路产生三相交流电源,全控型器件可以选用IGBT,这样通过调节外加直流电源的大小便可获的理想的输出交流电压源幅值,然后通过改变给定的频率信号来改变异步电机的转速,基本模型如下图所示

电机调速系统设计方案

电子系统设计 方案设计:基于单片机的直流电机调速系统设计方案团队成员: 指导教师: 提交时间:

设计要求: 1)直流调速系统需要闭环控制。 2)制作显示装置,实时显示速度。 3)利用电位器进行速度指令 小组成员及分工: 组长:负责内容:方案的整体设计 3分 组员:负责内容:器材选择 1分 负责内容:设计报告的编辑 1分 负责内容:系统调试 1分 负责内容:设计报告的编辑 1分 负责内容:系统仿真 1分 负责内容:软件编写 1分 负责内容:电路搭建 1分

摘要:本方案设计了一种基于单片机控制的直流电机速系统。设计包括系统的硬件、软件以及仿真。硬件部分包括:H桥电机驱动电路、LED显示模块、测速模块以及隔离模块,软件部分包括程序设计、PI控制器的设计,仿真部分包括电机传递函数的测试以及系统的仿真。整个系统的电路逻辑结构简单,可靠性高,具有很高的实用价值。

1.本课题的研究意义: 在国民生产中,伴随着现代技术的进步,电力电子技术也得到了全面的发展,其技术已应用到各个领域。在各类机电系统中,直流电机调速系统已广泛运用于工业、航天领域的各个方面。 直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,最大转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。与交流调速相比,直流电机结构简单,生产成本低,维护工作量小。随着大功率晶体管的问世以及矢量控制技术的成熟,使得矢量控制变频技术获得迅猛发展,从而研制出各种类型、各种功率的变频调速装置,并在工业上得到广泛应用。适用范围:直流调速器在数控机床、造纸印刷、包装机械、印制电路板设备、医疗设备、通讯设备、雷达设备、等行业广泛应用。 独立完成一次电子系统设计是对整个团队的一次考验,直流电机调速系统是一个兼具学习性与实用性的一个设计任务,如何成功地完成这次设计对我们团队的每位成员都是一次挑战,同样也是一次学习的机会 2.设计任务 基于单片机的直流电机调速系统设计方案,设计的主要内容及要求如下: 参数测定:测试电机的机械时间常数并计算出电机的传递函数 仿真实验:利用Mat lab对系统进行仿真 设计要求:实现调速闭环控制;利用电位器进行调速;LED速度显示 3.总体设计方案 通过分析直流电机的工作原理,对不同的调速方式进行对比,本方案采用了一种基于单片机控制的直流电机速方式。总体设计思路是利用程序控制单片机产生PWM信号,通过调节PWM信号的占空比从而达到控制电机两端电压的效果,实现直流电机的调速。控制方面,通过与电机链接的编码器将电机的转速以电信号的方式传给单片机,通过软件PID实现系统的稳定控制。系统框图如图1。 图1 系统框图

直流电机的闭环调速系统设计

控制系统课程设计报告书 系部名称: 学生姓名: 专业名称: 班级: 时间:

直流电机的闭环调速系统设计 一、设计要求: 利用PID 控制器、光电传感器及F/V 转换器设计直流电机的闭环调速系统。 要求:给定直流小电机,设计模拟PID 控制器,利用传感器检测速度(ST15、 LM331),搭建成闭环控制电机转速系统。 (1)阶跃响应的超调量:σ%≤20%; (2)阶跃响应的调节时间:t s =1s ±0.02s 。 二、设计方案分析 1、方案设计: 器材:电路板、PID 控制器、小型直流电机、LM331、ST151各一片 电阻、电容若干、导线、LM324若干 原理框图: 输入 输出 注: 1.输入电源信号与反映电机转速变化的电压信号的反馈调节电压信号,作为共同输入,通过PID 控制器调节,驱动电机工作。 2.电动机转动叶轮,叶轮通过转动在光电传感器处产生脉冲信号并输入给F/V 转换器;F/V 转换器将频率信号转换为电压信号,将此作为反馈信号然后通过PID 控制器对输出电压进行校正。 2、背景知识介绍: 减 PID 控制器 直流电机 F/V 转换器Lm331 光电传感器 ST151

(1)选题背景及意义 在电气时代的今天,电动机一直在现代化生产和生活中起着十分的重要的作用。无论是在农业生产、交通运输、国防、医疗卫生、商务与办公设备,还是在日常的生活中的家用电器,都大量地使用着各种各样的电动机。对电动机的控制可分为简单控制和复杂控制两种,简单控制是只对电动机进行启动、制动、正反转控制和顺序控制。这类控制可通过继电器、可编程控制器和开关元件来实现。复杂控制是只对电动机的转角、转矩,电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。以前对直流的简单控制的应用很多,但是,随着现代步伐的迈进,人们对自动化的要求越来越高,使直流电机的PID控制控制逐渐成为主流,实现对电机转速的精确控制。 (2)系统校正 系统校正,就是在系统中加入一些参数可以根据需要而改变的机构或装置,使系统整个特性发生改变,从而满足给定的各项性能指标,在系统校正中,当系统的性能指标以单位阶跃响应的峰值时间、调节时间、超调量、阻尼比、稳态误差等时域特征量给出时,一般采用的是根轨迹校正法,实验所用软件为MATLAB、EWB软件,使用MATLAB软件绘制系统校正前后的根轨迹图,系统的闭环阶跃响应,观察系统校正前后的各项性能指标是否满足系统所需性能指标,在Simulink界面下或使用EWB软件对校正前后的系统进行仿真运行,观察系统输出曲线的变化。 在控制系统设计中,常用的校正方法为串联校正和反馈校正,串联校正比反馈校正设计简单,也比较容易对信号进行各种必要形式的转换,特别在直流控制系统中,由于传递直流电压信号,适合采用串联校正。在确定校正装置的具体形式时,根据校正装置所需提供的控制规律选择相应的元件,常常采用比例、微分、积分控制规律,或基本规律的组合,如比例微分、比例积分等。而本次课题选择的正是PID即比例积分微分控制器。 三、硬件设计: 总体仿真电路:

相关文档