文档库 最新最全的文档下载
当前位置:文档库 › 0-1背包问题实验报告

0-1背包问题实验报告

0-1背包问题实验报告
0-1背包问题实验报告

0-1背包问题实验报告

一?问题描述

4?给定n种物品和一个背包。物品i的重量是w[i],其价值为v[i],背包容量为Co

问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。

2在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。

不能将物品i装入背包多次,也不能只装入部分的物品io

问题规模

1.物品数目:n=50,

2.背包容量:c=1000,

3.每个物品重量分别为:

{220,208,198,192,180,180,165,162,160,158,

155,130,125,122,120,118,115,110,105,101,

100,100,98,96,95,90,88,82,80,77,

75,73,70,69,66,65,63,60,58,56,

50,30,20,15,10,8,5,3,1,1}

4.每个物品价值分别为:

{80,82,85,70,72,70,66,50,55,25,

50,55,40,48,50,32,22,60,30,32,

40,38,35,32,25,28,30,22,50,30,

45,30,60,50,20,65,20,25,30,10,

20,25,15,10,10,10,4,4,2,1}

三. 实验方法

本次实验将分别通过动态规划法,贪心算法,回溯法及分支界限法四种方法解决0-1背包问题。

四. 算法分析

I ?动态规划法

(1)?对动态规划的0-1背包问题,在给定c>0,w

i>0, v

i>0, 1<=i<=n,要求找出一个n 元0-1 向量(x1,x2,...)xn 1},1 < i;使得

x

i{0,

wx

I

i 1

n

i而且max

v

ix

io

c,

i1n同时可得出其递推关系,设最优值是背包容量为j,可选物品

i,i+1…盼背包问题的最优值。于是可建立计算m(l,j)的递归式:

在j>=w

i,为max{m(i+1 ,j),m(i+1 j-w

i)+v

i},

在0<=j

i 时,m(i+15j);

m[n,j]在j>=w

n时为v

n,在OWj

n为0。且该算法的特点是:随着包中物品的加入,包中容量也随之不断在变化,每次包中放物品前都基于包中剩余的容量,当达到最优解时,此时包不一定都装满。该算法所需的算法的计算时间复杂性为0(2 n),若所给物品重量

i是整数时,该算法的计算时间复杂性为O(min{nc,2n}).

(2).实验结果为:总共装进背包的容量是1OOO;

装进背包物品的总价值为3076o

II .贪心算法

(1)?贪心算法在解决问题的时候,总是做出当前看来是最好的选择,并不从整体上最优加以考虑。在做出局部意义上的最优选择之后,我们能得到一个近似的最优解,即使它不一定是最优的,但在要求不那么精确地情况下,往往能较为便捷地得到结

果。

贪心算法求解背包问题的步骤:

首先计算每种物品单位重量的价值vi/wi ;

然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背

包。

若将这种物品全部装入背包后,背包内的物品总量未超过C,则选择单位重

量价值次高的物品并尽可能多地装入背包。

依此策略一直进行下去,直到背包装满为止。

(2).实验结果为:

装入背包的物品总价值为:3087o

(3)结果分析:

使用贪心算法,时间复杂度为O (n*logn)。优于动态规划算法,空间占有也较动态规划少,但贪心算法所得得结果并不一定是最优解。

皿?回溯法

(1)?问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空

间。问题的解空间应至少包含问题的一个(最优)解。

(2)?回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结

点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空

间中已没有活结点时为止。

(3)?算法设计步骤:

a.针对所给问题,定义问题的解空间;

b ?确定易于搜索的解空间结构;

C.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;

(4).实验结果:

装入背包物品的总价值为:3090o (5)結果分析:

回溯法在最坏的情况下有0(2)个右儿子节点需要计算上界,且计算上界的时间为On

n

(n),所以回溯法时间复杂度为0 (n*2)。而且对空间复杂性分析来说,该算法

需要栈来存储中间值,故空间复杂度大。同时随着问题规模的扩大,会使得问题处理起来的时间花销增大,故而构建良好的剪枝函数成为回溯法的关键所在。但由于回溯法德适应性比较好,很多问题的解决也都会采用它。

IV ?分支界限法

(1)?分支限界法运用优先队列扩展了活结点的运行空间。使得算法在广域中可以较为快捷的剪掉冗余枝。整个解空间较之于回溯法是快速聚类的,故其时间复杂度较回溯法优,但在空间上却需要相当一部分的处理能力。对于离散的最优化方法较为适宜,这是分支法好处,却也是其局限所在。

(2)?算法设计步骤:

a.各物品按性价比有大到小排序,构建解空间树;

b.由根节点出发,检查当前左儿子结点的可行性,如果可行,将它加入到子集树

算法设计背包问题

算法实验报告 ---背包问题 实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优 值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 问题描述: 给定n种物品和一个背包。物品i的重量是wi,体积是bi,其价值为vi, 背包的容量为c,容积为d。问应如何选择装入背包中的物品,使得装入背包中 物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入 或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,背包的 容积d,物品的个数n。接下来的n行表示n个物品的重量、体积和价值。输出 为最大的总价值。 问题分析: 标准0-1背包问题,MaxV表示前i个物品装入容量为j的背包中时所能产生的最大价值,结构体objec表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v. 复杂性分析 时间复杂度,最好情况下为0,最坏情况下为:(abc) 源程序 #include #include #include #include #include int V [200][200][200]; int max(int a,int b) {

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

算法分析与复杂性理论 实验报告 背包问题

深圳大学实验报告课程名称:算法分析与复杂性理论 实验名称:实验四动态规划 学院:计算机与软件学院专业:软件工程 报告人:文成学号:2150230509班级:学术型 同组人:无 指导教师:杨烜 实验时间:2015/11/5——2015/11/18 实验报告提交时间:2015/11/18 教务处制

一. 实验目的与实验内容 实验目的: (1) 掌握动态规划算法设计思想。 (2) 掌握背包问题的动态规划解法。 实验内容: 1.编写背包问题的动态规划求解代码。 2.背包容量为W ,物品个数为n ,随机产生n 个物品的体积(物品的体积不可大于W )与价值,求解该实例的最优解。 3. 分别针对以下情况求解 第一组:(n=10,W=10),(n=10,W=20),(n=10,W=30) 第二组:(n=20,W=10),(n=20,W=20),(n=20,W=30) 第三组:(n=30,W=10),(n=30,W=20),(n=30,W=30) 4. 画出三组实验的时间效率的折线图,其中x 轴是W 的值,y 轴是所花费的时间,用不同的颜色表示不同n 所花费的时间。 二.实验步骤与结果 背包问题的问题描述: 给定n 种物品和一个背包。物品i 的重量是 i w , 其价值为i v , 背包容量为C 。问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 背包问题的算法思想: 考虑一个由前i 个物品(1<=i<=n )定义的实例,物品的重量分别为w1,…,w2、价值分别为v1,…,vi ,背包的承重量为j (1<=j<=w )。设v[i,j]为该实例的最优解的物品总价值,也就是说,是能够放进承重量为j 的背包中的前i 个物品中最有价值子集的总价值。可以把前i 个物品中能够放进承重量为j 的背包中的子集分成两个类别:包括第i 个物品的子集和不包括第i 个物品的子集。 1. 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V[i-1,j]。 2. 在包括第i 个物品的子集中(因此,j-wi>=0),最优子集是由该物品和前i-1个物品中能够放进承重量为j-wi 的背包的最优子集组成。这种最优子集的总价值等于vi+V[i-1,j-wi]。 因此,在前i 个物品中最优解得总价值等于这两个价值中的最大值。当然,如果第i 个物品不能放进背包,从前i 个物品中选出的最优子集的总价值等于从前i-1个物品中选出的最优子集的总价值。这个结果导致了下面的这个递推关系式: 初始条件:

背包问题

课程设计报告 课程名称数据结构课程设计 课题名称背包问题 专业信息与计算科学 班级1001班 学号22 姓名王锐 指导教师刘洞波张晓清郭芳 2012年6月9日

课程设计任务书 课程名称数据结构课程设计课题背包问题 专业班级信科1001班 学生姓名王锐 学号22 指导老师刘洞波张晓清郭芳 审批刘洞波张晓清郭芳 任务书下达日期:2012年6月9日 任务完成日期:2012年6月16日

一、设计内容与设计要求 1.设计内容: 1)问题描述 假设有一个能装入总体积为T的背包和n件体积分别为W1,W2,···,Wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使W1+W2+···+Wn=T,要求找出所有满足 上述条件的解。例如:当T=10,共6件物品,物品的体积为{1,2,3,4,5,8},那么 可找到下列4组解:(1,2,3,4)、(1,4,5)、(2,3,5)、(2、8)。 2)实现提示 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品, 若该件物品“太大”不能装入,则丢弃而继续选取下一件,直至背包装满为止。但如果在 剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合 适”,应将它取出“丢弃一边”,继续再从“它之后”的物品中选取,如此重复,直至求得 满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”,因此要用到栈。 2.设计要求: 课程设计报告规范 1)需求分析 a.程序的功能。 b.输入输出的要求。 2)概要设计 a.程序由哪些模块组成以及模块之间的层次结构、各模块的调用关系;每个模块的功能。 b.课题涉及的数据结构和数据库结构;即要存储什么数据,这些数据是什么样的结构, 它们之间有什么关系等。 3)详细设计 a.采用C语言定义相关的数据类型。 b.写出各模块的类C码算法。 c.画出各函数的调用关系图、主要函数的流程图。

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题 一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++6.0 三、源程序 #include "stdafx.h" #include #include #include #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值 float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn);

~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点ba=1生成左节点ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() { int i,j,k,kkl; float minl; for(i=1;i

算法实验报告

《算法设计与分析》上机实验报告

一、分治与递归 1、问题描述 编写程序,实现线性时间内选择n个元素的中位数的算法。并对于不同的n,测试平均时间效率。 2、问题分析 本问题属于线性选择问题的一个特例,可以使用分治法进行求解。其基本思想是模仿快速排序方法,对输入的数组进行划分,求出中位数所在的子数组,然后用递归的方法进行求解,最终可以求得问题的解。 3、算法设计 将n个输入元素根据随机选择的基准划分成2个子数组,a[p:r]被划分成a[p:i]和a[i+1:r]两组,使得a[p:i]中每个元素都不大于a[i+1:r]中元素。接着算法计算子数组a[p:i]中元素个数j,如果k<=j,则a[p:r]中第k个小元素落在子数组a[p:i]中元素均小于要找的第k小元素,因此要找的a[p:r]中第k小元素是a[i+1:r]中的第k-j小元素。 按照上述的方法递归的执行,直到当前数组中只剩下一个元素,就可以得到问题的解。 4、算法实现 #include"iostream.h" #include"stdlib.h" #include"time.h" #include #include #include"windows.h" #include int randomizedSel(int *,int ,int ,int );

void main() { srand((unsigned int)time(NULL)); _timeb time0,time1; int n; cout << "请输入数组的长度:"; cin >> n; cout << "请输入数组的每一个数:" << endl; int *a=new int[n]; for(int i=0;i> a[i]; DWORD stime=GetTickCount(); _ftime(&time0); int result=randomizedSel(a,0,n-1,(n+1)/2); DWORD Etime=GetTickCount(); _ftime(&time1); cout << "结果为:" << result << endl; cout << https://www.wendangku.net/doc/4210590101.html,litm*https://www.wendangku.net/doc/4210590101.html,litm*1000<x); if(i>=j) break; swap(a,i,j); } a[p]=a[j]; a[j]=x; return j;

人工智能之遗传算法求解01背包问题实验报告

人工智能之遗传算法求解0/1背包问题实验报告 Pb03000982 王皓棉 一、问题描述: 背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。 遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。 GA是一种群体型操作,该操作以群体中的所有个体为对象。选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。 遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。 二、实验目的: 通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。 三、算法设计: 1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大 max. 进化代数gen x=1表 2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n, i x=0表示不装入背包。例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包, i 这三个物件被选入包中。

0-1背包问题

课程设计说明书 设计题目: 0-1背包问题的动态规划算法设计 专业:班级: 设计人: 山东科技大学 2013年12月5日

课程设计任务书 学院:专业:班级:姓名: 一、课程设计题目: 二、课程设计主要参考资料 (1)计算机算法设计与分析(第3版)王晓东著 (2) 三、课程设计应解决的主要问题 (1) 0-1背包问题的动态规划算法设计 (2) (3) 四、课程设计相关附件(如:图纸、软件等): (1) (2) 五、任务发出日期: 2013-11-21 课程设计完成日期: 2013-12-5 指导教师签字:系主任签字:

指导教师对课程设计的评语 成绩: 指导教师签字: 年月日

0-1背包问题的实现 一、设计目的 1.运用动态规划思想,设计解决上述问题的算法,找出最大背包价值的装法。 2.掌握动态规划的应用。 二、设计要求 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品装入背包多次,也不能只装入部分的物品。0-1背包问题是一个特殊的整数规划问题。 三、设计说明 (一)、需求分析 1、问题描述: 形式化描述:给定c >0, w i>0, v i>0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ?∑w i x i≤c,且∑v i x i达最大.即一个特殊的整数规划问题。 2、最优子结构性质: 设(y1,y2,…,y n)是(3.4.1)的一个最优解.则(y2,y3,…,y n)是下面相应子问题的一个最优解: 证明:使用反证法。若不然,设(z2,z3,…,z n)是上述子问题的一个最优解,而(y2,y3,…,y n)不是它的最优解。显然有 ∑v i z i> ∑v i y i(i=2,…,n) 且w1y1+ ∑w i z i<= c

分支界限法解0-1背包问题实验报告

实验5 分支界限法解0-1背包问题一、实验要求 1.要求用分支界限法求解0-1背包问题; 2.要求交互输入背包容量,物品重量数组,物品价值数组; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、源程序 #include "" #include #include #include<> #include using namespace std; int *x; struct node //结点表结点数据结构 { node *parent;//父结点指针 node *next; //后继结点指针 int level;//结点的层 int bag;//节点的解 int cw;//当前背包装载量 int cp;//当前背包价值

float ub; //结点的上界值 }; //类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap { private: struct node *front, //队列队首 *bestp,*first; //解结点、根结点 int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系 long lbestp;//背包容量最优解 public: void Sort(); Knap(int *pp,int *ww,int cc,int nn); ~Knap(); float Bound(int i,int cw,int cp);//计算上界限 node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点 void addnode(node *nod);//向队列中添加活结点 void deletenode(node *nod);//将结点从队列中删除 struct node *nextnode(); //取下一个节点 void display(); //输出结果 void solvebag(); //背包问题求解 }; //按物品单位重量的价值排序 void Knap::Sort() {

01背包实验报告

算法设计与分析实验报告实验二 0-1背包 院系: 班级: 学号: 姓名: 任课教师: 成绩: 年月

实验二 0-1背包 一. 实验内容 分别用编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果 二.实验目的 1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题; 2、理解动态规划算法和贪心法的异同及各自的适用范围。 三. 算法描述 1、动态规划法 01背包问题的状态转换公式为: (1) V(i, 0)= V(0, j)=0 (2) 公式表明:把前面i 个物品装入容量为0的背包和把0个物品装入容量为j 的背包,得到的价值均为0。如果第i 个物品的重量大于背包的容量,则装入前i 个物品得到的最大价值和装入前i -1个物品得到的最大价值是相同的,即物品i 不能装入背包;如果第i 个物品的重量小于背包的容量,则会有以下两种情况: (1)如果把第i 个物品装入背包,则背包中物品的价值等于把前i -1个物品装入容量为j -wi 的背包中的价值加上第i 个物品的价值vi ; (2)如果第i 个物品没有装入背包,则背包中物品的价值就等于把前i -1个物品装入容量为j 的背包中所取得的价值。显然,取二者中价值较大者作为把前i 个物品装入容量为j 的背包中的最优解。 2、贪心法 背包问题至少有三种看似合理的贪心策略: (1)选择重量最轻的物品,因为这可以装入尽可能多的物品,从而增加背包的总价值。但是,虽然每一步选择使背包的容量消耗得慢了,但背包的价值却没能保证迅速增长,从而不能保证目标函数达到最大。 (2)选择价值最大的物品,因为这可以尽可能快地增加背包的总价值。但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却可能消耗得太快,使得装入背包的物品个数减少,从而不能保证目标函数达到最大。 (3)选择单位重量价值最大的物品,在背包价值增长和背包容量消耗两者 ?? ?>+---<-=i i i i w j v w j i V j i V w j j i V j i V }),1(),,1(max{) ,1(),(

背包问题C语言程序设计

东莞理工学院C语言课程设计 课程程序设计基础 题目 院系名称计算机学院 班级 学生姓名学号 组员 指导教师 时间

1 问题要求及任务描述 1.1 题目要求 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求 找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5, 2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 1.2 主要任务 在给定物品数量,物品各自体积和背包体积的前提下,找出物体组合后的总体积与背包体积相等的物体组合 2 解决问题的主要思路和方法 2.1 关键问题 如何选择第i件物品: (1)考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。选中后,继续去考虑其余物品的选择。 (2)考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。 2.2 拟采用解决问题的方法 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。

2.3 主要算法和处理流程图 1.输入物品总个数 2.依次输入各物品的体积 3.输入背包总体积 4.将物品排成一列,按顺序选取物品装入背包中,当物品太大不能装入时则弃之继续选取下一件,直到背包装满为止, 5.出现在剩余的物品中找不到合适的物品填满背包的情况是说明刚刚装入背包的那件物品不适合,将它取出后继续选取后面的物品。6.重复步骤4和5直至求出满足条件的解或者无解。

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称贪心算法实现背包问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1. 优化问题 有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。可行解一般来说是不唯一的。那些使目标函数取极值(极大或极小)的可行解,称为最优解。 2.贪心法求优化问题 算法思想:在贪心算法中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪心决策的依据称为贪心准则(greedy criterion)。 3.一般方法 1)根据题意,选取一种量度标准。 2)按这种量度标准对这n个输入排序 3)依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 procedure GREEDY(A,n) /*贪心法一般控制流程*/ //A(1:n)包含n个输入// solutions←φ //将解向量solution初始化为空/ for i←1 to n do x←SELECT(A) if FEASIBLE(solution,x) then solutions←UNION(solution,x) endif repeat return(solution) end GREEDY 4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 1. 编程实现背包问题贪心算法。通过具体算法理解如何通过局部最优实现全局最优,

并验证算法的时间复杂性。 2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。 3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。 三.程序算法 1.背包问题的贪心算法 procedure KNAPSACK(P,W,M,X,n) //P(1:n)和W(1;n)分别含有按 P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值 和重量。M是背包的容量大小,而x(1:n)是解向量 real P(1:n),W(1:n),X(1:n),M,cu; integer i,n; X←0 //将解向量初始化为零 cu←M //cu是背包剩余容量 for i←1 to n do if W(i)>cu then exit endif X(i) ←1 cu←cu-W(i) repeat if i≤n then X(i) ←cu/ W(i) endif end GREEDY-KNAPSACK procedure prim(G,) status←“unseen” // T为空 status[1]←“tree node” // 将1放入T for each edge(1,w) do status[w]←“fringe” // 找到T的邻接点 dad[w] ←1; //w通过1与T建立联系 dist[w] ←weight(1,w) //w到T的距离 repeat while status[t]≠“tree node” do pick a fringe u with min dist[w] // 选取到T最近的节点 status[u]←“tree node” for each edge(u,w) do 修改w和T的关系 repeat repeat 2.Prim算法

背包问题 实验报告

实验报告 课程名称:算法设计与分析实验名称:解0-1背包问题任课教师:王锦彪专业:计算机应用技术班级: 2011 学号: 112015 姓名:严焱心完成日期: 2011年11月

一、实验目的: 掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。 二、实验内容及要求: 1. 要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题; 2. 要求显示结果。 三、实验环境和工具: 操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java 四、实验问题描述: 0/1背包问题:现有n 种物品,对1<=i<=n ,第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数C ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过C 且总价值尽量大。 动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数: ?????≤≤∈≤∑∑==)1}(1,0{C max 1 1 n i x x w x v i n i i i n i i i

寻找一个满足约束条件,并使目标函数式达到最大的解向量 ) ,......,,,(321n x x x x X =,使得C 1 ∑=≤n i i i x w ,而且∑=n i i i x v 1 达到最大。 0-1背包问题具有最优子结构性质。假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解: ∑∑==?????≤≤∈-≤n i i i i n i i i x v n i x x w x w 2 2 1 1max )2}(1,0{C 。 如果不是的话,设) ,......,,(32 n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i x v y v 2 2 ,且∑=≤+ n i i i y w x w 2 1 1C 。 因此,∑∑∑==== + >+n i i i n i n i i i i i x v x v x v y v x v 1 2 2 1111, 这说明) ,........,,,(32 1 n y y y x 是所给 的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。 按照上面的情况,可以得到递推公式:设最优值为m(i,j)。 ?? ?+-+++=}),1(),,1(max{) ,1(),(i i v w j i m j i m j i m j i m i i w w ≥<≤j j 0 ?? ?=n v j n m 0),(i i w w ≥<≤j j 0 贪心算法描述:计算每种物品单位重量的价值;将尽可能多的单位重量价值最高的物品装入背包;如果单位重量价值最高的物品全部装入背包后,背包的总重量小于c ,则选择单位重量次高的物品并尽可能多的装入背包;依次进行下去,直到背包装满为止。 回溯算法描述:回溯法从根结点出发,以深度优先的方式搜索整个解空间。开始结点成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩

实验报告 分支限界法01背包

《算法设计与分析》实验报告六 学号: 1004091130 姓名:金玉琦 日期:2011-11-17得分: 一、实验内容: 运用分支限界法解决0-1背包问题。 二、所用算法的基本思想及复杂度分析: 分支限界法 分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。 0-1背包问题 1)基本思想 给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数: u b = v + ( W - w) × ( vi + 1/ wi + 1 ) 根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。 2)复杂度分析 时间复杂度是O(2n); 三、源程序及注释: #include #include #include #include using namespace std; int *x; struct node { //结点表结点数据结构

0-1背包问题实验报告

0-1背包问题实验报告 一?问题描述 4?给定n种物品和一个背包。物品i的重量是w[i],其价值为v[i],背包容量为Co 问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 2在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。 不能将物品i装入背包多次,也不能只装入部分的物品io 问题规模 1.物品数目:n=50, 2.背包容量:c=1000, 3.每个物品重量分别为: {220,208,198,192,180,180,165,162,160,158, 155,130,125,122,120,118,115,110,105,101, 100,100,98,96,95,90,88,82,80,77, 75,73,70,69,66,65,63,60,58,56, 50,30,20,15,10,8,5,3,1,1} 4.每个物品价值分别为: {80,82,85,70,72,70,66,50,55,25, 50,55,40,48,50,32,22,60,30,32, 40,38,35,32,25,28,30,22,50,30,

45,30,60,50,20,65,20,25,30,10, 20,25,15,10,10,10,4,4,2,1} 三. 实验方法 本次实验将分别通过动态规划法,贪心算法,回溯法及分支界限法四种方法解决0-1背包问题。 四. 算法分析 I ?动态规划法 (1)?对动态规划的0-1背包问题,在给定c>0,w i>0, v i>0, 1<=i<=n,要求找出一个n 元0-1 向量(x1,x2,...)xn 1},1 < i;使得 x i{0, wx ■ I i 1 n i而且max v ix io

实验报告:动态规划---0-1背包问题)

XXXX大学计算机学院实验报告计算机学院2017级软件工程专业 5 班指导教师 学号姓名2019年10 月21 日成绩

实验内容、上机调试程序、程序运行结果 System.out.println("选中的物品是第"); for(int i=1;i<=n;i++){ for(int j=1;j<=maxweight;j++){ //当前最大价值等于放前一件的最大价值 maxvalue[i][j] = maxvalue[i-1][j]; //如果当前物品的重量小于总重量,可以放进去或者拿出别的东西再放进去 if(weight[i-1] <= j){ //比较(不放这个物品的价值)和(这个物品的价值放进去加上当前能放的总重量减去当前物品重量时取i-1个物品是的对应重量时候的最高价值) if(maxvalue[i-1][j-weight[i-1]] + value[i - 1] > maxvalue[i-1][j]){ maxvalue[i][j] = maxvalue[i-1][j-weight[i-1]] + value[i - 1]; } } } } return maxvalue[n][maxweight]; } public static void main(String[] args) { int weight[] = {2,3,4,5}; int value[] = {3,4,5,7}; int maxweight = 8; System.out.println(knapsack(weight,value,maxweight)); } } 完成效果:

(华电科院)算法设计与分析实验报告—01背包问题

课程设计报告 ( 2013 -- 2014 年度第一学期) 名称:算法设计与分析 题目0—1背包问题 院系:信息工程 班级:网络11k1 学号: 学生姓名: 指导教师:牛华为 设计周数:1周 成绩: 日期:2013年11月15

一、目的和要求 了解并掌握动态规划算法; 用动态规划算法解决0-1背包问题。 二、实验环境 用VC6.0软件进行编程 三、实验内容 0-1背包问题:给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为c。问应如何选择装入背包中的物品,使得装入背包中的物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分物品i。0-1背包问题是一个特殊的整数规划问题。 四、问题分析 在0/1背包问题中物体或者被装入背包或者不被装入背包只有两种选择。循环变量i、j意义:前i个物品能够装入载重量为j的背包中,数组c意义:c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值。若w[i]>j第i个物品不装入背包,否则若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j],则记录当前最大价值,替换为第i个物品装入背包后的价值。 其c++部分代码如下: #include void knapsack(int a[100][100],int s[100],int v[100],int n,int C) { for(int i=0;i<=C;i++) { a[0][i]=0; } for( i=1;i<=n;i++) { a[i][0]=0; for(int j=1;j<=C;j++) { if(s[i]<=j) { if(v[i]+a[i-1][j-s[i]]>a[i-1][j]) a[i][j]=v[i]+a[i-1][j-s[i]]; else a[i][j]=a[i-1][j]; } else a[i][j]=a[i-1][j]; } } }

相关文档
相关文档 最新文档