文档库 最新最全的文档下载
当前位置:文档库 › 阿基米德折弦定理的四种常规证法

阿基米德折弦定理的四种常规证法

阿基米德折弦定理的四种常规证法
阿基米德折弦定理的四种常规证法

阿基米德折弦定理的四种常见证法

Justin ● 深圳 平面几何内容在整个初中数学知识中占有很重要第位,无论是中考还是平时阶段检测,往往会在几何题目的设置上体现选拔性。更有人说:“初中数学学得好不好,关键看几何好不好”。这些虽然仅仅是一些说法而已,但也不无它的道理。平面几何的确是考察学生的一个很重要的方面,几何学习的关键主要是掌握作辅助线的技巧。而这些技巧也并非一朝一夕就能掌握的,需要长时间的积累,总结,并应用才能较好掌握。在整个初中范围内,圆作为一个独立的章节更显现它的重要,并以综合难度大,辅助线的作法较多着称。下面就以“阿基米德折弦定理”的证明为例来浅谈本人对圆的学习心得。

问题:已知M 为 的中点,B 为 上任意一点,且BC MD ⊥于D .求证:DC BD AB =+

证法一:(补短法)

如图:延长DB 至F ,使BF=BA ∵M 为 的中点 ∴AM=MC,

∴∠MAC=∠MCA---① 又∵, ∴MC=MA ∴∠MBC=∠MAC---② 又∵∠MBC+∠MBF=180---③ 由M,B,A,C 四点共圆 ∴∠MCA+∠MBA=180---④ 由①②③④可得:∠MBA=∠MBF

在△MBF 与△MBA 中:

??

???=∠=∠=MB MB MBF MBA BA BF ∴△MBF ?△MBA(SAS) ∴MF=MA, 又∵MC=MA ∴MF=MC 又∵MD ⊥CF ∴DF=DC ∴FB+BD=DC 又∵BF=BA

∴AB+BD=DC (证毕)

证法二:(截长法)

如图:在CD 上截取DB=DG ∵MD ⊥BG ∴MB=MG ∴∠MBG=∠MGB---①

又∵,∴∠MBG=∠MAC 又∵∠MAC=∠MCA (已证),

∴∠MBG=∠MCA---② 由①②可得∠MGB=∠MCA=∠BCA+∠MCG

而∠MGB=∠GMC+∠MCG ∴∠GMC=∠BCA 又∵,∴∠BMA=∠BCA

∴∠BMA=∠GMC, 在△MBA 与△MGC 中??

???=∠=∠=MC MA GMC BMA MG MB ∴△BMA ?△GMC (SAS)

∴AB=GC, ∴AB+BD=GC+BD=GC+DG=DC(证毕)

证法三:(翻折)

如图:连接MB,MC,MA,AC, 将△BAM 沿BM 翻折,使点A 落至点E ,连接ME,BE ∵△MBA 与△MBE 关于BM 对称,所以△MBE ≌MBA ∴MA=ME, ∠MBA=∠MBE-① 又∵MA=MC, ∴ME=MC , 又∵M, B, A, C 四点共圆,

∴∠MBA+∠MCA=180---② 又∵MA=MC(已证) ∴∠MAC=∠MCA 又∵,∴∠MBC=∠MAC ∴∠MBC=∠MCA- --③

由①②③得:∠MBC+∠MBE=180 ∴E,B,C 三点共线。 又∵ME=MC,MD ⊥CE ∴DE=DC ,∴EB+BD=DC ,又∵△MBE ≌MBA ∴AB=EB

∴ AB+BD=DC(证毕)

证法四:如图,连接MB,MA,MC,AC, 延长AB,过点M 作MH ⊥AB 于点H,

∵M 为的中点 ∴AM=MC, 又∵,∴∠HAM=∠DCM

又∵∠MHA=∠MDC=90 ∴在△MHA 与△MDC 中??

???=∠=∠∠=∠MA MC DCM HAM MDC MHA

∴△MHA ≌△MDC (AAS) ∴CD=AH---① MD=MH 在RT △MHB 与RT △MDB 中

?

??==MB MB MD MH ∴△MDB ≌△MHB (HL) ∴BD=BH 又∵AH=AB+BH, ∴AH=AB+BD-② 由①②可得DC=AB+BD (证毕)

反思:在平时数学教学活动中,尤其是几何学的教学,它可以让觉得数学课枯燥无味的学生顿时感兴趣,更是师生互动的一个很好的媒体。老师与学生一起想办法,也是一种数学情感的体现。在圆这一章节,很多学生反映难学,难在辅助线多,方法多,同一个问题灵活多变,不同的出发点会得到不同的解题方法。本题就是一个很好的例子。对于一个着名的平面几何定理,我们的证明也仅仅是使用了非常常见的“截长补短”,“对称变换”等方法。在以后的几何教学过程中多总结出一些通用,常见的解题方法这会让学生受益匪浅的,万变不离其宗,才是数学的特点。

阿基米德原理实流程及数据

第十章第2节:阿基米德原理 说明:此页用来搜集实验数据 实验1:测量物体的浮力 测量浮力的方法:称重法 实验准备: 勾码,弹簧测力计,烧杯,水 实验步骤: 1.用弹簧测力计测出物体的重G=______N 2.将勾码浸没在水中,记录此时弹簧测力计的读F=________N 3.示数变_______(大/小),示数差_______N 4.F浮=_______N 实验2:阿基米德原理 实验准备: 勾码,弹簧测力计,上端开口的烧杯1,烧杯2,水 实验步骤: 步骤一:用弹簧测力计测出勾码的重力F1=_____N,测出空烧杯2的重力G杯2=_____N; 步骤二:将水倒入烧杯中至开口处; 步骤三:将勾码浸没在水中,排出水,并测出此时测力计的示数F2=_____N,求出勾码所受到的浮力F 浮 = F1- F2=_____N 步骤四:用弹簧测力计测量出G 水+G 杯2 =____N; 步骤五:计算出水的重力G 水 =______N; 步骤六:比较G 水与F 浮 的大小。 G水______F浮

课堂练习 1、一个盛有盐水的容器中悬浮着一个鸡蛋,容器放在斜面上, 如图所示.图上画出了几个力的方向,你认为鸡蛋所受浮力的方向应 是( ) A.F l B.F2C.F3 D.F4 2、体积相等,形状不同的铅球、铁板和铝块浸没在水中不同深 度处,则( ) A.铁板受到的浮力大 B.铝块受到的浮力大 C.铅球受到的浮力大 D.它们受到的浮力一样大 3、弹簧测力计的下端吊着一个金属球,当静止时,弹簧测力计的示数是4 N;若将金属球慢慢浸入水中,弹簧测力计的读数将逐渐(变大/变小),金属球受到的浮力将逐渐_______ (变大/变小);当金属球的一半浸在水中时,弹簧测力计的示数是2.4 N,这时金属球受到的浮力是N;当金属球全部浸没在水中后,这时金属球受到的浮力是N,弹簧测力计的示数是N. 4、如图所示,用弹簧测力计悬挂重l0N的金属块浸入水中,弹簧测力计的示数为7N,此时金属块所受浮力的大小和方向是( ) A.7N,竖直向上 B.10N,竖直向下 C.3N,竖直向下 D.3N,竖直向上 5、所受重力相等的铜球、铁球和铝球分别用细线悬挂而浸没在水 中,则() A.悬挂铜球的细线所受的拉力最大 B.悬挂铁球的细线所受的拉力最大 C.悬挂铝球的细线所受的拉力最大 D.三根细线所受拉力一样大 6、在打捞过程中潜水员多次下潜勘查,当潜水员浸没海水后继续下潜的过程中,其所受浮力的大小,压强的大小。(选填“增大”、“减小”或“不变”) 7、质量相同的实心铜球,铁球,铝球分别投入水中静止时,它们受到的浮力(). A.铝球最大B.铁球最大C.铜球最大D.三个球一样大 8芳芳在家探究鸡蛋受到的浮力大小与哪些因素有关,如图6所示。请仔细观察图示并回答下列问题: (1)从A、B两图可知,鸡蛋在水中受到的浮力大小是 ___N。 (2)根据B、C两实验,她就得出鸡蛋受到的浮力大小 与液体的密度有关,你认为对吗?________,理由是 ________。

初中物理阿基米德定律

初中物理阿基米德定律 典型例题 例1如图所示,在盛水容器中,有4个体积完全相同的物体:A是一浮于水面的正方体木块;B是用线吊着浸没在水中的长方体铁块;C是悬浮在水中的空心钢球;D是圆台形石蜡块,它沉于容器底面并与容器底无缝隙紧密结合,试比较分析A、B、C、D所受浮力的情况. 例 2 有一木块,放入水中静止后,有的体积露在水面上,若将它放入另一种液体 中时,有的体积浸入液体中,求液体的密度.

例3 如图,现有一正方体的物体悬浮于密度为的液体中,其边长为L,上表面距液 面的深度为h,那么下表面距液面的深度即为.请根据浮力产生的原因推导阿基米德原理. 习题精选 一、选择题 1.根据阿基米德原理,物体受到的浮力大小跟下面的哪些因素有关外?(). A.物体的体积B.物体的密度C.液体的密度D.物体所在的深度 E.物体的形状F.物体排汗液体的体积G.物体的重力 2.如图所示是同一长方体放在液体中的情况.长方体在图()中受到的浮力最大,在图()中受到的浮力最小. 3.选择正确答案(). A.密度大的液体对物体的浮力一定大 B.潜水员在水面下50米比在水面下10米受到的浮力大 C.将体积不同的两个物体浸入水中,体积大的物体受到的浮力一定大 D.体积相同的铁球和木球浸没在水中,它们受到的浮力一定相等 4.将挂在弹簧秤下的物体放入酒精中,弹簧秤的示数等于(). A.物体受到的重力B.物体受到的浮力

C.物体受到的重力减去它受到的浮力 D.物体受到的浮力减去它受到的重力 5.如图所示,A为木块,B为铝片,C为铁球,且,把它们都浸没在水中则(). A.由于铁的密度大,所以铁球受的浮力最大 B.由于铝片面积大,水对它向上的压力也大,因此铝片受到的浮力最大 C.由于木块要上浮,所以木块受的浮力最大 D.三个物体所受浮力一样大 6.如图所示,若A物压在B物上,A物露出水面体积为,若将物A用细绳挂在B下,B 物露出水面体积,则() A.B. C.D.无法比较大小 7.把一个密度为10.2×103kg/m3的实心合金块投入水银中,这时合金块浸入水银中的体积和总体积之比为()(已知水银的密度为13.6×103kg/m3) 8.一木块浮在水面上时,总体积的1/5露出水面,把它放在另一种液体中,总体积的1/3露出液面,则水与这种液体的密度之比为() A.5∶6 B.15∶8 C.6∶5 D.3∶5 9.在盛水的烧杯中漂浮着一块冰,待冰全部熔化后将发现杯中水面() A.升高___________N,弹簧秤的示数为_________N;若将铁块全部浸没在密度为0.8×103kg/m3的液体中,则铁块受到的浮力为________N. 10.把一块圆柱体的金属块挂在弹簧秤上,把金属块的3/5浸没在水中时弹簧秤的示数和把金属块全部没入某液体中时弹簧秤的示数相等,那么两次金属块受到的浮力之比是_____,液体的密度之比是______. 11.将重是2.5N的物体A放进水中,它有一半体积露出水面,如图甲,在A上面再放一个体积与A相同的物体B,恰好A、B两物体全部浸入水中,且B上表面与水面相平,如图乙,求B物体的物重是多少____________N.

著名数学定理

著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174. 阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如, 任意给定二次方程ax 2 +bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++???++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10??? 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都 无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦 给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此. 阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -= ,又有 ??? ? ??r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系. 艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式 ()011a x a x a x f n n n n +++=-- 如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0, 1,...,n -1);p2 不整除a 0 ,那么f (x )在有理数域上是不可约的. 奥尔定理 离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的 任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路 . 阿基米德折弦定理

《_阿基米德原理》教学设计[1]

《阿基米德原理》教学设计 一、教材分析: 阿基米德原理是初中物理教学的重要内容,在力学知识的学习过程中起着承上启下的作用。浮力是前面所学的力学知识的延伸扩展,是初中力学部分的又一个重点;浮力是本章的关键,为以后研究物体浮沉条件奠定基础;浮力知识对人们的日常生活、生产技术、科学研究有着广泛的现实意义。由于这部分内容有一定的难度,学生学起来总有种望而生畏的感觉。因此,教学过程中我注重学生对知识的理解,通过实验、推理等方法,努力激发使这一部分教学不枯燥,争取调动全体学生学习兴趣提高学生成绩。 二、学生情况分析: “浮力”对于学生来说,既熟悉又陌生。说熟悉,是因为在日常生活的积累中和在小学自然常识课的学习中已有了一定的感性认识;说陌生,是因为要把有关浮力的认识从感性提高到理性,需要综合运用各方面的知识,如力的测量、重力、二力平衡、二力的合成等重要知识,还需要对这些知识进行科学的分析、推理、归纳等。在第一节浮力的教学过程中,已经学习了称重法求浮力的方法,学习了影响浮力的相关因素,为进一步学习《阿基米德原理》做好了铺垫和准备。如何调动他们的学习兴趣是一个关键问题。 三、教学目标 知识与技能 1、能用溢水杯等器材探究浮力的大小。 2、会利用阿基米德原理解释简单的现象和计算。 过程与方法 1.经历科学探究,培养探究意识,发展科学探究能力。 2.培养学生的观察能力和分析概括能力,发展学生收集、处理、交流信息的能力。 情感、态度与价值观 1.增加对物理学的亲近感,保持对物理和生活的兴趣。 2.增进交流与合作的意识。 3.保持对科学的求知欲望,勇于、乐于参与科学探究。 四、教学重点、难点 (1)重点:阿基米德原理。 (2)难点:①探索阿基米德原理的实验设计及操作过程;②对阿基米德原理的理解。 五、教法的选择 1、将被动观察改为主动探究,将演示实验改为学生探索实验。 2、探究模式采用与物理研究方法相同的模式,猜想——设计——验证——分析归纳——评估。 六、学法的指导 在课堂上着力开发学生的三个空间 1、学生的活动空间。将演示实验改为学生的分组试验,全体学生参与,使每个学生都能体验探究过程,得到发展。 2、学生的思维空间。创设问题情景,让学生自己体验、感知知识的发生、发展过程,通过思维碰撞,培养思维能力。 3、学生的表现空间。通过把自己的想法、结果展示给大家,学习交流与合作,体验成功的愉悦。 七、教学准备 空易拉罐(自备,每组1个)、盘子每组1个、弹簧秤每组1只、小石块每组1块、溢水杯每组1套、细线、烧杯、水等 八、课堂主线设计: 知识线索:(隐线)探究阿基米德原理的实验设计及操作过程。 情景线索:(明线)阿基米德鉴定王冠是否掺假 逻辑线索:(思维线索)在不损坏王冠的情况下,怎样才能测出王冠的体积,进而求出王冠的密度。 九、教学过程

切割线定理割线定理相交弦定理等及几何题解

切割线定理割线定理相交弦定理等及几何题解 南江石 2018年4月7日星期六 圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。 圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。 圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。 弦是割线的部分线段。 公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。 公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。 几何原理 几何原理 共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线 4切线长度相等—— 4切点共圆,圆心在两线交点 3切线长度相等——3切点共圆,圆心在两线交点 共割线上任意一点到圆的 4个切线的长度相等,4切点共圆 共切线上任意一点到圆的3个切线的长度相等,3切点共圆 圆幂定理 是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。 圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。 点对圆的幂 P 点对圆O 的幂定义为 2 2 R OP F B 性质

点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 PB PT PT PA = PB PA PT ?=2 222Am Pm PT -= 割线定理(切割线定理的推论) 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 PD PC PB PA ?=? 2222Cn Pn Am Pm -=- 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。 PD PC PB PA ?=? 2222A Pn Cn Pm m -=- 垂径定理(相交弦定理推论) 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 垂直于弦的直径平分弦且平分这条弦所对的两条弧。 PB PC PC PA = PB PA PC ?=2 222OP R PC -= P 点在圆外,切割线定理、割线定理 2222222Cn Pn Am Pm R OP PD PC PB PA PT -=-=-=?=?= P 点在圆内,相交弦定理、垂径定理 222222Pn Cn Pm Am OP R PD PC PB PA -=-=-=?=? 222OP R PB PA PC -=?=

2020年中考数学二轮核心考点讲解第15讲非常规思维问题解析版

【中考数学二轮核心考点讲解】 第15讲非常规思维问题 一、轴对称/翻折的性质 1. 关于某条直线对称的两个图形是全等形; 2. 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线段的垂直平分线; 3. 对称轴上的任意一点与每一对对应点所连线段相等; 4. 若对应线段或对应线段的延长线相交,则交点一定在对称轴上. 二、梯形常见辅助线的作法 三、圆幂定理

四、正弦定理与余弦定理 五、阿基米德折弦定理

【例题1】(1)如图1,四边形ABCD是菱形,∠BAD=∠BCD=60°,当AC=12时,则△BCD的周长=______. (2)如图2,若四边形ABCD不是菱形,∠BAD=2∠ACB=2∠ACD=60°,AC=12,判断△BCD的周长是否发生变化,并说明理由。 (3)如图2,在四边形ABCD中,∠BAD=∠ACB=∠ACD=45°,AC=12,求△BCD的周长。

【归纳,本题重点巧用作轴对称/翻折的方法进行解题】 【变式1】已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°. (1)探究线段BD、DE、EC三条线段之间的数量关系; (2)已知:如图(2),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数. 图(1) 图(2) 【解析】(1)DE2=BD2+EC2; (2)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形. 如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB, 可得△CFE≌△CBE,△DCF≌△DCA. ∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°. 若使△DFE为等腰三角形,只需DF=EF,即AD=BE, ∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.

阿基米德原理计算题

浮力阿基米德原理计算题 1、把体积为4×10- 3m3的小球浸没在酒精中,问:小球受到的浮力是多少?(ρ酒精=0.8×103 kg/m3)(g取10N/kg) 2、重力为54N的实心铝球浸没在水中时,铝球受的浮力是多大?(g取10N/kg)(ρ =2.7×103kg/m3) 铝 3、有一金属块,在空气中称得重3.8N,将它浸没在盛满水的溢水杯中时,有50mL 的水从溢水杯中流入量筒,求:(1)金属块的体积;(2)金属块在水中受到的浮力;(3)金属块在水中时弹簧秤的读数;(4)金属的密度是多少?(g取10N/kg) 4、如图13所示,在空气中用弹簧测力计测得物体重为2.7N,将其一半浸入水中,此时弹簧测力计的示数变为2.2N,求:(g取10N/kg) (1)物体浸没时所受的浮力大小(2)物体的体积是多少 (2)物体的密度为多少。 5、如图所示,在水中有形状不同,体积都是100厘米3的A、B、C、D四个物块,A的体积有2/5露出水面,D的底面与容器底紧密贴合,求各个物块所受的浮力。

6、一个实心石块,在空气中用弹簧测力计测得示数是10N,当把石块完全浸没在水中时,弹簧测力计测得示数是6N,求:石块密度。(取g=10N/kg). =7.9×103kg/m3)挂在弹簧测力计上,若将铁7、一个体积为1000cm3的铁球(ρ 铁 球浸没在水中,则弹簧测力计的示数是它在空气中称时的4/5,求铁球受到的浮力和重力?(g取10N/kg) 8、将一个挂在弹簧测力计上的物体完全浸没盛满水的容器中(未碰到容器底及侧壁),溢出了0.24kg的水,此时弹簧测力计示数是1.2N, 求:(1)该物体在水中受到的浮力(2)该物体的体积(3)该物体的密度 9、如图所示,烧杯内盛有某种液体,把一体积为1×104m3的铝块用细线系在弹 簧测力计下浸没在液体中,静止时弹簧测力计的示数为1.5N,已知铝的密度为2.7×l03kg/m3。 求(1)铝块在液体中受到的浮力 (2)液体的密度

验证阿基米德定律.

验证阿基米德定律 【目的和要求】 学习验证阿基米德定律的方法;加深对阿基米德定律的理解。 【仪器和器材】 1.测力计(J2104型,钩码(J2106型,乒乓球,量筒,杯子,水。 2.定滑轮,薄壁小铁桶,塑料小桶,足量的细沙,水,小石子。 【实验方法】 方法一 1.在量筒内盛入适量的水,记下水面到达的刻度V1。 2.将钩码与乒乓球用细线拴在一起,挂在测力计下,读出测力计上示数G1。 3.再将钩码与乒乓球全部浸没水中,记下水面升高后的刻度V2,读出此时测力计上的示数G2。则V=V2-V1为钩码和乒乓球的总体积。F=G1-G2。为钩码与乒乓球浸没水中所受的浮力。 4.由求出钩码和乒乓球共同排开的水所受的重力。 5.将钩码和乒乓球所受的浮力跟它们排开的水所受的重力比较,看两者是否相等。从而可得到什么结论(钩码与乒乓球浸没水中所受的浮力等于它们共同排开的水所受到的重力。 将实验所得数据和结果填入表1.21-1中:

方法二 1.把细线穿过定滑轮,两端分别系上小铁桶和塑料小桶,在塑料小桶中装入适量的沙、调节沙的多少,使系统平衡,见图1.21-l。 2.在小铁桶中装满水,在塑料小桶中加小石子,使两边重新平衡。此时石子重等于水重。 3.将盛水容器放在小铁桶之下,使水面和小铁桶底刚好接触,再从塑料小桶中一个一个地取出石子,将会看见小铁桶慢慢浸入水中,当小石子全部取出后,小铁桶全部浸入水中,见图1.21-2。

上述实验证明小铁桶受到的浮力大小和从塑料小桶取出的石子重相等,而石子重又等于小铁桶中的水重。所以得出结论:铁桶所受的向上浮力大小等于它所排开的那部分水重,从而验证了阿基米德定律。 【注意事项】 1.方法一中将钩码与乒乓球拴在一起,是为了提高实验的效果。如果只用钩码,所受的浮力较小,测力计上示数变化不明显,实验数据误差较大。 2.每次实验,不要使钩码和乒乓球与容器侧壁或底部接触。提起或落下的时候,应缓慢进行,等指针静止后再读示数。

余弦定理公式大全

4.6 正弦、余弦定理 解斜三角形 建构知识结构 1.三角形基本公式: (1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) (3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理: 2sin sin sin a b c R A B C ===外 证明:由三角形面积 111 sin sin sin 222S ab C bc A ac B === 得sin sin sin a b c A B C == 画出三角形的外接圆及直径易得:2sin sin sin a b c R A B C === 3.余弦定理:a 2 =b 2 +c 2 -2bccosA , 222 cos 2b c a A bc +-=; 证明:如图ΔABC 中, sin ,cos ,cos CH b A AH b A BH c b A ===- 222222 2 2 sin (cos )2cos a CH BH b A c b A b c bc A =+=+-=+- 当A 、B 是钝角时,类似可证。正弦、余弦定理可用向量方法证明。 要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

2018--【海淀区】中考一模数学试卷(含答案解析)

北京市海淀区2018年中考一模数学试卷 一、选择题(本题共16分,每小题2分) 1.用三角板作ΔABC 的边BC 上的高,下列三角板的摆放位置正确的是( ) 2.图1是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体 以面相连接构成的不规则形状组件组成. 图2不可能... 是下面哪个组件的视图( ) 3.若正多边形的一个外角是120°,则该正多边形的边数是( ) A.6 B.5 C.4 D.3 4.下列图形中,既是中心对称图形,也是轴对称图形的是( ) 5.如果1a b -=,那么代数式2222(1)b a a a b -?+的值是( )A.2 B.2- C.1 D.1- 6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( ) A.0b c +> B. 1c a > C.ad bc > D.a d > b c a d

7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户 规模的变化情况. (以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断 一定不合理... 的是( ) A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升 B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持 续上升 C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万 D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70% ※8.如图1,矩形的一条边长为X ,周长的一半为y. 定义〔X ,y 〕为这个矩形的坐标. 如图2,在平面直角坐标系中,直线X=1, y=3将第一象限划分成4个区域. 已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中. 则下面叙述中正确的是( ) A. 点A 的横坐标有可能大于3 B. 矩形1是正方形时,点A 位于区域② C. 当点A 沿双曲线向上移动时,矩形1的面积减小 D. 当点A 位于区域①时,矩形1可能和矩形2全等 2015-2017年中国在线教育用户规模统计图 6月 12月 6月 12月

相交弦定理教学设计

相交弦定理教学设计 这是一篇由网络搜集整理的关于相交弦定理教学设计的文档,希望对你能有帮助。 1、教学内容及其地位、作用? 本节课的主要内容是相交弦定理及其推论,内容非常重要,但并非难点。实际上这节内容在前面已有伏笔: (1)在圆周角中,我们讨论同弧所对的圆周角;在P95第1题中找相等的角中等已有该问题的萌芽. (2)在圆内接四边形中,我们也接触过类似的问题,现在有了这些知识作辅垫,只需将这些问题做些深化,相交弦定理便可呼之即出。相交弦定理和下一节的.切割线定理同出一辙,都是涉及圆中两弦位置关系的问题,本节教学还想从这个高度出发,让学生学会思考问题的方法以及领悟问题的本质 2、教育教学目标? (1)使学生掌握相交弦定理及其推论,并会利用它们进行有关的计算和论证,培养学生逻辑推理能力 (2)培养学生善于利用所学知识去探索、发现结论(包括定理、公式等甚至前人未曾发现的),提高学生发现问题的能力,培养学生的探索精神 (3)对学生进行事物之间是相互联系和运动变化的观点教育,培养学生综合运用所学知识的能力 3、重、难点: 重点是相交弦定理及其推论,因为它们都是研究圆中重要的比例线段,在

圆中应用相当广泛。 难点是灵活运用相交弦定理及推论,解决圆中的线段的计算问题 二、教学方法:引导探索、发现结论法 教学不只是传授知识,让学生单纯记忆前人的研究成果,更重要的是激发学生创造思维,引导学生去探索、发现结论的方法。正如叶圣陶先生所说:“教是为了不教”,这样方能培养出创造性人才,这正是实施创造教育的关键。本节的定理及推论都是开门见山地给出,没有引入,如果照本宣科,势必会影响学生的思维积极性,教学效果自然会大打折扣。因此本节采用引导探索、发现结论法,有利于调动学生思维的积极性 三、学法指导? (1)培养学生善于观察思考,勇于探索,并发现结论的学习方法 (2)体会“温故而知新”,培养学生善于利用所学知识,从不同角度去得到各种有价值的结论,进一步了解“化未知为已知”的数学思想 (3)在教学中还渗透了“从一般到特殊,从特殊到一般”的思想。

阿基米德折弦定理的四种常规证法

阿基米德折弦定理的四种常见证法 Justin ● 深圳 平面几何内容在整个初中数学知识中占有很重要第位,无论是中考还是平时阶段检测,往往会在几何题目的设置上体现选拔性。更有人说:“初中数学学得好不好,关键看几何好不好”。这些虽然仅仅是一些说法而已,但也不无它的道理。平面几何的确是考察学生的一个很重要的方面,几何学习的关键主要是掌握作辅助线的技巧。而这些技巧也并非一朝一夕就能掌握的,需要长时间的积累,总结,并应用才能较好掌握。在整个初中范围内,圆作为一个独立的章节更显现它的重要,并以综合难度大,辅助线的作法较多著称。下面就以“阿基米德折弦定理”的证明为例来浅谈本人对圆的学习心得。 问题:已知M 为 的中点,B 为 上任意一点,且BC MD ⊥于D . 求证:DC BD AB =+ 证法一:(补短法) 如图:延长DB 至F ,使BF=BA ∵M 为 的中点 ∴AM=MC, ∴∠MAC=∠MC A---① 又∵, ∴MC=MA ∴∠MBC=∠MA C---② 又∵∠MBC+∠MBF=180---③ 由M,B,A,C 四点共圆 ∴∠MCA+∠MBA=180---④ 由①②③④可得:∠MBA=∠MBF 在△MBF 与△MBA 中: ?? ???=∠=∠=MB MB MBF MBA BA BF ∴△MBF ?△MBA(SAS) ∴MF=MA, 又∵MC=MA ∴MF=MC 又∵MD ⊥CF ∴DF=DC ∴FB+BD=DC 又∵BF=BA ∴AB+BD=DC (证毕)

证法二:(截长法) 如图:在CD 上截取DB=DG ∵MD ⊥BG ∴MB=MG ∴∠MBG=∠MG B---① 又∵,∴∠MBG=∠MAC 又∵∠MAC=∠MCA (已证), ∴∠MBG=∠MC A---② 由①②可得∠MGB=∠MCA=∠BCA+∠MCG 而∠MGB=∠GMC+∠MCG ∴∠GMC=∠BCA 又∵,∴∠BMA=∠BCA ∴∠BMA=∠GMC, 在△MBA 与△MGC 中?? ???=∠=∠=MC MA GMC BMA MG MB ∴△BMA ?△GMC (SAS) ∴AB=GC, ∴AB+BD=GC+BD=GC+DG=DC(证毕) 证法三:(翻折) 如图:连接MB,MC,MA,AC, 将△BAM 沿BM 翻折,使点A 落至点E ,连接ME,BE ∵△MBA 与△MBE 关于BM 对称,所以△MBE ≌MBA ∴MA=ME, ∠MBA=∠MBE-① 又∵MA=MC, ∴ME=MC , 又∵M, B, A, C 四点共圆, ∴∠MBA+∠MCA=180---② 又∵MA=MC(已证) ∴∠MAC=∠MCA 又∵,∴∠MBC=∠MAC ∴∠MBC=∠MCA- --③ 由①②③得:∠MBC+∠MBE=180 ∴E,B,C 三点共线。 又∵ME=MC,MD ⊥CE ∴DE=DC ,∴EB+BD=DC ,又∵△MBE ≌MBA ∴AB=EB ∴ AB+BD=DC(证毕)

实验12 验证阿基米德原理实验(原卷版)

实验十二、验证阿基米德原理的实验 或者 【实验目的】: 探究浸在液体中的物体受到的浮力大小与物体排开液体的重力之间的关系。 【实验原理】: 阿基米德原理。 【实验器材】: 弹簧测力计、金属块、量筒(小桶)、水、溢水杯、 【实验步骤】: ①把金属块挂在弹簧测力计下端,记下测力计的示数F1。 ②在量筒中倒入适量的水,记下液面示数V1。 ③把金属块浸没在水中,记下测力计的示数F2和此时液面的示数 V2。 ④根据测力计的两次示数差计算出物体所受的浮力(F 浮=F1-F2)。 ⑤计算出物体排开液体的体积(V2-V1),再通过G水=ρ(V2-V1)g 计算出物体排开液体的 重力。 ⑥比较浸在液体中的物体受到浮力大小与物体排开液体重力之间的关系。(物体所受浮力 等于物体排开液体所受重力) 【实验数据】: 次数物重 G(N) 拉力 F拉(N) F浮= G-F拉(N) 杯重 G杯(N) 杯+水重 G杯+水(N) 排开水重 G排=G杯+水-G杯(N) 比较F浮和 G排 1 2 3

【实验结论】:液体受到的浮力大小等于物体排开液体所受重力的大小 【考点方向】: 1、为了验证阿基米德原理,实验需要比较的物理量是:。 1、弹簧测力计使用之前要上下拉动几下目的是:。 2、实验中溢水杯倒水必须有水溢出后才能做实验,否则会出现什么结果: 答:。 3、实验前先称量小桶和最后称量小桶有何差异:。 4、实验结论:。 5、实验时进行了多次实验并记录相关测量数据目的是:。 6、实验中是否可以将金属块替换为小木块,为什么? 答:。 7、如果用塑料方块来验证阿基米德原理,实验需要改进的地方是:。 8、实验过程中,难免有误差存在,请说出一些容易导致误差的原因:。 【创新母题】:某实验小组利用弹簧测力计、小石块、溢水杯等器材,按照图所示的步骤,来验证阿基米德原理。 (1)先用弹簧测力计分别测出空桶和石块的重力,其中石块的重力大小为N。 (2)把石块浸没在盛满水的溢水杯中,石块受到的浮力大小为N.石块排开的水所受的重力可由(填字母代号)两个步骤测出。 (3)由以上步骤可直接得出结论:浸在水中的物体所受浮力的大小等于。 (4)另一实验小组同学认为上述实验有不足之处,其不足是:。 (5)为了改善上述不足之处,下列继续进行的操作中不合理的是。 A.用原来的方案和器材多次测量取平均值 B.用原来的方案将水换成酒精进行实验 C.用原来的方案将石块换成体积与其不同的铁块进行实验

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

重要但常不为人知道的几何定理

阿基米德折弦定理:AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线之垂足D是折弦ABC的中点,即CD=AB+BD。从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦。 角平分线定理 定理1:角平分线上的点到这个角两边的距离相等。该命题逆定理成立:在角的部到一个角的两边距离相等的点在这个角的角平分线上。 定理2:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。该命题逆定理成立:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。 xv=uy 燕尾定理 因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。 S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD; 同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF; S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。 推论: 共边比例定理:四边形ABCD(不一定是凸四边形),设AC,BD相交于E,则有BE :DE=S △ABC :S△ADC。此定理是面积法最重要的定理. 典型例题:

如图三角形ABC的面积是10平方厘米,AE=ED,BD=2DC,则阴影部分的面积是_____平方厘米. 答案:4 解析:过D作DM‖BF交AC于M(如图)因为BD=2DC,因为AE=DE,所以△ABE的面积与△DBE的面积相等,所以阴影部分的面积为△DBE的面积+△AEF的面积,即三角形AFB的面积,由DM‖BF知道△DMC相似△CBF 所以CM:CF=CD:CB=1:3,即FM= CF,因为EF是△ADM的中位线,AF=MF,所以AF=AC,由此即可求出三角形AFB的面积,即阴影部分的面积. 解:过D作DM‖BF交AC于M(如图)因为BD=2DC, 因为AE=DE,所以△ABE的面积与△DBE的面积相等 所以阴影部分的面积为△DBE的面积+△AEF的面积 DM‖BF所以△DMC相似△CBF 所以CM:CF=CD:CB=1:3 即FM=CF 因为EF是△ADM的中位线,AF=MF, 所以AF=AC 所以△ABF的面积10×=4(平方厘米) 即阴影部分的面积(即△DBE的面积加△AEF的面积)等于4平方厘米 答:阴影部分的面积是4平方厘米, 故答案为:4. 共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。 分角定理:在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,则有 BD/CD=(sin∠BAD/sin∠CAD)*(AB/AC)。

(完整版)阿基米德原理练习题—含答案

阿基米德原理习题精选 班级姓名学号 一、选择题 1.根据阿基米德原理,物体受到的浮力大小跟下面的哪些因素有关外?(). A.物体的体积B.物体的密度C.液体的密度D.物体所在的深度 E.物体的形状F.物体排汗液体的体积G.物体的重力 2.如图所示是同一长方体放在液体中的情况.长方体在图()中 受到的浮力最大,在图()中受到的浮力最小. 3.选择正确答案(). A.密度大的液体对物体的浮力一定大 B.潜水员在水面下50米比在水面下10米受到的浮力大 C.将体积不同的两个物体浸入水中,体积大的物体受到的浮力一定大 D.体积相同的铁球和木球浸没在水中,它们受到的浮力一定相等 4.将挂在弹簧秤下的物体放入酒精中,弹簧秤的示数等于(). A.物体受到的重力 B.物体受到的重力减去它受到的浮力 C.物体受到的浮力 D.物体受到的浮力减去它受到的重力 5.如图所示,A为木块,B为铝片,C为铁球,且 V A=V B=V C,把它们都浸没在水中则(). A.由于铁的密度大,所以铁球受的浮力最大 B.由于木块要上浮,所以木块受的浮力最大 C.由于铝片面积大,水对它向上的压力也大,因此铝片受到的浮力最大 D.三个物体所受浮力一样大 6.如图所示,若A物压在B物上,A物露出水面体积为 V1,若将物A用细绳挂在B下,B 物露出水面体积 V2,则() A.V1> V2 B.V1= V2 C.V1< V2 D.无法比 较大小 7.把一个密度为10.2×103kg/m3的实心合金块投入水银中,这时合金块浸入水银中的体积和总体积之比为() (已知水银的密度为13.6×103kg/m3) 8.一木块浮在水面上时,总体积的1/5露出水面,把它放在另一种液体中,总体积的1/3露出液面,则水与这种液体的密度之比为() A.5∶6 B.15∶8 C.6∶ 5 D.3∶5 9.在盛水的烧杯中漂浮着一块冰,待冰全部熔化后将发现杯中水面() A.升高 B.降低 C.不变 D.无法判断 10.一木块浮在煤油中,露出体积的1/4,当它浮在另一种液体中时,露出体积的1/2,则木块在这两种液体中受到的浮力之比和煤油与这种液体密度之比分别是() A.1∶1,1∶2 B.1∶1,2∶3 C.1∶3,1∶2 D.3∶1,3∶2 11.有一木块在水中上浮,从开始露出水面最后静止漂浮在水面上的过程中() A.木块所受的浮力,重力都在逐渐变小 B.木块所受的浮力,重力都不变 C.木块所受的浮力变大,重力不变 D.木块所受的浮力变小,重力不变 12.重38N的铁桶里装满水,水重98N,用手提住铁桶,将这桶水浸没在河里(桶未露出水面,也不碰到河底)此时所用力为() A.零B.小于38N C.大于38N而小于136ND.等于38N

初二物理阿基米德原理基础知识讲解

阿基米德原理(基础) 【要点梳理】 要点一、浮力的大小【高清课堂:《浮力》三、浮力的方向】探究浮力的大小跟排开液体所受重力的关系 (1)实验器材:溢水杯、弹簧测力计、金属块、水、小桶 (2)实验步骤: ①如图甲所示,用测力计测出金属块的重力; ②如图乙所示,把被测物体浸没在盛满水的溢水杯中,读出这时测力计的示数。同时,用小桶收集物体排开的水; ③如图丙所示,测出小桶和物体排开的水所受的总重力; ④如图丁所示,测量出小桶所受的重力。 ⑤把测量的实验数据记录在下面的表格中: 次数 物体所受 的重力/N 物体在水中时测 力计的读数/N 浮力/N 小桶和排开的水所 受的总重力/N 小桶所受的重力/N 排开水所受的重力/N 1 2 3 … (3)结论:金属块所受的浮力跟它排开的水所受重力相等。 要点二、阿基米德原理 1.内容:浸在液体中的物体受到向上的浮力,浮力的大小等于它排开的液体所受的重力。 2.公式:F G m g gV ρ===浮排排液排 要点诠释: ①“浸在”包含两种情况:一是物体有一部分浸在液体中,此时;二是物体全部没入液 体中,此时 。 ②“浮力的大小等于物体排开液体所受的重力”,这里要注意浮力本身是力,只能和力相等,很多同学常把这句话说成“浮力大小等于物体排开液体的体积”。力和体积不是同一物理量,不具有可比性;这

里所受的重力,不是物体所受的重力,而是被排开液体所受的重力。 ③由 ,可以看出,浮力的大小只跟液体的密度和物体排开液体的体积两个因素有关,而跟 物体本身的体积、密度、形状,与在液体中是否运动,液体的多少等因素无关。 ④阿基米德原理也适用于气体。浸没在气体里的物体受到浮力的大小,等于它排开的气体所受的重力。 即。 【典型例题】 类型一、浮力的大小 1.质量相同的实心铁球、铝球和木块,浸在液体中的情况如图所示,则比较它们受到的浮力( ) A.铁球受到的浮力最大 B.铝球受到的浮力最大 C.木块受到的浮力最大 D.它们受到的浮力一样大 【思路点拨】已知三球的质量相同,根据公式m V ρ =可知,密度越大体积越小,根据阿基米德原理判断 受到水的浮力大小关系。 【答案】C 【解析】∵m V ρ= , ∴m V ρ = , ∵实心铁球、铝球和木块的质量相同,ρρρ>>铝铁木, ∴V V V <<铝铁木, 由图知,三物体浸没水中,木块排开水的体积最大, ∵F gV ρ=浮水排, ∴木块受到水的浮力最大。 【总结升华】本题考查了学生对密度公式、阿基米德原理的掌握和运用,关键是三物体排开水的体积大小的判断。 举一反三: 【变式1】(2015?武冈市校级模拟)夏天人们游泳时,从岸边走向水深处的过程中,他受到的浮力变化情况是( ) A .浮力增大 B .浮力不变 C .浮力减小 D .先增大后减小

相关文档
相关文档 最新文档