文档库 最新最全的文档下载
当前位置:文档库 › 第一章激光原理练习题

第一章激光原理练习题

第一章激光原理练习题
第一章激光原理练习题

第一章激光原理练习题

一、填空题(本大题共4个小题,每题3分,共12分)

1.光学谐振腔的稳定与否是由谐振腔的决定的。

2.平凹腔是由一块平面镜和一块曲率半径为R的凹面镜组成的光学谐振腔,

按照两镜之间距离可分为半共焦腔和。

3.一般情况下粒子数密度反转分布与的线型函数有关。

4.小信号粒子数密度反转与能级寿命有关。

二、选择题(本大题共4个小题,每题3分,共12分)

1. 粒子数密度反转分布的表达式表明了粒子数密度按照谐振腔内光波频率

分布,与有关。

A光强B饱和光强C中心频率D小信号粒子数密度反转

2.光学谐振腔的作用是。

A倍增工作介质作用长度提高单色光能密度

B控制光束传播方向。

C对激光进行选频

D改变激光频率

3. 饱和光强I s是激光工作物质的光学性质,不同物质差别很大,氦氖激光器

(632.8nm谱线)I s大约为。

A. 0.3W/mm2

B. 7.0W/mm2

C. 0.6W/mm2

D. 0.5W/mm2

4.平凹腔按照两镜之间距离可分为。

A半共焦腔

B半共心腔

C共焦腔

D共心腔

三、简答题(本大题共4个小题,每题5分,共20分)

1.请解释增益饱和的物理意义。

2.请解释什么是不稳定腔。

3.什么是平行平面腔?

4 .请解释粒子数密度反转分布值的饱和效应。

四、计算题(本大题共4个小题,共56分)

1.四能级激光器中,激光上能级寿命为τ3 =10-3 s,总粒子数密度n0 =3×108m-3 ,

当抽运几率达到W14 =500/s时,求小信号反转粒子数密度为多少?(10分)

2.某激光介质的增益系数G=2/m,初始光强为I0 ,求光在介质中传播z=0.5m

后的光强。(不考虑损耗与增益饱和)(14分)

3.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒子通

过无辐射跃迁到2能级,激光在3能级和2能级之间跃迁的粒子产生。1能级与基态(0能级)之间主要是无辐射跃迁。

(1)在能级图上划出主要跃迁线。

(2)若2能级能量为4eV,1能级能量为2eV,求激光频率;(16分)

4.求非均匀加宽激光器入射强光频率为

101

2H

ννν

=-?,光强为

13

s

I I

ν

=时,该强光大信号增益系数下降到峰值增益系数的多少倍?(16分)

一、填空题

1. 几何形状

2. 半共心腔

3. 激光工作物质

4. 抽运速率 二.选择题

1.ABCD 2.ABC 3. A 4. AB 三.简答题

1. 介质中粒子数密度反转分布值因受激辐射的消耗而下降,光强越强,受激辐射几率越大,上能级粒子数密度减少得越多,使粒子数密度反转分布值下降越多,进而使增益系数也同时下降,直到达到饱和光强,光放大过程停止。 2. 在腔中任意一束傍轴光线不能够经过两个球面反射镜的曲率半径任意次往返传播不逸出腔外的谐振腔。

3. 是一种临界稳定腔,能够保证截面平行于反射镜面的光束在反射镜间传播不逸出。(临界腔)

4. 当腔内光强I=0(即小信号)时,粒子数反转分布0

n n ?=?最大。当腔内光强的影响不能忽略时,n ?将随光强的增加而减小。 四.计算题

1 题. (10分)

解: 激光上能级向下能级自发跃迁几率为上能级寿命的倒数

3323

3

1

1

10/10

A s τ-=

=

= 由四能级系统小信号反转粒子数计算公式有

2题 (14分)

883

14

0143250031010/5001000

W n n m W A ?==??=++o

解: 由增益系数计算公式

1ln I G z I =

可以得到光强计算公式为

0z G I I e =

因此,

20.50002.718I I e eI I ?===

3题 (16分) 解:(1)在图中画出

(2)根据爱因斯坦方程

21h E E ν=- 得

4题 (16分)

解 : 非均匀加宽强光大信号增益系数计算公式为

()2

102

14ln 21(,)31i m

H s

G I e

I I

ννννν--

?=+

1ln 211(,)224

31m m m H s G G G I e I I

νν--=

=

?=+ ()19

15

2134

42 1.6100.4829106.62610

E E Hz h ν---??-===??

激光原理及技术习题答案

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -= ?=λ ν λ h c h == ?*E (1)

(2) 10 * 425 .121 48 300 * 10 * 38 .1 10 10 *3 * 10 * 63 .6 1 223 6 8 34 ≈ = = = =- - - - - - - e e e n n T k c h b λ (3) K n n k c h b 3 6 23 8 34 1 2 10 * 26 .6 )1.0( ln * 10 * 10 * 8 .3 1 10 *3 * 10 * 63 .6 ln * T= - = - = - - - λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数1 01 .0- =mm α (2) 0 1 01 100 366 0I . e I e I e I I. z= = = =- ? - α 即经过厚度为0.1m时光能通过36.6% 10.解:

激光原理第一章答案

第一章 激光的基本原理 1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλΔ应是多少? 提示: He-Ne 激光 器输出中心波长632.8o nm λ= 解: 根据c λν=得 2 c d d d d ν νλνλλ =? ?=? λ 则 o o ν λ νλΔΔ= 再有 c c c L c τν == Δ得106.32810o o o c o c c L L λλνλνν?ΔΔ====× 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: c P nh nh νλ==由此可得: P P n h hc λ ν= = 其中为普朗克常数,为真空中光速。 34 6.62610 J s h ?=×?8310m/s c =×所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ×=500nm λ时: 18-1=2.510s n ×=3000MHz ν时: 23-1=510s n ×3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为),能级上的粒子数密度分别为n 和,求 λ21n (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当,T=300K 时,λ=1μm 21/?n n = (c) 当,n n 时,温度T=? λ=1μm 21/0.1=解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则 2 211()exp exp exp b b n E E h h n k T k T k νb c T λ??????=?=?=?????? ???????? (a) 当ν=3000MHz ,T=300K 时: 3492 231 6.62610310exp 11.3810300n n ????×××=?≈??××? ? (b) 当,T=300K 时: λ=1μm 3482 2361 6.62610310exp 01.381010300n n ?????×××=?≈??×××??

激光原理第二章答案解析

第二章开放式光腔与高斯光束 1.证明如图 2.1所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,根据几何关系可知211122 ,sin sin r rηθηθ ==傍轴光线sinθθ B则 1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 21 21 21 12 1 0 1 0 1 0 0 0 1 r r d θθ ηη ηη ???? ???? ?? ???? = ???? ?? ???? ?? ???? ???? ???? 化简后21 21 1 2 1 0 1 d r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示:

其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 () ()()1 2 101 0110101n n n n n n r L r L ??????===-=-???????????? A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔稳定性条件1201g g <<其中1212 11,1L L g g R R =-- =- 对平凹共轴球面镜腔有12,0R R =∞>。则122 1,1L g g R ==- ,再根据稳定性条件 1201g g <<可得2 2011L R R L <- <>?。 对双凹共轴球面腔有,120,0R R >>则1212 1,1L L g g R R =- =-,根据稳定性条件1201g g << 可得11221 212010 01 1R L R L R L R L R R L L R R L <?? <????<-- ?????? 或。 对凹凸共轴球面镜腔有,120,0R R ><则1212 1,1,0L L g g R R =- =>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ???? <--

哈工大 激光原理 第三、四章作业答案

第三章 2.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν?=1.5?l09Hz 。今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少? 答:Hz L c q 88 105.11121032?=???==?μν,10105.1105.189=??=??=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则: m c L L c q 2.010 5.1103298=??=?<∴=?

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理与技术习题一

《激光原理与技术》习题一 班级 序号 姓名 等级 一、选择题 1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。 (A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间 隔约为 cm -1。 (A )6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。谐振腔长度为50cm 。假 设该腔被半径为2a=3mm 的圆柱面所封闭。则激光线宽内的模式数为 个。 (A )6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于 、 、 光子的科学。 2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。 3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。 三、计算与证明题 1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。 2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1 kT hv 。

《激光原理与技术》习题二 班级 姓名 等级 一、选择题 1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。 (A )1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、填空题 1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、一束光通过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍,则该物 质的增益系数为 。 三、问答题 1、以激光笔为例,说明激光器的基本组成。 2、简要说明激光的产生过程。 3、简述谐振腔的物理思想。 4、什么是“增益饱和现象”?其产生机理是什么? 四、计算与证明题 1、设一对激光能级为2E 和1E (设g 1=g 2),相应的频率为ν(波长为λ),能级上的粒子数密度分 别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 2、设光振动随时间变化的函数关系为 (v 0为光源中心频率), 试求光强随光频变化的函数关系,并绘出相应曲线。 ? ??<<=其它,00),2exp()(00c t t t v i E t E π

激光原理第四章习题解答..

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答: 根据公式(激光原理P136) c c υυ νν-+=110 υλν= 由以上两个式子联立可得: 0λυ υλ?+-=C C 代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ 解答完毕(验证过) 2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL 2次。 证明: 对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下: 无多普勒效应的光场:()t E E ?=πνν2cos 0 产生多普勒效应光场:()t E E ?=''02cos ''πνν 在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:?? ? ?? +=c υνν1' 第二次多普勒效应:?? ? ??+≈??? ??+=??? ??+=c c c υνυνυνν21112'''

激光原理MOOC答案详解

1.2 1 谁提出的理论奠定了激光的理论基础? ?A、汤斯 ?B、肖洛 ?C、爱因斯坦 ?D、梅曼 正确答案:C 我的答案:C得分: 10.0分 2 氢原子3p态的简并度为? ?A、2 ?B、10 ?C、6 正确答案:C 我的答案:C得分: 10.0分 3 热平衡状态下粒子数的正常分布为: ?A、处于低能级上的粒子数总是等于高能级上的粒子数?B、处于低能级上的粒子数总是少于高能级上的粒子数?C、处于低能级上的粒子数总是多于高能级上的粒子数正确答案:C 我的答案:C得分: 10.0分 4 原子最低的能量状态叫什么? ?A、激发态 ?B、基态 ?C、.亚稳态 正确答案:B 我的答案:B得分: 10.0分 5 对热辐射实验现象的研究导致了? ?A、德布罗意的物质波假说 ?B、爱因斯坦的光电效应

?C、普朗克的辐射的量子论 正确答案:C 我的答案:A得分: 0.0分 6 以下关于黑体辐射正确的说法是: ?A、辐射的能量是连续的 ?B、黑体一定是黑色的 ?C、 辐射能量以hν为单位 正确答案:C 我的答案:C得分: 10.0分 7 热平衡状态下各能级粒子数服从: ?A、A. 高斯分布 ?B、玻尔兹曼分布 ?C、正弦分布 ?D、余弦分布 正确答案:B 我的答案:B得分: 10.0分 8 以下说法正确的是: ?A、受激辐射光和自发辐射光都是相干的 ?B、受激辐射光和自发辐射光都是非相干的 ?C、受激辐射光是非相干的,自发辐射光是相干的 ?D、受激辐射光是相干的,自发辐射光是非相干的正确答案:D 我的答案:D得分: 10.0分 9 下列哪个物理量不仅与原子的性质有关,还与场的性质有关??A、自发跃迁几率 ?B、受激吸收跃迁几率 ?C、受激辐射跃迁爱因斯坦系数 正确答案:B 我的答案:B得分: 10.0分 10

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

《激光原理及技术》1-4习题问题详解

激光原理及技术部分习题解答(鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为 21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n --= 其中1 2**E E c h E c h -=?=λ ν λ h c h == ?*E (1) (2)010*425.12148300 *10*38.11010*3* 10 *63.61 2 236 8 34 ≈====--- ----e e e n n T k c h b λ

(3) K n n k c h b 3 6 238341 210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2) 010010100003660I .e I e I e I I .z ====-?-α 即经过厚度为0.1m 时光能通过36.6% 10. 解: m /..ln .G e .e I I G .Gz 6550314 013122020===?=?

激光原理(陈鹤鸣版)部分习题答案整理

第二章 5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。 【参考例2-1,例2-2】 解: (1)J hc E E E 206834121098.310 510310626.6---?=????==-=?λ (2)5 2320121075.63001038.11098.3exp ---?-?=??? ? ?????-==T k E b e N N 10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。 1 04.0*)(0 )(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I m e I I G z G Z z G Z ααα即且解:

第三章 2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解: 衍射损耗: 1880107501106102 262.).(.a L =???=λ=δ-- s ..c L c 8 81075110 318801-?=??=δ= τ 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ= τ

激光原理第一章答案.

第一章激光的基本原理 1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλ?应是多少? 提示: He-Ne 激光 器输出中心波长632.8o nm λ= 解: 根据c λν=得 2 c d d d d ννλνλλ λ =- ?=- 则 o o ν λ νλ??= 再有 c c c L c τν == ?得 10

6.32810 o o o c o c c L L λλ ν λνν-??= = = =? 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000M H z ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中34 6.62610 J s h -=??为普朗克常数,8

310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1 =510s n ?=500nm λ时: 18-1 =2.510s n ?=3000M H z ν时: 23-1=510s n ? 3.设一对激光能级为2E 和1E (21f f =,相应的频率为ν(波长为λ,能级上的粒子数密度分别为2n 和1n ,求 (a 当ν=3000M H z ,T=300K 时,21/?n n = (b 当λ=1μm ,T=300K 时,21/?n n = (c 当λ=1μm ,21/0.1n n =时,温度T=? 解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则 (a 当ν=3000M H z ,T=300K 时: (b 当λ=1μm ,T=300K 时: c P nh nh νλ ==P P n h hc λν =

EE125_HW1激光原理第一章作业答案

EE125Principles of Lasers Prof.Cheng Wang ShanghaiTech University Homework1 Note: ?Please try to?nish the homework on your own.Discussion is permissible,but identical submissions are unacceptable! ?Please prepare your submission in English only.No Chinese submission will be accepted. ?Please submit your homework in PDF?le to yanht@https://www.wendangku.net/doc/424422027.html, with subject EE125HW1ID NAME. ?Please submit on time.NO late submission will be accepted. 1.1If the laser have a continuous output power of1W when(a)λ=10μm,(b)λ=500nm and(c)ν=3000MHz,what is the population each second N that are transition from E2to E1? 1.2If levels1and2of Fig.1.2are separated by an energy E2?E1such that the corresponding frequency isν(the wavelength isλ),the carrier density of each level is N2and N1.Assume that the two level have the same degeneracy. (a)Whenν=3000MHz,T=300K,calculate the ratio N2/N1. (b)Whenλ=1μm,T=300K,calculate the ratio N2/N1. (c)Whenλ=1μm,N2/N1=0.1,calculate T. Figure1.2 1/2

【激光原理】第四章作业答案

1 1.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。) 解: 已知条件R 1=∞, R 2=2 m, L =0.5 m ∵等价的对称共焦腔参数 L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( L R R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f 对于基横模 ∵22001???? ??+=πωλωωz z )(, π λωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=220 2ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m 2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗? 解: 相邻两个纵模频率差 L c μν2=? 短腔法选单纵模的条件是

2 F v ?>?ν2 ∵F F c λλν?=?2≈6.4×1012 Hz F v c L ?<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。因此不能用短腔法选单纵模。 3.解: mm s f 01.02.060 300=?=='ωω 5.解: ∵L 1紧靠腔的输出镜面 ∴入射在L 1上的光斑半径ω满足: ∴31.1125.220012=?== 'ωωf f M 7.解: 当声频改变ν?时,衍射光偏转的角度为:νμυλφ?=?s ; 而高斯光束的远场发散角为:0 μπωλθ=; 可分辨光斑数为:15710310501030033 60 =?????=???=?=-.πυωπνθφs n 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。具体的调Q 技术有那些? 答:由于激光上能级最大粒子反转数受到激光器阈值的限制,那么,要使上能级积累大量的粒子,可以设法通过改变(增加)激光器的阈值来实现,就是当激光器开始泵浦初期,设法将激光器的振荡阈值调得很高,抑制激光振荡的产生,这样激光上能级的反转粒子数便可积

激光原理复习题重点难点

《激光原理》复习 第一部分知识点 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 8、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 9、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 10、高斯光束的特征参数?q参数的定义? 11、如何用ABCD方法来变换高斯光束? 12、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程。 5、说明均匀加宽和非均匀加宽工作物质中增益饱和的机理。 6、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明它们的原理。

激光原理与技术09级A卷含答案

题号一二三四总分阅卷人 得分 得分 2011 ─2012学年 第 2 学期 长江大学试卷 院(系、部) 专业 班级 姓名 学号 …………….……………………………. 密………………………………………封………………..…………………..线…………………………………….. 《 激光原理与技术 》课程考试试卷( A卷)专业:应物 年级2009级 考试方式:闭卷 学分4.5 考试时间:110 分钟相关常数:光速:c=3×108m/s, 普朗克常数h =6.63×10-34Js, 101/5=1.585 一、选择题 (每小题 3 分,共 30 分) 1. 掺铒光纤激光器中的发光粒子的激光上能级寿命为10ms ,则其自 发辐射几率为 。 (A )100s -1 (B) 10s -1 (C) 0.1s -1 (D) 10ms 2. 现有一平凹腔R 1→∞,R 2=5m ,L =1m 。它在稳区图中的位置是 。(A) (0, 0.8) (B) (1, 0.8) (C) (0.8, 0) (D) (0.8, 1) 3. 图1为某一激光器的输入/输出特性曲线,从图上可以看出,该激光器的斜效率约为 。

(A) 10% (B) 20% (C) 30% (D) 40% 图1 图2 4.图2为某一激光介质的吸收与辐射截面特征曲线,从图上可以看出,该激光介质可用来产生 的激光。

得 分 (A) 只有1532 nm (B)只能在1532 nm 附近 (C) 只能在1530 nm-1560nm 之间 (D) 1470 nm-1570nm 之间均可 A 卷第 1 页共 6 页 5. 电光晶体具有“波片”的功能,可作为光波偏振态的变换器,当晶体加上V λ/2电场时,晶体相当于 。 (A )全波片 (B) 1/4波片 (C) 3/4波片 (D) 1/2波片 6. 腔长3m 的调Q 激光器所能获得的最小脉宽为 。(设腔内介质折射率为1) (A )6.67ns (B) 10ns (C) 20ns (D) 30ns 7. 掺钕钇铝石榴石(Y 3Al 5O 12)激光器又称掺Nd 3+:YAG 激光器,属四能级系统。其发光波长为 。 (A ) 1.064μm (B )1.30μm (C ) 1.55μm (D )1.65μm 8. 在采用双包层泵浦方式的高功率光纤放大器中,信号光在 中传输。 (A ) 纤芯 (B )包层 (C )纤芯与包层 (D )包层中(以多模) 9. 脉冲透射式调Q 开关器件的特点是谐振腔储能调Q ,该方法俗称 。 (A )漂白 (B )腔倒空 (C )锁模 (D )锁相 10. 惰性气体原子激光器,也就是工作物质为惰性气体如氩、氪、氙、氖等。这些气体除氙以外增益都较低,通常都使用氦气作为辅助气体,借以 。 (A )降低输出功率 (B )提高输出功率 C )增加谱线宽度 (D )减小谱线宽度 二、填空题 (每小题 3 分,共 30 分) 1. 在2cm 3空腔内有一带宽为1×10-4μm ,波长为0.5μm 的跃迁,此跃迁的频率范围是 120 GHz 。 2. 稳定球面腔与共焦腔具有等价性,即任何一个共焦腔与无穷多个稳定

【精品】激光原理第四章答案1

第四章电磁场与物质的共振相互作用 1静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0。4c 、0。8c 的速度向着观察者运动,问其表观中心波长分别变为多少? 解:根据公式νν=c λν= 可得:λλ=,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ 2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。 证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为 I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν.将 2M 看作光接收器,由于它以速度v S 2 M (1) v c νν'=+

运动,故它感受到的光的频率为: 因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为 这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为: 2(1)(1)(12) v v v c c c νννν'''=+=+≈+

因而光屏P 上的总光场为 光强正比于电场振幅的平方,所以P 上面的光强为 它是t 的周期函数,单位时间内的变化次数为 由上式可得在dt 时间内屏上光强亮暗变化的次数为 (2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移 动L 距离时,屏上面光强周期性变化的次数S 式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2 t 相对应的2M 镜的空间坐标,并且有21L L L -=。 得证。 3。在激光出现以前,86Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性 8/10λλ-?=的氦氖激光器比较。 02cos(22)cos(2) I II v v E E E E t t t c c πνπνπν=+=+021cos 22v I I t c πν?? ????=+?? ???????? ?22v dL m c c dt νν== 22 1 1 212222()t L t L L S mdt dL L L L c c c νννλ== =-==??

周炳琨激光原理第一章习题解答(完整版)

周炳琨<激光原理>第一章习题解答(完整版) 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.68.632100-==?nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为 E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒

子数密度分别为 n 2和n 1,求: (a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f n h E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 6238 34 1 2 10*8.410*1*300*10*38.110*3*10*626.6≈≈==--- ----e e e n n kT hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 4.在红宝石Q 调制激光器中,有可能将几乎全部Cr + 3离子激发到激光上能级并产生激光 巨脉冲。设红宝石棒直径1cm,长度7.5cm , Cr + 3浓度为 cm 3 1910*2-,巨脉冲宽度为 10ns ,求输出激光的最大能量和脉冲功率。 解:由于红宝石为三能级激光系统,最多有一般的粒子能产生激光: J nhc nh E 1710*3.69410 *3*10*626.6*10*2*5.7*)5.0(2 19 8 34 19 2 max 2 121====--πλυW E P R 10*7.19 max ==τ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子

相关文档