文档库 最新最全的文档下载
当前位置:文档库 › QGDW 11825-2018 单元式光伏虚拟同步发电机技术要求和试验方法

QGDW 11825-2018 单元式光伏虚拟同步发电机技术要求和试验方法

QGDW 11825-2018 单元式光伏虚拟同步发电机技术要求和试验方法

同步发电机试验方法

同步发电机试验方法

同步发电机试验方法 1 基本概念 同步发电机指发电机发出的电压频率f 与发电机的转速n 与发电机的磁极对数有着如下固定的关系: p f 60n (转/分) (1.1) 同步发电机按其磁极的结构又可分为隐极式和凸极式。此外,还可按其冷却方式进行分类, 常见的有全空冷、双水内冷、半水内冷、水氢氢(定子水内冷、转子氢内冷、铁心氢冷)等。 2 发电机的绝缘 2.1 定子绝缘 对于用户来说,主要关心其主绝缘即对地及相间绝缘。发电机的主绝缘又大致可分为槽绝缘、端部绝缘及引线绝缘。我国高压电机的主绝缘目前主要是环氧粉云母绝缘,按其含胶量又可分为多胶体系和少胶体系。定子线圈导线与定子铁芯以及槽绝缘在结构上类似一个电容器,在电气试验中完全可以把它当作一个电容器对待。 为了防止定子线棒表面电位过高在槽中产生放电,环氧粉云母绝缘的定子线棒表面涂有一层低电阻的防晕漆,或在外层包一层半导体防晕带。端部绝缘表面从槽口开始依次涂有低阻、中阻、高阻绝缘漆,防止端部电位变化梯度过大而产生电晕。 2.2 转子绝缘 转子绝缘包括对地绝缘和绕组的匝间绝缘。 3 发电机的绝缘试验项目 3.1 发电机常规试验项目(电气部分) 1)定子绕组的绝缘电阻、吸收比或极化指数测量 2)定子绕组的直流电阻测量 3)定子绕组泄漏电流测量和直流耐压试验 4)定子绕组交流耐压试验 5)转子绕组绝缘电阻测量 6)转子绕组直流电阻测量 7)转子绕组交流耐压试验 8)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的绝缘电阻测量 9)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的交流耐压试验 10)发电机组和励磁机轴承的绝缘电阻

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

同步发电机准同期并列实验步骤

同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察相关参数。 二、实验项目和方法 (一)机组启动与建压 1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; 2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; 3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4.励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5.把实验台上“同期方式”开关置“断开”位置; 6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速; 8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 (二)手动准同期 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的增磁或减磁按钮进行调压,直至“压差闭锁”灯熄灭。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“频差闭锁”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0o位置前某一合适时刻时,即可合闸。观察并记录合闸时的冲击电流。 具体实验步骤如下: (1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; (2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; (3)按调速器上的“模拟方式”按钮按下,使“模拟方式”灯亮。合上原动机开关,按下“停机/开机”按钮,开机指示灯亮;

发电机标准精选(最新)

发电机标准精选(最新) G2820.1《GB/T 2820.1-2009 往复式内燃机驱动的交流发电机组:用途、定额和性能》 G2820.2《GB/T 2820.2-2009 往复式内燃机驱动的交流发电机组:发动机》 G2820.3《GB/T 2820.3-2009 往复式内燃机驱动的交流发电机组:发电机组用交流发电机》 G2820.4《GB/T 2820.4-2009 往复式内燃机驱动的交流发电机组:控制装置和开关装置》 G2820.5《GB/T 2820.5-2009 往复式内燃机驱动的交流发电机组:发电机组》 G2820.6《GB/T 2820.6-2009 往复式内燃机驱动的交流发电机组:试验方法》 G2820.7《GB/T2820.7-2002 往复式内燃机驱动的交流发电机组:技术说明》 G2820.8《GB/T2820.8-2002 往复式内燃机驱动的交流发电机组:小功率发电机组》 G2820.9《GB/T2820.9-2002 往复式内燃机驱动的交流发电机组:机械振动的测量和评价》 G2820.10《GB/T2820.10-2002 往复式内燃机驱动的交流发电机组:噪声的测量》G2820.12《GB/T2820.12-2002 往复式内燃机驱动的交流发电机组:对安全装置的应急用电》 G2900.50《GB/T 2900.50-2008 电工术语 发电、输电及配电 通用术语》 G2900.52《GB/T 2900.52-2008 电工术语 发电、输电及配电 发电》 G2900.57《GB/T 2900.57-2008 电工术语 发电、输电及配电 运行》 G2900.58《GB/T 2900.58-2008 电工术语 发电、输电及配电 电力系统规划和管理》 G2900.59《GB/T 2900.59-2008 电工术语 发电、输电及配电 变电站》 G4712《GB/T 4712-2008 自动化柴油发电机组分级要求》 G7064《GB/T 7064-2008 隐极同步发电机技术要求》3 G12145《GB/T12145-1999 火力发电机组及蒸汽动力设备水汽质量》 G12786《GB/T 12786-2006 自动化内燃机电站通用技术条件》 G12975《GB/T 12975-2008 船用同步发电机通用技术条件》 G13032《GB/T 13032-2010 船用柴油发电机组》 G15548《GB/T 15548-2008 往复式内燃机驱动的三相同步发电机通用技术条件》G18929《GB/T18929-2002 联合循环发电装置验收试验》 G19962《GB/T 19962-2005 地热电站接入电力系统的技术规定》 G20136《GB/T 20136-2006 内燃机电站通用试验方法》 G20140《GB/T 20140-2006 透平型发电机定子绕组端部动态特性和振动试验方法及评定》 G21193.1《GB/Z 21193.1-2007 矿物燃烧蒸汽发电站 第1部分:限幅控制》 G21193.2《GB/Z 21193.2-2008 矿物燃烧蒸汽发电站 第2部分:汽包水位控制》G21193.3《GB/Z 21193.3-2007 矿物燃烧蒸汽发电站 第3部分:蒸汽温度控制》G21425《GB/T 21425-2008 低噪声内燃机电站噪声指标要求及测量方法》 G21426《GB/T 21426-2008 特殊环境条件 高原对内燃机电站的要求》 G21427《GB/T 21427-2008 特殊环境条件 干热沙漠对内燃机电站系统的技术要求及试验方法》 G21428《GB/T 21428-2008 往复式内燃机驱动的发电机组 安全性》

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 一、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0的条件下,测取空载特性曲线U0=f(I f)。 3、三相短路实验:在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈0的条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cosφ=1和cosφ=(滞后)的条件下,测取外特性曲线U=f(I)。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I)。 四、实验方法 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻 被试电机为三相凸极式同步电机,选用DJ18。

图5-1 三相同步发电机实验接线图 4、空载实验 (1) 按图5-1接线,校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y形接法(U N=220V)。R f2用R4组件上的90Ω与90Ω串联加R6上90Ω与90Ω并联共225Ω阻值,R st用R2上的180Ω电阻值,R f1用R1上的1800Ω电阻值。开关S1,S2选用D51挂箱。 (2) 调节D52上的24V励磁电源串接的R f2至最大位置。调节MG的电枢串联电阻R st至最大值,MG的励磁调节电阻R f1至最小值。开关S1、S2均断开。将控制屏左侧调压器旋钮向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,作好实验开机准备。 (3) 接通控制屏上的电源总开关,按下“启动”按钮,接通励磁电源开关,看到电流表A2有励磁电流指示后,再接通控制屏上的电枢电源开关,起动MG。MG起动运行正常后, 把R st调至最小,调节R f1使MG转速达到同步发电机的额定转速1500 r/min并保持恒定。 (4) 接通GS励磁电源,调节GS励磁电流(必须单方向调节),使I f单方向递增至GS输出电压U0≈为止。 (5) 单方向减小GS励磁电流,使I f单方向减至零值为止,读取励磁电流I f和相应的空载电压U0。 (6) 共取数据7~9组并记录于表5-2中。 在用实验方法测定同步发电机的空载特性时,由于转子磁路中剩磁情况的不同,当单方向改变励磁电流I f从零到某一最大值,再反过来由此最大值减小到零时将得到上升和下降的二条不同曲线,如图5-2。二条曲线的出现,反映铁磁材料中的磁滞现象。测定参数时使用下降曲线,其最高点取U0≈,如剩磁电压较高,可延伸曲线的直线部分使与横轴相交,则交点的横座标绝对值Δi f0应作为校正量,在所有试验测得的励磁电流数据上加上此值,即得通过原点之校正曲线,如图5-3所示。 注意事项: (1)转速要保持恒定。 (2)在额定电压附近测量点相应多些。 图5-2上升和下降二条空载特性图5-3校正过的下降空载特性 5、三相短路试验 (1) 调节GS的励磁电源串接的R f2至最大值。调节电机转速为额定转速1500r/min,且保持恒定。 (2) 接通GS的24V励磁电源,调节R f2使GS输出的三相线电压(即三只电压表V的读数)最小,然后把GS输出三端点短接,即把三只电流表输出端短接。 (3) 调节GS的励磁电流I f使其定子电流I K=,读取GS的励磁电流值I f和相应的定子电流值I K。 (4) 减小GS的励磁电流使定子电流减小,直至励磁电流为零,读取励磁电流I f和相应的定子电流I K。 (5) 共取数据5~6组并记录于表5-3中。

发电机交接验收试验项目

发电机交接验收试验项目及规定 第2.0.1条容量6000kW及以上的同步发电机及调相机的试验项目,应包括下列内容: 一、测量定子绕组的绝缘电阻和吸收比; 二、测量定子绕组的直流电阻; 三、定子绕组直流耐压试验和泄漏电流测量; 四、定子绕组交流耐压试验; 五、测量转子绕组的绝缘电阻; 六、测量转子绕组的直流电阻; 七、转子绕组交流耐压试验; 八、测量发电机或励磁机的励磁回路连同所连接设备的绝缘电阻,不包括发电机转子和励磁机电枢; 九、发电机或励磁机的励磁回路连同所连接设备的交流耐压试验,不包括发电机转子和励磁机电枢; 十、定子铁芯试验; 十一、测量发电机、励磁机的绝缘轴承和转子进水支座的绝缘电阻; 十二、测量埋入式测温计的绝缘电阻并校验温度误差; 十三、测量灭磁电阻器、自同期电阻器的直流电阻; 十四、测量超瞬态电抗和负序电抗; 十五、测量转子绕组的交流阻抗和功率损耗; 十六、测录三相短路特性曲线; 十七、测录空载特性曲线; 十八、测量发电机定子开路时的灭磁时间常数; 十九、测量发电机自动灭磁装置分闸后的定子残压; 二十、测量相序; 二十一、测量轴电压。 第2.0.2条测量定子绕组的绝缘电阻和吸收比,应符合下列规定: 一、各相绝缘电阻的不平衡系数不应大于2; 二、吸收比:对沥青浸胶及烘卷云母绝缘不应小于1.3;对环氧粉云母绝缘不应小于1.6。注:①进行交流耐压试验前,电机绕组的绝缘应满足第一、二款的要求。②水内冷电机应在消除剩水影响的情况下进行。③交流耐压试验合格的电机,当其绝缘电阻在接近运行温度、环氧粉云母绝缘的电机则在常温下不低于其额定电压每千伏1MΩ时,可不经干燥投入运行。但在投运前不应再拆开端盖进行内部作业。④对水冷电机,应测量汇水管及引水管的绝缘电阻。阻值应符合制造厂的规定。 第2.0.3条测量定子绕组的直流电阻,应符合下列规定: 一、直流电阻应在冷状态下测量,测量时绕组表面温度与周围空气温度之差应在±3℃的范围内; 二、各相或各分支绕组的直流电阻,在校正了由于引线长度不同而引起的误差后,相互间差别不应超过其最小值的2%;与产品出厂时测得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 第2.0.4条定子绕组直流耐压试验和泄漏电流测量,应符合下列规定: 一、试验电压为电机额定电压的3倍。

三相同步发电机实验

1.同步发电机运行实验指导书2.发电机励磁调节装置实验指导书3.静态稳定实验(提纲,供参考) 4.发电机保护实验提示 5. 广西大学电气工程学院

同步发电机运行实验指导书 目录 一、实验目的 二、实验装置及接线 三、实验内容 实验一发电机组的起动和同步电抗Xd测定 实验二发电机同期并网实验 实验三发电机的正常运行 实验四发电机的特殊运行方式 实验五发电机的起励实验 四、实验报告 五、参考资料 六、附录 1.不饱和Xd的求法 2.用简化矢量图求Eq和δ 3.同期表及同期电压矢量分析

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以4KW直流电动机与同轴的1.5KW同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和自动控制屏(微机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-42,凸极机 额定功率4KW 额定电压DC220V 额定电流22A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.81A 同步发电机 型号STC-1.5 额定功率 1.5KW 额定电压AC400V(星接) 额定电流 2.7A 额定功率因数0.8 空载励磁电流1A 额定励磁电流2A 同步发电机接线如图电-01所示。发电机通过接触器1KM、转换开关1QS、

同步发电机运行与控制实验报告

广西大学电气工程学院 发电机运行实验报告 同步发电机运行与控制 专业班级: 姓名: 学号: 实验地点:

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以7.5KW直流电动机与同轴的5KW 同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和计算机监视控制屏(计算机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-52,凸极机 额定功率7.5kW 额定电压DC220V 额定电流41A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.98A(5、6、7号机组为0.5A) 同步发电机 型号T2-54-55 额定功率5kW 额定电压AC400V(星接) 额定电流9.08A 额定功率因数0.8 空载励磁电流 2.9A 额定励磁电流5A 直流电动机-同步发电机组接线如图一所示。发电机通过空气开关2QS和接触器2KM 可与系统并列,发电机机端装有电压互感器1TV和电流互感器1TA,供测量、同期用,系统侧装有单相电压互感器2TV作同期用,两侧电压通过转换开关6SA接入同期表S (MZ-10)。 发电机励磁电源可以取自380V电网(他励方式),也可以取自机端(自励方式),通

同步电机实验报告

三相同步发电机的运行特性 学院: 电气信息学院 专业: 电气工程及其自动化 班级: 2011级 姓名:

一、实验目的 1.掌握三相同步发电机的空载、短路及零功率因素负载特性的实验求取法 2.学会用试验方法求取三相同步发电机对称运行时的稳态参数 二、实验参数 实验在电力系统监控实验室进行,每套实验装置以直流电动机作为原动机,带动同步电动机转动,配置常规仪表进行实验参数进行测量,本次同步发电机运行试验,仅采用常规控制方式。 同步发电机的参数如下 额定功率2kw 额定电压400v 额定电流 3.6A 额定功率因素0.8 接法Y 三、实验原理 工作原理 ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 ◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 ◆切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。

◆交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 ◆感应电势有效值:每相感应电势的有效值为 ◆感应电势频率:感应电势的频率决定于同步电机的转速n 和极对数p ,即 ◆交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: ◆要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还

容量为6000kW及以上的同步发电机的试验项目周期和要求

容量为6000kW及以上的同步发电机的试验项目周期和要求 序 号 项目周期要求说明 1 定子绕组的 绝缘电阻、 吸收比或极 化指数1)1年或小 修时 2)大修 前、后 1)绝缘电阻值自行规定。若在 相近试验条件(温度、湿度) 下,绝缘电阻值降低到历年正 常值的1/3以下时,应查明原 因 2)各相或各分支绝缘电阻值的 差 值不应大于最小值的100% 3)吸收比或极化指数:沥青浸胶 及 烘卷云母绝缘吸收比不应小于 1.3 或极化指数不应小于1.5;环氧 粉 云母绝缘吸收比不应小于1.6或 极化指数不应小于2.0;水内冷 定 子绕组自行规定 1)额定电压为1000V以 上者,采用2500V兆欧 表,量程一般不低于 10000MΩ 2)水内冷定子绕组用专 用兆欧表 3)200MW及以上机组推 荐测量极化指数 2 定子绕组的 直流电阻1)大修时 2)出口短路 后 汽轮发电机各相或各分支的 直流电阻值,在校正了由于引 线长度不同而引起的误差后 相互间差别以及与初次(出厂 或交接时)测量值比较,相差 不得大于最小值的 1.5%(水 轮发电机为1%)。超出要求 者,应查明原因 1)在冷态下测量,绕 组表面温度与周围空气 温度之差不应大于± 3℃ 2)汽轮发电机相间 (或分支间)差别及其历 年的相对变化大于1% 时,应引起注意 1

3 定子绕组泄 漏电流和直 流耐压试验1)1年或小 修时 2)大修前、 后3)更换 绕组后 1)试验电压如下: 全部更换定子绕组并修 3.0U n 好后 局部更换定子绕组并修 2.5U n 好后 大修前: 1.运行20年及以下者: 2.5U n 2.运行20年以上与运行20年 以上与架空线直接连接者: 2.5Un 3.运行20年以上不与架空线 直接连接者: (2.0~2.5Un) 小修时和大修后 2.0U n 2)在规定试验电压下,各相泄 漏电流的差别不应大于最小 1)应在停机后清除污秽 前热状态下进行。处于 备用状态时,可在冷态 下进行。氢冷发电机应 在充氢后氢纯度为96% 以上或排氢后含氢量在 3%以下时进行,严禁在 置换过程中进行试验 2)试验电压按每级 0.5U n分阶段升高,每阶 段停留1min 3)不符合2)、3)要求之 一者,应尽可能找出原 因并消除,但并非不能 运行 4)泄漏电流随电压不成 比例显著增长时,应注 意分析 5)试验时,微安表应接 在高压侧,并对出线套 管表面加以屏蔽。水内 冷发电机汇水管有绝缘 者,应采用低压屏蔽法 接线;汇水管直接接地 者,应在不通水和引水 管吹净条件下进行试 验。冷却水质应透明纯 净,无机械混杂物,导 电率在水温20℃时要 2

虚拟同步机多机并联稳定控制及其惯量匹配方法

2017年5月电工技术学报Vol.32 No. 10 第32卷第10期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY May 2017 虚拟同步机多机并联稳定控制及其 惯量匹配方法 张波1颜湘武1黄毅斌1刘正男2肖湘宁3 (1. 华北电力大学河北省分布式储能与微网重点实验室保定 071003 2. 国网涞源县供电公司保定 074300 3. 华北电力大学电气与电子工程学院北京 102206) 摘要虚拟同步发电机(VSG)技术作为一种分布式电源主动参与电网频率电压调整的新型控制方式,得到了越来越多的关注。通过对同步发电机外特性的模拟,使得微电源逆变器具有同步发电机相同的转动惯量、一次调频、无功调压等特性。提出简化的VSG虚拟惯量控制器,避免了锁相环(PLL)误差引起的频率指令波动对系统稳定性的影响,建立包含中间控制环节状态变量的VSG并联系统小信号模型,并针对主要控制参数对系统稳定性及动态响应的影响进行了分析,最后利用等效同步发电机原理,提出了虚拟同步发电机多机并联运行的虚拟惯量匹配方法,仿真和实验结果验证了所提方法的正确性和有效性。 关键词:虚拟同步发电机并联控制小信号建模参数分析惯量匹配 中图分类号:TM46 Stability Control and Inertia Matching Method of Multi-Parallel Virtual Synchronous Generators Zhang Bo1 Yan Xiangwu1 Huang Yibin1 Liu Zhengnan2 Xiao Xiangning3 (1. Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province North China Electric Power University Baoding 071003 China 2. State Grid Laiyuan Electric Power Company Baoding 074300 China 3. School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China) Abstract Virtual synchronous generator technology has attracted more and more attention. As a new control method, it can allow the distributed generation actively taking part in the frequency and voltage regulation of the grid. By mimicking the characteristics of the synchronous generator, the micro power source inverters have the same characteristics of the synchronous generator, such as the inertia, primary frequency modulation, reactive power and voltage modulation etc. Simple VSG virtual inertia controller is proposed to avoid the impacts of frequency command fluctuation on the stability of the system caused by the phase-locked loop (PLL) error. The small signal model of parallel VSGs including the state variables of intermediate control link is established. And then the influences of the main control parameters on system stability and dynamic response are analyzed. At last, based on the principle of equivalent synchronous generator, virtual inertia matching method of the parallel virtual synchronous generators is proposed. Simulation and experimental results verify the proposed method. 国家高技术研究发展计划(863计划)(2015AA050603)、河北省自然科学基金(E2015502046)和中央高校基本科研业务专项基金(虚拟同步发电机多机并联控制技术研究及其性能评价)资助项目。 收稿日期 2016-11-30 改稿日期 2017-01-25

实验三三相同步电动机

实验报告 实验名称:三相同步电动机 小组成员:许世飞许晨光杨鹏飞王凯征 一.实验目的 1.掌握三相同步电动机的异步起动方法。 2.测取三相同步电动机的V形曲线。 3.测取三相同步电动机的工作特性。 二.预习要点 1.三相同步电动机异步起动的原理及操作步骤。 2.三相同步电动机的V形曲线是怎样的怎样作为无功发电机(调相机)3.三相同步电动机的工作特性怎样怎样测取 三.实验项目 1.三相同步电动机的异步起动。 ≈0时的V形曲线。 2.测取三相同步电动机输出功率P 2 3.测取三相同步电动机输出功率P =倍额定功率时的V 形曲线。 2 4.测取三相同步电动机的工作特性。 四.实验设备及仪器

1.实验台主控制屏; 2.电机导轨及转速测量; 3.功率、功率因数表(NMCL-001); 4.同步电机励磁电源(含在主控制屏左下方,NMEL-19); 5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18); 6.三相可调电阻器900Ω(NMEL-03); 7.三相可调电阻器90Ω(NMEL-04); 8.旋转指示灯及开关板(NMEL-05A); 9.三相同步电机M08; 10.直流并励电动机M03。 五.实验方法 被试电机为凸极式三相同步电动机M08。 1.三相同步电动机的异步起动 实验线路图如图3-1。 实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。 R的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。 开关S选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。 a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约左右,然后将开关S 闭合于可变电阻器R (图示左端)。 b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。 c .当转速接近同步转速时,把开关S 迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程完毕,接通功率表、功率因数表、交流电流表。 2.测取三相同步电动机输出功率P 2≈0时的V 形曲线 a .按1方法异步起动同步电动机。使同步电动机输出功率P 2≈0。 b .调节同步电动机的励磁电流I f 并使I f 增加,这时同步电动机的定子三相电流亦随之增加,直至电流达同步电动机的额定值,记录定子三相电流和相应的励磁电流、输入功率。 c .调节同步电动机的励磁电流I f 使I f 使逐渐减小,这时定子三相电流亦随之减小,直至电流过最小值,记录这时的相应数据, 图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)图3-1 三相同步电动机接线图(MCL-11、MEL-11B )

同步发电机励磁控制实验

课程名称:电力系统分析综合实验指导老师:成绩:__________________ 实验名称:同步发电机励磁控制实验实验类型:________________同组学生姓名:__________ 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务; 2.了解自并励励磁方式和它励励磁方式的特点; 3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动; 4.了解微机励磁调节器的基本控制方式; 5.掌握励磁调节器的基本使用方法; 6.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响。 二、原理与说明 同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图如图l所示。可供选择的励磁方式有两种:自并励和它励。当三相全控

桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。 微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。 发电机正常运行时,三相全控桥处于整流状态,控制角α小于90?;当正常停机或事故停机时,调节器使控制角α大于90?,实现逆变灭磁。 三、实验项目和方法 (一) 不同α角(控制角)对应的励磁电压波形观测 (1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄; (2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器 面板“它励”指示灯亮; (3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面 板上的“恒α”指示灯亮; (4)合上励磁开关,合上原动机开关; (5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮 即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。 注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需

同步发电机励磁控制实验..

实验报告 课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________ 实验名称: 同步发电机励磁控制实验 实验类型:________________同组学生姓名:__________ 一、实验目的 1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务; 2.了解自并励励磁方式和它励励磁方式的特点; 3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动; 4.了解微机励磁调节器的基本控制方式; 5.掌握励磁调节器的基本使用方法; 6.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响。 二、原理与说明 同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。 图1 励磁控制系统示意图 实验用的励磁控制系统示意图如图l 所示。可供选择的励磁方式有两种:自并励和它励。当三相全控 专业: 电气工程及其自动化 姓名: 学号: 日期: 地点:教2-105

桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。而当交流励磁电源取自380V市电时,构成它励励磁系统。两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。 微机励磁调节器的控制方式有四种:恒U F (保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。其中,恒α方式是一种开环控制方式,只限于它励方式下使用。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。 发电机正常运行时,三相全控桥处于整流状态,控制角α小于90?;当正常停机或事故停机时,调节器使控制角α大于90?,实现逆变灭磁。 三、实验项目和方法 (一) 不同α角(控制角)对应的励磁电压波形观测 (1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄; (2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器 面板“它励”指示灯亮; (3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面 板上的“恒α”指示灯亮; (4)合上励磁开关,合上原动机开关; (5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮 即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。 注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需

容量为6000kW及以上的同步发电机的试验项目、周期和要求

https://www.wendangku.net/doc/437853819.html, 容量为6000kW及以上的同步发电机的试验项目、 周期和要求 容量为6000kW及以上的同步发电机的试验项目、周期和要求见表 1,6000kW以下者可参照执行。 表 1 容量为6000kW及以上的同步发电机的试验项目、周期和要求 序 号 项目周期要求说明 1 定子 绕组的绝 缘电阻、吸 收比或极 化指数 1)1年 或小修时 2)大 修前、后 1)绝缘电阻值自行规定。若在相近试 验条件(温度、湿度)下,绝缘电阻值降低 到历年正常值的1/3以下时,应查明原因 2)各相或各分支绝缘电阻值的差值 不应大于最小值的100% 3)吸收比或极化指数:沥青浸胶及 烘卷云母绝缘吸收比不应小于1.3或极 化指数不应小于1.5;环氧粉云母绝缘吸 收比不应小于1.6或极化指数不应小于 2.0;水内冷定子绕组自行规定 1)额定电压 为1000V以上者, 采用2500V兆欧 表,量程一般不 低于10000MΩ 2)水内冷定 子绕组用专用兆 欧表 3)200MW及 以上机组推荐测 量极化指数 2 定子 绕组的直 流电阻 1)大 修时 2)出 口短路后 汽轮发电机各相或各分支的直流电 阻值,在校正了由于引线长度不同而引 起的误差后相互间差别以及与初次(出厂 或交接时)测量值比较,相差不得大于最 小值的1.5%(水轮发电机为1%)。超出要 求者,应查明原因 1)在冷态下 测量,绕组表面 温度与周围空气 温度之差不应大 于±3℃ 2)汽轮发电 机相间(或分支 间)差别及其历年 的相对变化大于

https://www.wendangku.net/doc/437853819.html, 时,应引起 注意 3 定子 绕组泄漏 电流和直 流耐压试 验 1)1年 或小修时 2)大 修前、后 3)更 换绕组后 1)试验电压如下: 1)应在停机 后清除污秽前热 状态下进行。处 于备用状态时, 可在冷态下进 行。氢冷发电机 应在充氢后氢纯 度为96%以上或 排氢后含氢量在 3%以下时进行, 严禁在置换过程 中进行试验 2)试验电压 按每级0.5Un分 阶段升高,每阶 段停留1min 3)不符合2)、 3)要求之一者,应 尽可能找出原因 并消除,但并非 不能运行 4)泄漏电流 随电压不成比例 显著增长时,应 注意分析 全部更换定子绕组 并修好后 3.0Un 局部更换定子绕组 并修好后 2.5Un 大 修前 运行20年 及以下者 2.5Un 运行20年 以上与架空线 直接连接者 2.5Un 运行20年 以上不与架空 线直接连接者 (2.0~ 2.5)Un 小修时和大修后 2.0Un 2)在规定试验电压下,各相泄漏电 流的差别不应大于最小值的100%;最大 泄漏电流在20μA以下者,相间差值与历 次试验结果比较,不应有显著的变化 3)泄漏电流不随时间的延长而增大

三相同步发电机的并联运行实验报告

实验报告四 实验名称:三相同步发电机的并联运行实验 实验目的:1.掌握三相同步发电机投入电网并联运行的条件与操作方法。 2.掌握三相同步发电机并联运行时有功功率与无功功率的调节。 实验项目:1.用准确同步法将三相同步发电机投入电网并联运行。 2.三相同步发电机与电网并联运行时有功功率的调节。 3.三相同步发电机与电网并联运行时无功功率调节。 →测取当输出功率等于零时三相同步发电机的V形曲线。(一)填写实验设备表

(二)三相同步发电机与电网并联运行时有功功率的调节 填写实验数据表格 表4-1 U=220V (Y ) f f0I =I = 0.85 A (三)三相同步发电机与电网并联运行时无功功率的调节 填写实验数据表格 表4-2 n=1500r/min U=220V 2P 0≈W

(四)问题讨论 1.三相同步发电机投入电网并联运行有哪些条件?不满足这些条件将产生什么后果? 答:1.发电机的频率和电网的频率相同。 2.发电机和电网的电压大小相等,相位相同。3.发电机和电网的相序相同。 不满足这些条件将产生:1.频率不同,引起系统功率下降,进而导致系统解列。2.电压不同,引起系统损耗加大。相位不同不但会使有功和无功的冲击外,还会有一个电磁力矩冲击,会导致传动部分冲击。 3.相序不同.将会发生短路,造成人身伤亡和损坏设备事故。 2. 三相同步发电机与电网并联的方法有哪些? 答:1.直接并网,2.有电动机带动至电网电压和频率时并网。3.发电机先做电动机,再转向发电机状态。 3. 实验的体会和建议 答:熟悉了三相同步发电机并网运行的条件与操作方法,知道了如何对三相同步发电机并联运行时有功功率与无功功率的调节,明白了三相同步发电机投入电网并联条件的重要性。

同步发电机试验项目

同步发电机 交接试验项目,应包括下列内容: 1 测量定子绕组的绝缘电阻和吸收比或极化指数; 2测量定子绕组的直流电阻; 3定子绕组直流耐压试验和泄漏电流测量; 4 定子绕组交流耐压试验; 5 测量转子绕组的绝缘电阻; 6 测量转子绕组的直流电阻; 7转子绕组交流耐压试验; 8测量发电机或励磁机的励磁回路连同所连接设备的绝缘电阻,不包括发电机转子和励磁机电枢; 9发电机或励磁机的励磁回路连同所连接设备的交流耐压试验,不包括发电机转子和励磁机电枢; 10测量发电机、励磁机的绝缘轴承和转子进水支座的绝缘电阻; 11埋入式测温计的检查; 12测量灭磁电阻器、自同步电阻器的直流电阻; 13测量转子绕组的交流阻抗和功率损耗(无刷励磁机组,无测量条件时,可以不测量); 14测录三相短路特性曲线; 15测录空载特性曲线; 16测量发电机定子开路时的灭磁时间常数和转子过电压倍

数;

17测量发电机自动灭磁装置分闸后的定子残压; 18 测量相序; 19测量轴电压; 20定子绕组端部固有振动频率测试及模态分析; 21定子绕组端部现包绝缘施加直流电压测量。 一、测量定子绕组的绝缘电阻和吸收比或极化指数,应符合下列规定: 1各相绝缘电阻的不平衡系数不应大于 2; 2吸收比:对沥青浸胶及烘卷云母绝缘不应小于1.3;对环氧粉云母绝缘不应小于1.6。对于容量200MW及以上机组应测量极化指数,极化指数不应小于2.0。 二、测量定子绕组的直流电阻,应符合下列规定: 1直流电阻应在冷状态下测量,测量时绕组表面温度与周围空气温度之差应在±3℃的范围内; 2各相或各分支绕组的直流电阻,在校正了由于引线长度不同而引起的误差后,相互间差别不应超过其最小值的2%;与产品出厂时测得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 三、定子绕组直流耐压试验和泄漏电流测量,应符合下列规定: 1试验电压为电机额定电压的3 倍;

相关文档
相关文档 最新文档