文档库 最新最全的文档下载
当前位置:文档库 › 回火脆性 的证明与原因以及防治措施

回火脆性 的证明与原因以及防治措施

回火脆性 的证明与原因以及防治措施
回火脆性 的证明与原因以及防治措施

第二类回火脆性的证明、原因及防治措施

摘要:把第二类回火脆性的定义、特征及其评定方法作为一个依据,设计了一个实验方案。通过四个步骤:淬火、回火(快冷、缓冷)、磨光及冲击试验、结果分析来证明某钢材具有第二类回火脆性。分析第二类回火脆性的原因及影响因素,并针对各原因和影响因素分析第二类回火脆性的防治措施。

关键词:第二类回火脆性、缓冷、冲击韧性、原因、影响因素、防治措施

一.绪论

淬火钢在回火过程中(回火后缓冷)出现脆性增大,韧性降低的现象,这即为回火脆性。在较低温度(250℃~400℃)出现的回火脆性称为第一类回火脆性;在较高温度(450℃~650℃)出现的回火脆性称为第二类回火脆性,也称为高温回火脆性。

第一类、第二类回火脆性的叫法来自于苏联教科书,西方国家分别称其为回火马氏体脆性(TME )、回火脆性(TE )。第一类回火脆性是产生以后无法消除的,而第二类回火脆性却是可逆的。产生回火脆性的试样只要重新在高于600℃温度短时间加热并快冷,即可消除。我们本次探究的即为第二类回火脆性。其主要在合金结构钢(含Cr 、Ni 、Mn 、Si 的调质钢)中出现。

有实验表明,钢材在出现第二类回火脆性并不伴随着抗拉强度和塑形的改变,对于许多物理性能(如矫顽磁力、密度、电阻等)也不发生影响,X 射线晶体分析,也没有发现点阵中有差异。但有如下四个明显的特征:

1).冲击吸收功—回火温度曲线上出现马鞍形,或冲击韧度降低;

2).韧脆转变温度升高;

3).断口通常是沿原奥氏体晶界的沿晶断口;

4).晶粒边界上有杂质元素和某些合金元素的偏聚。

前两点可以说是产生第二类回火脆性的性能判据,后两点是第二类回火脆性的断口形态和成分判据。

为了判定某种钢材是否具有第二类回火脆性,除了要知道其定义和特征外,还要知道第二类回火脆性的评定方法。钢的第二类回火脆性倾向大小的表示方法有很多种,最初都采用回火时快冷与缓冷后的室温冲击试验的冲击韧度的比值表示,或者以韧性状态(回火快冷)与脆化状态(在出现回火脆性的温度比较长时间保温)的室温冲击韧度的比值表示,即

)

()(脆性状态或回火缓冷韧性状态或回火快冷k k a a =? 当△值大于1时,表明钢有第二类回火脆性倾向。△值称为钢的第二类回火脆性敏感系数。这个系数越大,说明钢的回火脆性倾向越大。

本次设计的实验就采用这种评定方法。

二.实验方案

根据以上所述的第二类回火脆性的特征及评定方法,可设置以下的实验方案以证明某种钢材具有第二类回火脆性。

1.淬火

首先取该钢材制成的的带缺口的冲击试样10个,要求为长方体,且端面为正方形。根

据其3Ac 线或1Ac 线确定其加热温度。对碳钢来说,根据实践经验,其淬火加热温度,对亚共析钢为3Ac +(30~50℃),共析钢和过共析钢为1Ac +(30~50℃)。而对低合金钢来说,淬火加热温度应选定为3Ac (或1Ac )+(50~100℃)。故本次实验,我们取3Ac (或1Ac )+50℃.

再确定其淬火保温时间。保温时间与工件的尺寸有关。由于本次实验采用试样为长方体,且端面为正方形,应测出正方形边长,并查下面的系数表,得出保温时间t 。

表1. 实验室碳素钢及低合金钢加热时间的确定

最后是冷却,本次实验采用水冷。水冷冷却速度快于临界冷却速度,得到马氏体组织。

2.回火(快冷、缓冷)

将淬火后的试样分成五组,分别于450℃、500℃、550℃、600℃、650℃高温回火,保温3个小时。保温时间的确定参考镍铬钢高温回火的冲击韧性的变化。加热后每组的两个试样分别采用油冷和空冷。因为一般情况下回火后在空气中冷却,但具有第二类回火脆性的零件回火后应在油中冷却。即若一种钢材有第二类回火脆性,在油冷(快冷)情况下不会出现第二类回火脆性倾向。

3.磨光、冲击试验

将每个试样的四个表面均磨光 (注意不能混淆),然后做冲击试验,得到其冲击值。冲击试验采用夏氏冲击试验机,实验的试样应摆放准确,防止过大误差发生。得出十个数据后,绘制不同回火温度冲击韧性变化曲线(各点之间光滑连接)。

4.结果分析

由两条曲线的走向可以分析出该材料是否具有第二类回火脆性。若淬火条件完全相同,相同的试样在不同温度回火,随着回火温度升高,硬度会降低,冲击韧性随之升高。所以若一种材料具有第二类回火脆性,在其中一段温度区间内,曲线应呈下凹的形状。而设置油冷(快冷)和空冷(缓冷),则是为了相互对照。因为回火后快冷可防止第二类回火脆性的发生。

三.第二类回火脆性的原因及防治措施

含有铬、锰、磷、氮等元素的淬火钢在450℃~550℃的范围内进行长时间回火,如果回火后在该温度范围内缓慢冷却,将会使其脆性增加。其原因通常认为是缓慢冷却时,钢中的某些元素元素如镍、铬以及一些杂志如磷、硅等富集在原奥氏体晶界而引起脆化,碳化物、氧化物便沿着晶界析出,使钢的冲击韧性下降。Sb 、Ni 、Cr 等元素在晶界偏聚越大,回火温度越高,第二类回火脆性越严重。

为了得出第二类回火脆性的防治措施,还必须了解第二类回火脆性的影响因素。第二类回火脆性受很多因素影响,其可以分为以下三个方面,即钢的化学成分、热处理工艺和组织状态。

1.钢的化学成分

成分是影响钢的第二类回火脆性的最根本的因素。例如碳钢,不含合金元素,便没有这类脆性。根据钢中成分对第二类回火脆性的作用,大体可以把它们分成三类:

⑴包括铬、镍、锰、硅、碳等,它们都有不同程度的促进第二类回火脆性的作用。当单独加入时,其作用大小按锰、铬、镍、硅、碳的顺序递减。但这类元素促进脆性的作用必须有磷、锡、锑、砷等杂质存在才能表现出来。且当两种或两种以上的这类元素同时加入时,其促进脆性的能力会大于单独加入时两者的作用之和。

⑵包括磷、硫、锡、锑、砷、硼等杂质。它们也具有促进第二类回火脆性的作用,但这类元素只有与⑴类元素共存时才能引起第二类回火脆性。所以碳钢中虽含有以上某些杂质,却不存在第二类回火脆性。

⑶包括钨、钼、钒、钛等,对第二类回火脆性都有抑制作用,其中以钼的作用最为显著,钨次之。

2.热处理工艺

其原因可以概括如下:①若在回火脆化温度范围内回火,或在更高的温度回火并慢冷通过此温度区,均会导致第二类回火脆性。当然,不同的钢,这一温度范围有所不同。②回火后的冷却速度对出现回火脆性的情况有很大影响。所有的研究都证实,即便是在脆化温度区内回火,如果保温时间很短或随后快冷也能获得较高的韧性和较低的韧脆转化温度。③脆化后的钢可用脱脆处理加以改善。

3.组织状态

这里主要指的是回火前的组织状态。不论刚才具有什么原始组织(珠光体、贝氏体、马氏体),经脆化处理后,都出现回火脆性。对镍铬钢而言,马氏体回火脆性最显著,贝氏体次之,珠光体最轻。

原奥氏体晶粒大小对回火脆性也有明显影响。一般来说,原奥氏体晶粒越粗大,钢的脆化程度也越大。其原因可能是粗大的奥氏体晶粒,单位体积内晶界面积减小,因而增大了引起回火脆性的碳化物和杂质元素在晶界上的浓度,从而促进了晶间断裂。

防治措施:

防治第二类回火脆性的关键归根到底是如何消除或减少杂质元素向晶界上偏聚。针对以上讲到的原因和影响因素,有一些防治措施可以用来消除或减轻第二类回火脆性。

首先是针对第二类回火脆性产生的相关元素也就是化学成分,有以下几种方法:

1.减少钢中的杂质元素含量

钢的回火脆性与钢的纯净度有很大关系,尤其是磷、锡等元素是增加回火脆性最显著的元素。有实验表明,无论是快冷还是缓冷,随着钢中磷含量的增加,冲击韧度都随之降低。因此,降低钢中杂质元素含量、发展高纯钢是提高钢材韧性的重要途径之一。

2.合理设计钢的化学成分

在设计钢的成分时尽可能的控制一些对钢的第二类回火脆性影响较大的元素的配比,使钢的回火脆性不至于过大,如向钢中添加0.2%以上的钼或0.6%~1.5%的钨。

钼和钨在合金结构钢中获得广泛的应用,除了增加钢的淬透性以外,就是为了抑制钢的第二类回火脆性。钢中添加少量的钼即可使回火脆性降低,为了这个目的,一般合金结构钢加钼量为0.2%~0.4%。钨的作用与钼相似,但在含量相等情况下作用低于钼。所以,加钨的数量一般是钼量的3倍以上。但值得一提的是,在有些情况下,钼的含量超过一定值时,反而会使钢的脆性倾向增加。所以不能盲目的加钼。

其次,针对热处理工艺对第二类回火脆性的影响,也有以下一些措施:

1.高温回火后快冷

可以用快速冷却来预防,具有第二类回火脆性倾向的钢材的脆化温度范围以上回火时,快速冷却可以有效的抑制第二类回火脆性。而对于已经产生第二类回火脆性的工件,可重新加热到原来的回火温度,保温一段时间,然后快速冷却(水冷或油冷)即可消除脆性。此亦为第二类回火脆性可逆性的体现。

α+两相区淬火)加低温奥氏体化处理

2.亚温淬火(γ

所谓亚温淬火即亚共析钢的不完全淬火,或称临界区淬火、两相区加热淬火,是指将具有平衡态或非平衡态原始组织的亚共析钢,加热至铁素体+奥氏体双相区的一定温度区间(Ac1-Ac3),保温一定时间后进行淬火的热处理工艺。

近年来发现,结构钢采用亚温淬火对改善钢的韧性、降低韧脆转化温度和抑制第二类回火脆性有明显效果。亚温淬火之所以能对钢的性能产生有效影响,主要是由于以下原因:晶

α+两相区,由于温度较低,加之粒细化和杂质偏聚浓度减小。亚温淬火的加热温度处于γ

钢中尚存在细小弥散分布的难溶碳、氮化物质点对奥氏体晶粒长大的阻碍作用,使此时的奥

α-相界面积比一般热处理时奥氏氏体晶粒十分细小。同时它对铁素体晶粒相间存在,使γ

体晶界面积约大10~50倍。在较大的晶界和相界面积上杂质元素的偏聚浓度自然大大减小。

而在亚温淬火后加低温奥氏体化处理是为了保证材料的强度要求。

3.形变热处理

钢件的高温形变热处理,由于细化了奥氏体晶粒并使晶界呈锯齿状,增大了晶界面积,回火时减轻了碳及氮、磷等杂志对晶界的污染,从而能减轻第二类回火脆性。

4.其他

有一种最简单的减轻第二类回火脆性的方法。即尽量避免在产生第二类回火脆性的温度范围内回火,如必须在该范围内回火,则应尽量缩短回火时间。

最后是针对组织状态的措施。由于组织状态与钢的化学成分、热处理工艺等都有很大的关联性。所以,针对组织状态的防治措施可以说与其他几种影响因素都有关:

1.使原始组织为脆性倾向较小的组织

比如,对镍铬钢而言,马氏体回火脆性最显著,贝氏体次之,珠光体最轻。那么回火前可通过改变钢的成分或热处理工艺使其得到珠光体组织,再进行回火处理。

2.细化奥氏体晶粒

如前所述,钢的第二类回火脆性随着元奥氏体晶粒的增大而提高。因此,细化奥氏体晶粒可以有效的改善钢的第二类回火脆性。具体方法包括以铝脱氧,加入钒、钛等元素,以及降低淬火温度,以获得细小的奥氏体晶粒。

参考文献:

《材料热处理及表面工程》沈承金等中国矿业大学出版社2011

《钢铁热处理500问》王忠诚等化学工业出版社2009

《钢的回火工艺和回火方程》钟士红等机械工业出版社1993

《钢的热处理原理》G..克劳斯谢希文著校李崇谟等译冶金工业出版社1987 《钢的回火译文集》雷廷权等译机械工业出版社

《钢的热处理》胡光立等编著国防工业出版社

《热处理指南上册》日本热处理技术协会编著机械工业出版社

《材料改性实验》史月丽等中国矿业大学

《金属热处理原理》刘云旭机械工业出版社1981

《热处理技术400问解析》李泉华等编著机械工业出版社2002

《钢铁热处理基础》王忠诚编著化学工业出版社2008

焊接与气割作业安全技术

焊接与气割作业安全技术 基本规定 从事焊接作业应满足下列基本规定: (1)凡从事焊接与气割的工作人员,应熟知相关标准及有关安全知识,并经过专业培训考核取得操作证,持证上岗。 (2)从事焊接与气割的工作人员应严格遵守各项规章制度,作业时不应擅离职守,进入岗位应按规定穿戴劳动防护用品。 (3)焊接和气割的场所,应设有消防设施,并保证其处于完好状态。焊工应熟练掌握其使用方法,能够正确使用。 (4)凡有液体压力、气体压力及带电的设备和容器、管道,无可靠安全保障措施禁止焊割。 (5)对贮存过易燃易爆及有毒容器、管道进行焊接与切割时,要将易燃物和有毒气体放尽,用水冲洗干净,打开全部管道窗、孔,保持良好通风,方可进行焊接和切割,容器外要有专人监护,定时轮换休息。密封的容器、管道不应焊割。 (6)禁止在油漆未干的结构和其他物体上进行焊接和切割。禁止在混凝土地面上直接进行切割。 (7)严禁在贮存易燃易爆的液体、气体、车辆、容器等的库区内从事焊割作业。 (8)在距焊接作业点火源10m以内,在高空作业下方和火星所涉及范围内,应彻底清除有机灰尘、木材木屑、棉纱棉布、汽油、油漆等易燃物品。如有不能撤离的易燃物品,应采取可靠的安全措施隔绝火星与易燃物接触。对填有可燃物的隔层,在未拆除前不应施焊。 (9)焊接大件须有人辅助时,动作应协调一致,工件应放平垫稳。 (10)在金属容器内进行工作时应有专人监护,要保证容器内通风良好,并应设置防尘设施。 (11)在潮湿地方、金属容器和箱型结构内作业,焊工应穿干燥的工作服和绝缘胶鞋,身体不应与被焊接件接触,脚下应垫绝缘垫。 (12)在金属容器中进行气焊和气割工作时,焊割炬应在容器外点火调试,并严禁使用漏燃气的焊割炬、管、带,以防止逸出的可燃混合气遇明火爆炸。 (13)严禁将行灯变压器及焊机调压器带入金属容器内。 (14)焊接和气割的工作场所光线应保持充足。工作行灯电压不应超过36V,在金属容器或潮湿地点工作行灯电压不应超过12V。

回火的脆性机理与避免方法

回火脆性的机理与避免方法 摘要:金属脆性断裂过程中,承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力。由于脆性断裂前既无宏观塑性变形,又无其他预兆,并且一旦开裂后,裂纹扩展迅速,造成整体断裂或很大的裂口,有时还产生很多碎片,容易导致严重事故。脆性断裂通常发生于塑性和韧性差的金属或合金中。 本文将从淬火钢回火过程中产生的回火脆性这方面探讨,就如何防止出现回火脆性,从而进一步提高钢的冲击韧性进行讨论。 关键词:回火脆性冲击韧性 一、基本概念 冲击韧性是指金属抵抗冲击载荷作用而不被破坏的能力,是金属材料力学性能的一个重要指标。 淬火钢回火时的冲击韧性并不总是随回火 温度的升高单调增大,有些钢在一定的温度范围 内回火时,其冲击韧性显著下降,这种脆化现象 叫做钢的回火脆性。 钢在250~400℃温度范围内出现的回火脆 性叫第一类回火脆性,也叫低温回火脆性;在 450~650℃温度范围内出现的回火脆性叫做第二 类回火脆性,也叫高温回火脆性。 二、低温回火脆性 1.低温回火脆性的机理 低温回火脆性几乎在所有的工业用钢中都会出现。 低温回火脆性产生的机理:一般认为,低温回火脆性是由于马氏体分解时沿马氏体条或片的界面析出断续的薄壳状碳化物,降低了晶界的断裂强度,使之成为裂纹扩展的路径,因而导致脆性断裂。如果提高回火温度,由于析出的碳化物聚集和球化,改善了脆化界面状况而使钢的韧性又重新恢复或提高。另外也有认为低温回火脆性是韧性相残余奥氏体的转变所引起的。 钢中含有合金元素一般不能抑制低温回火脆性,但Si、Cr、Mn等元素可使脆化温度推向更高温度。例如,ωS i=1.0%~1.5%的钢,产生脆化的温度为300~320℃;而ωS i=1.0%~1.5%、ωC r=1.5%~2.0%的钢,脆化温度可达350~370℃。 2.低温回火脆性防止措施 到目前为止还没有一种有效地消除低温回火脆性的热处理或合金化方法。但根据上面的一些产生机理,可以采取以下措施来防止或减轻低温回火脆性: (1)降低钢中杂质元素的含量; (2)用Al脱氧或加入Nb、V、Ti等合金元素细化奥氏体晶粒; (3)加入Mo、W等可以减轻第一类回火脆性的合金元素;

气割回火处置方案

气割回火处置方案 一、回火原因 回火的实质是:氧乙炔混合气体从割嘴内流出的速度小于混合气体的燃烧速度,造成回火的原因有: (1)皮管太长,接头太多或皮管被重物压住。 (2)割炬连续工作时间过长或割嘴过于靠近钢板,使割嘴温度升高,内部压力增大,影响气体速度,甚至混合气体在割嘴内自燃。 (3)割嘴出口通道被熔渣或杂质堵塞,氧气倒流入乙炔管道。 (4)皮管或割炬内部管道被杂物堵塞,增加了流动阻力。 (5)割嘴的环形孔道间隙太大,当混合气体压力较小时,流速过低也易造成回火。 二、应急措施 (1)气焊如发现火焰突然回缩并听到“嗤嗤”声,就是回火的象征,当发生回火,胶管或回火防止器上喷火,应迅速关闭焊枪上的乙炔气阀和氧气阀,再关上一级氧气阀和乙炔气阀门,然后采取灭火措施。 (2)发现乙炔瓶因漏气着火燃烧时,应立即把乙炔瓶朝安全方向推倒,并用砂或消防灭火器材扑灭火种。 (3)氧气软管着火时,不得折弯软管断气,应迅速关闭氧气阀门,停止供氧,乙炔软管着火时,应先关熄炬火,可采取折弯前面一段软管的办法来将火熄灭。 (4)发现回火,应立即关闭切割氧气阀门,然后关闭乙炔阀门和预热氧阀门,并使割矩充分冷却后,吹尽余灰方可使用。

(5)遇到乙炔瓶着火时,因瓶内是正压不会爆炸,可用干沙或二氧化碳灭火器灭火、也可用湿布灭火,不得用泡沫,四氯化碳灭火机灭火。 三、注意事项 在进行气割时需注意以下几点: (1)气压稳定,不漏气。 (2)压力表、速度计等正常无损。 (3)机体行走平稳,使用轨道时要保证平直和无振动。 (4)割嘴气流畅通,无污损。 (5)割炬的角度和位置准确。 四、操作程序 为了防止气割变形,在气割操作中应遵循下列程序: (1)大型工件的切割,应先从短边开始。 (2)在钢板上切割不同尺寸的工件时,应先割小件,后割大件。 (3)在钢板上切割不同形状的工件时,应先割较复杂的,后割简单的。 (4)窄长条形板的切割,长度两端留出50mm不割,待割完长边后再割断,或者采用多割炬的对称气割的方法。 五、乙炔气瓶使用 (1)使用前对乙炔气瓶的安全状况进行检查,凡是不符合安全要求的乙炔气瓶不应使用。 (2)严格按照有关安全使用规定正确使用乙炔气瓶;乙炔气瓶使用时,必须直立,严禁碰撞、敲击;严禁在瓶体上引弧;发现泄漏应及时处理,严禁在泄漏的情况下使用;乙炔气瓶内的气体严禁用尽,应留存不低于0。

实验一脆性断裂和韧性断裂断口失效分析

实验一脆性断裂和韧性断裂断口失效分析 一、实验目的 了解模具脆性断裂和韧性断裂断口失效分析步骤以及模具脆性断裂和韧性断裂断口的宏观和微观特征。 二、实验内容及步骤 1、模具脆性断裂和韧性断裂宏观断口的观察 (1)操作前的准备工作 a.选定失效模具的待分析部位; b.选定并切割试样、清洗并擦拭干净。 (2)操作步骤 a.用放大镜或低倍显微镜观察脆性断裂和韧性断裂断口; b.记录上述所观察到的脆性断裂和韧性断裂宏观断口形貌。 2、模具脆性断裂和韧性断裂微观断口的观察 (1)操作前的准备工作 a.选定失效模具的待分析部位; b.选定并切割试样、将试样严格清洗干净; (2)操作步骤 a.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到 工作状态; b.用扫描电子显微镜观察脆性断裂和韧性断裂断口 c.记录上述所观察到的脆性断裂和韧性断裂微观断口形貌。 三、实验设备器材 1、放大镜、低倍显微镜、扫描电子显微镜、试样切割机、无水酒精、丙酮 2、脆断失效模具和韧性断裂失效模具各一副。 四、实验注意事项 1、实验前,试样表面要严格请洗; 2、使用显微镜时要细心操作,以免损坏机件。 3、遇故障及时报告指导教师。

实验二模具表面磨损失效分析 一、实验目的 了解模具磨损失效分析步骤以及模具磨损表面的宏观和微观特征。 二、实验内容及步骤 1、模具磨损表面宏观形貌的观察 i.操作前的准备工作 1.选定失效模具的待分析部位; 2.清洗并擦拭干净。 ii.操作步骤 1.用放大镜或低倍显微镜观察模具磨损表面形貌; 2.记录上述所观察到的磨损表面形貌。 2、模具磨损表面微观形貌的观察 i.操作前的准备工作 1.选定失效模具的待分析部位; 2.将试样严格清洗干净; ii.操作步骤 1.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到 工作状态; 2.用扫描电子显微镜观察模具(或40Cr)磨损表面微观形貌; 3.记录上述所观察到的模具(或40Cr)磨损表面微观形貌。 3、磨损失效机理分析 ⅰ根据模具表面磨损失效的宏观断口分析结果,初步判定模具磨损失效的类型和失效机理。 ⅱ根据模具表面磨损失效的微观断口分析结果,准确判定模具磨损失效的类型和失效机理。 三、实验设备器材 1、放大镜、低倍显微镜、扫描电子显微镜、高纯氩气、无水酒精、丙酮 2、磨损失效模具一副或40Cr经表面强化试样。 四、实验注意事项 1、实验前,试样表面要严格请洗; 2、使用显微镜时要细心操作,以免损坏机件。 3、遇故障及时报告指导教师。

回火脆化

回火脆化 回火脆性是淬火钢回火后产生的脆化现象。根据产生脆性的回火温度范围,可分为低温回火脆性和高温回火脆性。 低温回火脆性合金钢淬火得到马氏体组织后,在250~400℃温度范围回火使钢脆化,其韧性一脆性转化温度明显升高。已脆化的钢不能再用低温回火加热的方法消除,故又称为“不可逆回火脆性”。它主要发生在合金结构钢和低合金超高强度钢等钢种。已脆化钢的断口是沿晶断口或是沿晶和准解理混合断口。产生低温回火脆性的原因,普遍认为:(1)与渗碳体在低温回火时以薄片状在原奥氏体晶界析出,造成晶界脆化密切相关。(2)杂质元素磷等在原奥氏体晶界偏聚也是造成低温回火脆性原因之一。含磷低于0.005%的高纯钢并不产生低温回火脆性。磷在火加热时发生奥氏体晶界偏聚,淬火后保留下来。磷在原奥氏体晶界偏聚和渗碳体回火时在原奥氏体晶界析出,这两个因素造成沿晶脆断,促成了低温回火脆性的发生。 钢中合金元素对低温回火脆性产生较大的影响。铬和锰促进杂质元素磷等在奥氏体晶界偏聚,从而促进低温回火脆性,钨和钒基本上没有影响,钼降低低温回火钢的韧性一脆性转化温度,但尚不足以抑制低温回火脆性。硅能推迟回火时渗碳体析出,提高其生成温度,故可提高低温回火脆性发生的温度。 高温回火脆性合金钢淬火得到马氏体组织后,在450~600℃温度范围回火;或在650℃回火后以缓慢冷却速度经过350~600℃;或者在650℃回火后,在350~650℃温度范围长期加热,都使钢产生脆化现象如果已经脆化的钢重新加热到650℃然后快冷,可以恢复韧性,因此又称为“可逆回火脆性”高温回火脆性表现为钢的韧性一脆性转化温度的升高。高温回火脆性。敏感度一般用韧化状态和脆化状态的韧性一脆性转化温度之差(ΔT)来表示。高温回火脆性越严重,钢的断口上沿晶断口比例也越高。 钢中元素对高温回火脆性的作用分成:(1)引发钢的高温回火脆性的杂质元素如磷、锡、锑等。(2)以不同形式、不同程度促进或减缓高温回火脆性的合金元素。有铬、锰、镍、硅等起促进作用,而钼、钨、钛等起延缓作用。碳也起着促进作用。一般碳素钢对高温回火脆性不。敏感,含有铬、锰、镍、硅的二元或多元合金钢则很敏感,其敏感程度依合金元素种类和含量而不同。 回火钢的原始组织对钢的高温回火脆性的敏感程度有显著差别。马氏体高温回火组织对高温回火脆性敏感程度最大,贝氏体高温回火组织次之,珠光体组织最小。 钢的高温回火脆性的本质,普遍认为是磷、锡、锑、砷等杂质元素在原奥氏体晶界偏聚,导致晶界脆化的结果。而锰、镍、铬等合金元素与上述杂质元素在晶界发生共偏聚,促进杂质元素的富集而加剧脆化。而钼则相反,与磷等杂质元素有强的相互作用,可使在晶内产生沉淀相并阻碍磷的晶界偏聚,可减轻高温回火脆

乙炔气割枪回火处理措施

乙炔气割枪回火处理措施 乙炔气作为割枪燃气,在船舶制造修理及钢结构行业应用广泛。乙炔气割枪具有预热速度快、起割容易等优点,尤其方便用于切割生锈的,带有氧化皮或严重污染的金属板和薄板。但另一方面,乙炔属于易燃易爆气体,与氧气或空气混合,遇火源会剧烈燃烧甚至爆炸。而且在一定的温度和压力条件下,乙炔会分解生成碳黑和氢气,反应释放大量热能,会导致爆炸发生。乙炔还能在一定条件下聚合生成链状或环状结构的有机化合物,如在400℃~500℃下,可以特殊性聚合反应生成苯。乙炔聚合时会放热,温度越高,聚合速度越快,热量的积聚会进一步加速聚合,同时发生聚合物分解,最终引起爆炸。 回火是使用乙炔气割枪进行气割作业时最容易发生的事故类型之一,是乙炔气体火焰进入割枪喷嘴内逆向燃烧的现象,特征是火焰突然熄灭,割枪内发出急速的“嘶嘶”声。在使用乙炔气割枪进行切割的过程中,如果操作不当,很可能发生回火事故,轻则损坏设备工具,重则可能发生爆炸,威胁操作人员的生命安全。回火引起的事故存在很大的隐蔽性,往往不容易找出事故发生的确切原因。笔者结合多年来在船舶企业安全管理一线的工作经验,对造成乙炔割枪回火的原因进行分析,并提出回火的预防措施。 一、乙炔割枪回火 回火有逆火和回烧两种形式:逆火是火焰向割嘴孔逆行,并且瞬时自行熄灭,同时伴有爆鸣声,也称爆鸣回火;回烧是火焰向割嘴逆行,并继续向混合室和可燃气体管路燃烧,这种回火可能烧毁割枪、管路,也称倒袭回火。 乙炔回火十分危险,回火进入割枪,可将割枪烧损;回火进入气体软管,可导致软管烧损或爆裂;回火可经燃气分配器串至同一分配器上相连的其他割枪;严重回火可冲击主管回火器,至其破损,燃烧进入主管网,直至对供气端的气瓶产生威胁。 二、割枪回火形成原因 导致乙炔割枪回火的原因主要有以下5种: 1. 割嘴过分接近加热点 如用割嘴清除熔渣等做法,会造成割嘴附近的压力增大,使混合气体难以流出,喷射速度变慢。 2. 割嘴过热,混合气体受热膨胀 如割嘴温度超过400℃,一部分混合气体来不及流出喷嘴,就在割嘴内部燃烧,并发出“啪啪”的爆炸声。 3. 割嘴被金属飞溅熔化物堵塞 枪内气体通道被固体炭质颗粒堵塞,使混合气难心外流,在割枪内燃烧爆炸。 4. 乙炔气压过小 供气压力减小,软管受压、弯折或破损漏气,氧气压过大,氧气容易进入乙炔系统,在熄火的瞬间,往往因氧气或空气进入割枪的乙炔管,引起爆炸。 5. 割枪阀门不严密或其内部结构破坏 造成氧气倒回乙炔管道,形成可燃的混合气体,点火时即发生回火爆炸,这种情况危险性最大。 三、割枪的正确使用方法 1. 使用前检查 一般割枪为射吸式结构,正常使用时,氧气由射吸喷嘴喷出,进入气体混合腔,在射吸作用下吸入乙炔气并与其混合,混合气体经混合管流出。在割枪使用前,需检查供气是否正常、本体是否漏气、喷嘴是否堵塞,特别要对射吸性能进行检查确认。检查射吸性能的方法是,卸下软管,接通氧气,打开氧气阀和乙炔阀,用手指接近乙炔进气口,应感到有明显的

回火工艺基础知识大全

1.回火的定义与目的 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。 钢件在淬火状态下有以下三个主要特征。 (1)组织特征 根据钢件尺寸、加热温度、时间、转变特征及利用的冷却方式,钢件淬火后的组织主要由马氏体或马氏体+残余奧氏体组成,此外,还可能存在一些未溶碳化物。马氏体和残余奥氏体在室温下都处于亚稳定状态,它们都有向铁衆体加渗碳体的稳定状态转化的趋势。 (2)硬度特征 由碳原子引起的点阵畸变通过硬度表示出来,它随过饱和度(即含碳量)的增加而增加。淬火组织硬度、强度高,塑性、韧性低。 (3)应力特征 包括微观应力和宏现应力,前者与碳原子引起的点阵畸变有关,尤其是与髙碳马氏体达到最大值有关,说明淬火时马氏体处于紧张受力状态之中;后者是由于淬火时横截面上形成的温差而产生的,工件表面或心部所处的应力状态是不同的,有拉应力或压应力,在工件内部保持平衡。如不及时消除淬火钢件的内应力,会引起零件的进一步变形乃至开裂。

综上所述,淬火工件虽有髙硬度与髙强度,但跪性大,组织不稳定,且存在较大的淬火内应力,因此必须经过回火处理才能使用。一般来说,回火工艺是钢件淬火后必不可少的后续工艺,它也是热处理过程的最后一道工序,它賦予工件最后所需要的性能。 回火是将淬火钢加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。它的主要目的为: (1)合理地调整钢的硬度和强度,提高钢的韧性,使工件满足使用要求; (2)稳定组织,使工件在长期使用过程中不发生组织转变,从而稳定工件的形状与尺寸; (3) 降低或消除工件的淬火内应力,以减少工件的变形,并防止开裂。 2.淬火钢回火时的组织转变 淬火钢件回火时,按回火温度的髙低和组织转变的特征,可将钢的回火过程分为以下5个阶段。 (1)马氏体中碳原子的偏聚 马氏体是C在α-Fe中的过饱和间隙固溶体,C原子分布在体心立方的扁八面体间隙之中,造成了很大的弹性畸变,因此升高了马氏体的能量,使之处于不稳定的状态。在100℃以下回火时,C、N等间隙原子只能短距离扩散迁移,在晶体内部重新分布形成偏聚状态,以降低弹性应变能。对于板条马氏体,因有大量位错,C原子便偏聚于位错线附近,所以淬火钢在室温附近放置时,碳原子向位错线附近偏聚。对于片状马氏体,C原子则偏聚在一定晶面上,形成薄片状偏聚区。这些偏聚区的含碳量高于马氏体的平均含碳量,为碳化物的析出创造了条件。

回火防止器工作原理及使用注意事项(正式)

编订:__________________ 单位:__________________ 时间:__________________ 回火防止器工作原理及使用注意事项(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2110-26 回火防止器工作原理及使用注意事 项(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 在气焊或气割过程中,有时会发生气体火焰进人喷嘴内逆向燃烧的现象,称为回火。回火时一旦逆向燃烧的火焰进人乙炔发生器或乙炔瓶内,就会发生燃烧爆炸事故。回火防止器的作用是当焊炬或割炬发生回火时,可防止火焰倒流人乙炔发生器或乙炔瓶内,或阻止火焰在乙炔管道内燃烧,从而保障乙炔发生器或乙炔瓶等的安全。所以乙炔发生器或乙炔瓶必须安装回火防止器。 当焊炬或割炬的焊嘴或割嘴被堵塞,焊嘴或割嘴过热使气体压力升高,增大混合气流动阻力,乙炔气工作压力过低或橡皮管堵塞,焊炬、割炬失修等使混合气流出速度降低,火焰燃烧速度大于混合气流出速度,氧气倒流等均可导致回火。

回火防止器按其工作原理分为水封式和干式两种;按通过乙炔压力分为低压式(小于0.01MPa)和中压式(0.01~0.05MPa)两种。目前国内常用的与乙炔瓶配套的干式回火防止器,主要有中压防爆膜式和中压冶金式两种。回火防止器使用时必须严格按照下列要求:l)安装在乙炔发生器上的回火防止器,其流量、压力必须与乙炔发生器发气量、乙炔压力相适应。 2)使用中压冶金片干式回火防止器或中压多孔陶瓷式回火防止器,要求乙炔含杂质和水分少,乙炔站应安装干燥器和净化器。在使用中,当发现乙炔流量减少、阻力增加时,应清洗粉末冶金片或多孔陶瓷。 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

第一类,二类回火脆性

第一类回火脆性 合金钢淬火后于250℃~400℃范围回火后产生的回火脆性,呈晶间型断裂特征,且不能用重新加热的方法消除,故又称为不可逆回火脆性。主要产生在合金结构钢中。 在200~350℃之间回火时出现的第一类回火脆性又称低温回火脆性。如在出现第一类回火脆性后再加热到更高温度回火,可以将脆性消除,使冲击韧性重新升高。此时若再在200~350℃温度范围内回火将不再会产生这种脆性。由此可见,第一类回火脆性是不可逆的,故又可称之为不可逆回火脆性。 几乎所有的钢均存在第一类回火脆性。如含碳不同的Cr-Mn钢回火后的冲击韧性均在350℃出现一低谷。第一类回火脆性不仅降低室温冲击韧性,而且还使冷脆转变温度50%FATTe[钢料的冲击韧性随测试温度的下降而出现显著下降时所对应的温度,即使钢料由韧性状态转变为脆性状态的温度称为冷脆转变温度,用50%FATT(℃)表示,详见金属力学性能]升高,断裂韧性KIe下降。如Fe-0.28 C-0.6 4Mn-4.82Mo钢经225℃回火后KIe为117.4MN/m,而经300℃回火后由于出现了第一类回火脆性,使KIe降至73.5MN/m。出现第一类回火脆性时大多为沿晶断裂,但也有少数为穿晶解理断裂。 影响笫一类回火脆性的因素主要是化学成分。可以将钢中元素按其作用分为三类。 1)有害杂质元素,其中包括S、P、As、Sn、Sb、Cu、N、H、O等。钢中存在这些元素时均将导致出现第一类回火脆性。不含这些杂质元素的高纯钢没有或能减轻第一类回火脆。 2)促进第一类回火脆性的元素。属于这一类的合金元素有M n、Si、cr、Ni、V 等。这一类合金元素的存在能促进第一类回火脆性的发展。有的元素单独存在时影响不大,如Ni。但当Ni与Si同时存在时则也能促进第一类回火脆性的发展。部分合金元素还能将笫一类回火脆性推向较高的温度,如Cr与Si。 3)减弱第一类回火脆性的元素。属于这一类的合金元素有Mo、W、Ti、A l等。钢中含有这一类合金元素时第一类回火脆性将被减弱。在这几种合金元素中以Mo的效果最显著。 除化学成分外,影响第一类回火脆性的因素还有奥氏体晶粒的大小以及残余奥氏体量的多少。奥氏体晶粒愈细,第一类回火脆性愈弱;残余奥氏体量愈多则愈严重. 回火炉之回火脆性的产生与对策 一、第一类回火脆性(又叫低温回火脆性或不可逆回火脆性) 温度范围:200~350oC 产生原因:1.有害杂质元素S、P、As、Sn、Sb、Cu、H、O导致第一类回火脆性 2.Mn、Si、Cr、Ni、V促进第一类回火脆性,镍-硅共存也起促进作用,铬硅提高回火炉回火脆性温度

金属材料学第二版戴起勋课后题答案

第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的? 答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。 S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆; P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点? 答:简单点阵结构和复杂点阵结构 简单点阵结构的特点:硬度较高、熔点较高、稳定性较好; 复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。 答:①当r C/r M>0.59时,形成复杂点阵结构;当r C/r M<0.59时,形成简单点阵结构; ②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。 ③N M/N C比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。S点左移意味着_____减小,E点左移意味着出现_______降低。

(左下方;左上方)(共析碳量;莱氏体的C量) 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C 和本身量多少而定。优先形成碳化物,余量溶入基体。 淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B 中或残余A中,未溶者仍在K中。 回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处? 答:Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用? 答:在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。 作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用? 答:提高回火稳定性的合金元素:Cr、Mn 、Ni、Mo、W、V、Si 作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样

气焊和气割的操作方法和应注意事项

气焊和气割的操作方法和应注意事项 气焊与气割作业是施工现场常见的工作,但是,由于使用有缺陷的设备或错误的操作方法,往往会造成意外事故。为了保证气焊与气割作业安全,我们将做一些简要说明。 1.气瓶 用于气焊与气割的氧气瓶和氢气瓶属于压缩气瓶,乙炔气瓶属于溶解气瓶。氧气瓶表面为天蓝色,并用黑漆标明“氧气”字样。乙炔瓶表面为白色,并标注红色的“乙炔”和“火不可近”字样。 2.气瓶爆炸事故的原因 ●气瓶的材质、结构和制造工艺不符合安全要求。 ●由于保管和使用不善,受日光曝晒、明火、热辐射等作用。 ●在搬运装卸时,气瓶从高处坠落,倾斜或滚动等发生剧烈碰撞冲击。 ●气瓶瓶阀无瓶帽保护,受振动或使用方法不当等,造成密封不严、泄漏甚至瓶阀损坏、高压气流冲出。 ●开气速度太快,气体迅速流经瓶阀时产生静电火花。 ●氧气瓶瓶阀、阀门杆或减压阀等上粘有油脂,或氧气瓶内混入其他可燃气体。 ●可燃气瓶(乙炔、氢气、石油气瓶)发生漏气。 ●乙炔瓶内填充的多孔性物质下沉,产生净空间,使乙炔气处于高压状态。

●乙炔瓶处于卧放状态或大量使用乙炔时,丙酮随同流出,丙酮也是易燃易爆物质。 ●气瓶充灌过满,受热时瓶内压力过高。 ●气瓶未作定期技术检验。 3.气瓶的安全使用 ●氧气瓶 1. 氧气瓶在出厂前必须按照《气瓶安全监察规程》的规定,严格进行技术检验。检验合格后。应在气瓶的球面部分作明显标志。 2. 氧气瓶在运送时必须戴上瓶帽,并避免相互碰撞,不能与可燃气体的气瓶、油料以及其他可燃物同车运输。搬运气瓶时,必须使用专用小车,并固定牢固。不得将氧气瓶放在地上滚动。 3. 氧气瓶应直立放置,且必须安放稳固,防止倾倒。 4. 取瓶帽时,只能用手或板手旋转,禁止用铁器敲击。 5. 在瓶阀上安装减压器之前,应拧开瓶阀,吹尽出气口内的杂质,并轻轻地关闭阀门。装上减压器后,要缓慢开启阀门,开得太快容易引起减压器燃烧和爆炸。 6. 在瓶阀上安装减压器时/与阀口连接的螺母要拧得坚固,以防止开气时脱落,人体要避开阀门喷出方向。 7. 严禁氧气瓶阀、氧气减压器、焊炬、割炬、氧气胶管等粘上易燃物质和油脂等,以免引起火灾或爆炸。 8. 夏季使用氧气瓶时,必须放置在凉棚内,严禁阳光照射;冬季不要放在火炉和距暖气太近的地方,以防爆炸。 9. 冬季要防止氧气瓶阀冻结。如有结冻现象,只能用热水和蒸气解冻,严禁用明火烘烤,也不准用铁敲击,以免引起瓶阀断裂。 10. 氧气瓶内的氧气不能全部用完,最后要留0.1—0.2MPa的氧气,以便充氧时鉴别气体的性质和防止空气或可燃气体倒流入氧气瓶内。

第二章 材料的脆性断裂与强度

第二章材料的脆性断裂与强度 §2.1 脆性断裂现象 一、弹、粘、塑性形变 在第一章中已阐述的一些基本概念。 1.弹性形变 正应力作用下产生弹性形变,剪彩应力作用下产生弹性畸变。随着外力的移去,这两种形变都会完全恢复。 2.塑性形变 是由于晶粒内部的位错滑移产生。晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。3.粘性形变 无机材料中的晶界非晶相,以及玻璃、有机高分子材料则会产生另一种变形,称为粘性流动。 塑性形变和粘性形变是不可恢复的永久形变。 4.蠕变: 当材料长期受载,尤其在高温环境中受载,塑性形变及粘性形变将随时间而具有不同的速率,这就是材料的蠕变。蠕变的后当剪应力降低(或温度降低)时,此塑性形变及粘性流动减缓甚至终止。 蠕变的最终结果:①蠕变终止;②蠕变断裂。 二.脆性断裂行为 断裂是材料的主要破坏形式。韧性是材料抵抗断裂的能力。材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。 1.脆性断裂 脆性断裂是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。因此,防止脆断一直是人们研究的重点。2.韧性断裂 韧性断裂是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。 一些塑性较好的金属材料及高分子材料在室温下的静拉伸断裂具有典型的韧性断裂特征。 3.脆性断裂的原因 在外力作用下,任意一个结构单元上主应力面的拉应力足够大时,尤其在那些高度应力集中的特征点(例如内部和表面的缺陷和裂纹)附近的单元上,所受到的局部拉应力为平均应力的数倍时,此过分集中的拉应力如果超过材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。虽然与此同时,由于外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。因此,断裂源往往出现在材料中应力集中度很高的地方,并选择这种地方的某一个缺陷(或裂纹、伤痕)而开裂。 各种材料的断裂都是其内部裂纹扩展的结果。因而,每种材料抵抗裂纹扩展能力的高低,表示了它们韧性的好坏。韧性好的材料,裂纹扩展困难,不易断裂。脆性材料中裂纹扩展所需能量很小,容易断裂;韧性又分断裂韧性和冲击韧性两大类。断裂韧性是表征材料抵抗其内部裂纹扩展能力的性能指标;冲击韧性则是对材料在高速冲击负荷下韧性的度量。二者间存在着某种内在联系。 三.突发性断裂与裂纹的缓慢生长 裂纹的存在及其扩展行为,决定了材料抵抗断裂的能力。 1.突发性断裂 断裂时,材料的实际平均应力尚低于材料的结合强度(或称理论结合强度)。在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好等于结合强度时,裂纹产生突发性扩展。一旦扩展,引起周围应力的再分配,导致裂纹的加速扩展,出现突发性断裂,这种断裂往往并无先兆。 2.裂纹的生长

关于35CrMo钢的回火脆性的讨论

关于35CrMo钢的回火脆性的讨论 无论碳钢还是合金钢都存在回火脆性。 第一类回火脆性,又称不可逆回火脆性,一旦出现就不易消除。碳钢在200—300度,合金钢在250—400度回火后缓冷,极易出现。普遍认为,第一类回火脆性的出现,是因为马氏体分解析出碳化物造成的。 第二类回火脆性,又称可逆回火脆性,只存在于合金钢中。合金钢在500—650度回火后缓冷,极易出现。关于第二类回火脆性的本质,目前还不是十分清楚。第二类回火脆性可以采取回火后快冷的办法避免。 Cr、Mn、P、As、Sb等元素时,会使高温回火脆性倾向增大。如果钢中除Cr以外,还含有Ni或相当的Mn时,则高温回火脆性更为显著。而W。Mo等元素能减弱高温回火脆性的倾向。例如钢中含Mo=0.5%可以有效抑制高温回火脆性;但是我今天在一本小日本的资料上《预防热处理废品的措施》中对回火脆性是这么描述的"钢的回火行为是,回火温度升高,硬度降低,而由延伸率。断面收缩率与冲击值所表示的韧性则随之升高。但是在300度左右回火时,冲击韧性出现反常降低的现象。不管结构钢的钢种和碳量如何,在该温度回火时都要出现这种脆性。为赋予结构钢韧性而进行的淬火回火处理,由于存在这种反常的脆化现象,最好避免在250-550℃范围内回火。此外,在600℃附近回火时,慢冷会引起显著脆化,因此回火后必须快冷。不过,有的形状和大小的工件从该温度快冷有开裂的危险。因此也应注意避免采用过快的冷却速度。钢中磷会促进回火脆性,而加钼合金化却可减轻回火脆性,这是大家熟知的事实。 由此在结合我们加工中回火后缓冷零件加工容易,而快冷零件加工中有粘刀。不断屑等现象存在,看来的确有回火脆性现象,我们也调整了热处理工艺,在此我要谢谢大家的帮助。但让我现在也闹不明白的是:为什么两种工艺下的冲击韧性会相差无几? ※脆性的存在是肯定的 Cr、Si、Mn具有增大回火脆性的倾向。Mo、W具有降低回火脆性的倾向。 1、35CrMo由于Mo元素的加入使其所说的对于回火后缓冷的第二类回火脆性减少到很少,几乎表现不敏感。 2、但其韧性对回火温度的敏感性较强,主要表现为 1)低温回火时,在马氏体内部析出弥散的ε碳化物,起到均匀强化的作用,使韧性略有提高 2)中温回火时,晶界处的残奥敬爱事分解为Fe3c并促使杂质元素在晶界的偏聚,使晶间结合力降低,韧性下降。 3)高温回火时,马氏体进一步分解为以回火索氏体为主的组织,使35CrMo钢的韧性明显改善。

回火常见问题与解决方法

回火常见问题与解决方法 回火产生之回火裂痕以淬火之钢铁材料经回火处理时,因急冷、急热或组织变化之故而产生之裂痕,称之为回火裂痕。常见之高速钢、SKD11模具钢等回火硬化钢在高温回火后急冷也会产生。 100℃热水回火之优点低温回火常使用180℃至200℃左右来回火,使用油煮回火。其实若使用100℃的热水来进行回火,会有许多优点,包括:(1)100℃的回火可以减少磨裂的发生;(2)100℃回火可使工件硬度稍增,改善耐磨性;(3)100℃的热水回火可降低急速加热所产生裂痕的机会;(4)进行深冷处理时,降低工件发生深冷裂痕的机率,对残留沃斯田体有缓衝作用,增加材料强韧性;(5)工件表面不会产生油焦,表面硬度稍低,适合磨床研磨加工,亦不会产生油煮过热乾烧之现象。 二次硬化之高温回火处理对于工具钢而言,残留应力与残留沃斯田体均对钢材有著不良的影响,浴消除之就要进行高温回火处理或低温回火。高温回火处理会有二次硬化现象,以SKD11而言,530℃回火所得钢材硬度较200℃低温回火稍低,但耐热性佳,不会产生时效变形,且能改善钢材耐热性,更可防止放电加工之加工变形,益处甚多。 在300℃左右进行回火处理,为何会产生脆化现象? 部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。二次硬化工具钢当加热至500℃~600℃之间时才会引起分解,在300℃并不会引起残留沃斯田体的分解,故无300℃脆化的现象产生。 回火产生之回火裂痕以淬火之钢铁材料经回火处理时,因急冷、急热或组织变化之故而产生之裂痕,称之为回火裂痕。常见之高速钢、SKD11模具钢等回火硬化钢在高温回火后急冷也会产生。此类钢材在第一次淬火时产生第一次麻田散体变态,回火时因淬火产生第二次麻田散体变态(残留沃斯田体变态成麻田散体),而产生裂痕。因此要防止回火裂痕,最好是自回火温度作徐徐冷却,同时淬火再回火的作业中,亦应避免提早提出回火再急冷的热处理方式。 回火产生之回火脆性 可分为300℃脆性及回火徐冷脆性两种。所谓300℃脆性係指部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。所谓回火徐冷脆性係指自回火温度(500℃~600℃)徐冷时出现之脆性,Ni-Cr钢颇为显著。回火徐冷脆性,可自回火温度急冷加以防止,根据多种实验结果显示,机械构造用合金钢材,自回火温度施行空冷,以10℃/min以上的冷却速率,就不会产生回火徐冷脆性。 高周波淬火常见之问题 高周波淬火处理常见的缺陷有淬火裂痕、软点及剥离三项。高周波淬火最忌讳加热不均匀而产生局部区域的过热现象,诸如工件锐角部位、键槽部位、孔之周围等均十分容易引起过热,而导致淬火裂痕的发生,上述情形可藉由填充铜片加以降低淬火裂痕发生的可能性。另外高周波淬火工件在淬火过程不均匀,会引起工件表面硬度低的缺点,称之为软点,此现象是由于高周波淬火温度不均匀、喷水孔阻塞或孔的大小与数目不当所致。第三种会产生的缺失是表面剥离现象,主要原因为截面的硬度

乙炔气焊气割安全操作规程

乙炔气焊气割安全操作规程 乙炔在运输贮存和使用过程中,由于受震动、填料下沉、直接受热,以及使用不当、操作失误等,会发生爆炸事故。所以使用乙炔气瓶时,各方面都要采取必要的安全措施。每三年进行一次技术检验。 1、使用时的安全技术要求: 1)禁止敲击、碰撞。 2)要立放,不能卧放,以防丙酮流出,引起着火爆炸(丙酮蒸气与空气混合爆炸极限为2.9%--13%)。气瓶立放15-20min后,才能开启瓶阀使用。拧开瓶阀时,不要超过1.5转,一般情况只拧3/4转。 3)不得靠近热源和电气设备,夏季要防止曝晒,与明火的距离一般不小于10m(高处作业时,应是与垂直地面处的平行距离)。 4)瓶阀冻结,严禁用火烘烤,必要时可用40℃以下的温水解冻。 5)吊装、搬运时,应使用专用夹具和防震的运输车,严禁用电磁起重机和链绳吊装搬运。 6)严禁放置在通风不良及有放射性射线的场所,且不得放在橡胶等绝缘体上。 7)工作地点不固定且移动较频繁时,应装在专用小车上;同时使用乙炔瓶和氧气瓶时,应尽量避免放在一起。 8)使用时要注意固定,防止倾倒,严禁卧放使用,局部温度不要超过40℃(即烫手)。 9)必须装设专用的减压器、回火防止器。开启时,操作者应站在

阀口的侧后方,动作要轻缓。 10)使用压力不得超过0.15Mpa,输气流速不应超过 1.5- 2.0m3(h?瓶)。 11)严禁铜、银、汞等及其制品与乙炔接触,必须使用铜合金器具时,合金含量低于70%。 12)瓶内气体严禁用尽,必须留有不低于下表规定的剩余压力。剩余压力与环境温度关系 环境温度(℃)<00-1515-2525-40 剩余压力(Mpa)0.050.10.20.3 2、运输乙炔瓶的安全技术要求: 1)应轻装轻卸,严禁抛、滑、滚、碰。 2)车、船装运时,应妥善固定。汽车装运乙炔瓶横向排放时,头部应朝向一方,且不得超过车厢高度,直立排放时,车厢高度不得低于瓶高的2/3。 3)夏季要有遮阳设施,防止曝晒,炎热地区应避免白天运输。 4)车上禁止烟火,并应备有干粉或二氧化碳来火器,(严禁使用四氯化碳灭火器)。 5)严禁与氯气瓶、氧气瓶及易燃物品同车运输。 6)严格遵守交通和公安部门颁布的危险品运输条例及有关规定。 3、储存乙炔瓶的安全技术要求: 1)使用乙炔瓶的现场存量不得超过5瓶;超过5瓶但不超过20瓶时,应在现场用非燃烧体或难燃烧体墙隔成单独的储存间,应有一

常用钢产生回火脆性的温度范围[1]

常用钢产生回火脆性的温度范围 钢号第一类回火脆性第二类回火脆性30Mn2 250~350 500~550 20MnV 300~360 25Mn2V 250~350 510~610 35SiMn 500~650 20Mn2B 250~350 45Mn2B 450~550 15MnVB 250~350 20MnVB 200~260 520左右 40MnVB 200~350 500~600 40Cr 300~370 450~650 45Cr 38CrSi 250~350 450~550 35CrMo 250~400 无明显脆性 20CrMnMo 250~350 30CrMnTi 400~450 30CrMnSi 250~380 460~650 20CrNi3A 250~350 450~550 12Cr2Ni4A 250~350 37CrNi3 300~400 480~550 40CrNiMo 300~400 一般无脆性38CrMoAlA 300~450 无脆性 4Cr9Si2 450~600 65Mn 60Si2Mn 有回火脆性50CrVA 200~300 4CrW2Si 250~350 5CrW2Si 300~400 6CrW2Si 300~450 4SiCrV >600 3Cr2W8V 550~650 9SiCr 210~250 CrWMn 250~300 9Mn2V 190~230 T8~T12 200~300 GCr15 200~240 1Cr13 520~560 2Cr13 4 50~560 600~750 3Cr13 350~550 600~750 1Cr17Ni2 400~580

《工程材料》第二阶段练习

《工程材料》第二阶段练习 一、名词解释 滑移、加工硬化、再结晶、球化退火、淬硬性、淬透性、回火脆性、回火稳定性、调质处理、固溶处理 二、填空题 1.在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是 不 同点是 。 2.用光学显微镜观察,上贝氏体的组织特征呈 状,而下贝氏体则呈 状。 3.马氏体的显微组织形态主要有 、 两种。其中 韧性较好。 4.钢的淬透性越高,则其C 曲线的位置越 ,说明临界冷却速度越 。 5.亚共析钢的正常淬火温度范围是 ,过共析钢的正常淬火温度范围 是 。 6.除 、 外,几乎所有的合金元素都使Ms 、Mf 点下降,因此淬火后相同碳质量 分数的合金钢与碳钢相比,残余奥氏体 ,使钢的硬度 。 三、是非题 1.滑移变形不会引起金属晶体结构的变化。 2.因为B.B.C 晶格与F.C.C 晶格具有相同数量的滑移系,所以两种晶体的塑性变形能 力完全相同。 3.孪生变形所需要的切应力要比滑移变形时所需的小得多。 4.再结晶过程是有晶格类型变化的结晶过程 5.马氏体是碳在的α-Fe 中的过饱和固溶体。当奥氏体向马氏体转变时,体积要收缩。 6.当原始组织为片状珠光体的钢加热奥氏体化时,细片状珠光体的奥氏体化速度要比 粗片状珠光体的奥氏体化速度快。 7.当共析成分的奥氏体在冷却发生珠光体转变时,温度越低,其转变产物组织越粗。 8.高合金钢既具有良好的淬透性,也具有良好的淬硬性。 9.经淬火后再高温回火的钢,能得到回火索氏体组织,具有良好的综合机械性能。 10.表面淬火既能改变钢的表面组织,也能改善心部得组织和性能。 四、选择题 1.奥氏体向珠光体的转变是 a .扩散型转变 b .非扩散型转变 c .半扩散型转变 2.某钢的淬透性为J 15 40 ,其含义是: a .15钢的硬度为40HRC b .该钢离试样末端15mm 处的硬度为40HRC c .该钢离试样末端40mm 处的硬度为15HRC

气割注意事项

气割注意事项 气焊与气割作业是施工现场常见的工作,但是,由于使用有缺陷的设备或错误的操作方法,往往会造成意外事故。为了保证气焊与气割作业安全,我们将做一些简要说明。 1.气瓶 用于气焊与气割的氧气瓶和氢气瓶属于压缩气瓶,乙炔气瓶属于溶解气瓶。氧气瓶表面为天蓝色,并用黑漆标明“氧气”字样。乙炔瓶表面为白色,并标注红色的“乙炔”和“火不可近”字样。 2.气瓶爆炸事故的原因 ●气瓶的材质、结构和制造工艺不符合安全要求。 ●由于保管和使用不善,受日光曝晒、明火、热辐射等作用。 ●在搬运装卸时,气瓶从高处坠落,倾斜或滚动等发生剧烈碰撞冲击。 ●气瓶瓶阀无瓶帽保护,受振动或使用方法不当等,造成密封不严、泄漏甚至瓶阀损坏、高压气流冲出。 ●开气速度太快,气体迅速流经瓶阀时产生静电火花。 ●氧气瓶瓶阀、阀门杆或减压阀等上粘有油脂,或氧气瓶内混入其他可燃气体。 ●可燃气瓶(乙炔、氢气、石油气瓶)发生漏气。 ●乙炔瓶内填充的多孔性物质下沉,产生净空间,使乙炔气处于高压状态。 ●乙炔瓶处于卧放状态或大量使用乙炔时,丙酮随同流出,丙酮也是易燃易爆物质。 ●气瓶充灌过满,受热时瓶内压力过高。 ●气瓶未作定期技术检验。 3.气瓶的安全使用 ●氧气瓶 1. 氧气瓶在出厂前必须按照《气瓶安全监察规程》的规定,严格进行技术检验。检验合格后。应在气瓶的球面部分作明显标志。 2. 氧气瓶在运送时必须戴上瓶帽,并避免相互碰撞,不能与可燃气体的气瓶、油料以及其他可燃物同车运输。搬运气瓶时,必须使用专用小车,并固定牢固。不得将氧气瓶放在地上滚动。 3. 氧气瓶应直立放置,且必须安放稳固,防止倾倒。 4. 取瓶帽时,只能用手或板手旋转,禁止用铁器敲击。 5. 在瓶阀上安装减压器之前,应拧开瓶阀,吹尽出气口内的杂质,并轻轻地关闭阀门。装上减压器后,要缓慢开启阀门,开得太快容易引起减压器燃烧和爆炸。 6. 在瓶阀上安装减压器时/与阀口连接的螺母要拧得坚固,以防止开气时脱落,人体要避开阀门喷出方向。 7. 严禁氧气瓶阀、氧气减压器、焊炬、割炬、氧气胶管等粘上易燃物质和油脂等,以免引起火灾或爆炸。

相关文档
相关文档 最新文档