文档库 最新最全的文档下载
当前位置:文档库 › 电子皮带秤校验链码说明书

电子皮带秤校验链码说明书

电子皮带秤校验链码说明书
电子皮带秤校验链码说明书

CLM系列电子皮带秤

校验链码

使

徐州铭利机电设备有限公司

CLM系列电子皮带秤校验链码

一:概述

中华人民共和国国家计量检定规程JJG650-90中规定链码是一种模拟负荷标准器在约定时间内可做为“电子皮带秤”的算验标定器。

电子“电子皮带秤”经过一段时间使用后,计量精度会发生变化,为了样核“电子皮带秤”的计量度,满足生产中的计量要求,CLM系列电子皮带秤校验链码符合中华人民共和国皮带秤计量检定规程JJG650-90的规定,是一种模拟负荷标准器,它能近拟的模拟物料作用于皮带上的单位长度的重量,作为“电子皮带秤”的校验标准器。

CLM系列“电子皮带秤校验链码”。动态校验计量精度高(静态3/1000,动态1/1000),操作方便,不占场地,即安全又减少了繁锁的劳动力,大大地提高了工作效率,节约企业的投资而且和实物校验装置“电子料斗秤”相比,“电子料斗秤”设备面积大,占用场地大,校验时又很麻烦,造价又高。CLM系列校验链码是解决皮带秤校验的首选设备。若加配自动收放卷扬装置能使链码在校验过程中进入自动化操作,大提高了工作效率。

二:链码的组成及工作原理

组成:链码由码辊和链板逐个连成一体,形状类似链条。

工作原理:链码模拟皮带上每米物料的负荷置于运行中的皮带上,两端用软绳呈“八”字形牵拉以防走偏或同皮带一起滑行,其位置应能覆盖电子皮带秤的称重托辊以及前后各二组托辊。记录皮带一圈的长度和运行的圈数,与链码的标称值之积作为基准值;以仪表在上述情况下的累积量值与基准值比较就能确定电子皮带秤的实际误差是否在允差范围,便能检定其计量精度是否合格。

三:技术指标及特点

精度:1/1000(自检精度3/1000)

特点:标定精度高

比实物校验结构简单,造价低

结构合理,构成均匀,操作方便

占地面积小,系统安全可靠

节省人力,工作效率高

可选的链码收卷装置,实现校验过程自动化

四:链码产品的型号规格 例:CLM200-20表示码辊为园鼓形,码辊中心距即链码节距为200mm ,标称值为20Kg/m 的链码。

五:链码选择原则 链码标称值的确定

按电子皮带秤检定的要求,链码的规格可取相应皮带输送机最大量程点的20%-80%作为负荷,其计算公式如下: q=Q/(3.6×V )(Kg/m )×(20%-80%) 计算完毕后还须园整为标准系列选取定。 式中:

q —皮带秤负荷所对应的链码规格的大小(单位Kg/m ) Q —皮带输送机最大流量(单位t/h ) V —皮带运动速度(单位m/s )

链码校验长度的确定

链码校验长度取决于电子皮带秤称重托辊的数量,通常在托辊间距1.2米的情况下按如下选定:

当称重托辊为1组时,链码校验长度取5.2米, 当称重托辊为2组时,链码校验长度取6.2米, 当称重托辊为3组时,链码校验长度取7.2米, 当称重托辊为4组时,链码校验长度取8.2米,

CLM

LM

链码型号的选择

对较长的装有电子皮带秤的皮带输送机(主要是槽形皮带),宜选用CLM200型,其储藏保护方式如置于皮带输送机上部的藏箱。

对较短的装有电子皮带秤的皮带给料机(主要是平皮带),宜选用CLM100型,其储藏保护方式如卷扬箱。

六:自动收卷校验装置

自动收卷校验装置由电控箱,链码、藏箱、牵拉驱头及支腿组成。藏箱由钢板焊接而成,非工作时,链码置于藏箱内得到保护,工作时释放牵拉驱动头使链码靠自身重量滑下到皮带上。牵拉驱动头由卷桶,减速机(含电机)及钢丝绳组成,支腿用于支承整个校验装置的重量并于用户现场固定的皮带输送机架上。具体安装见附图

七:设备的使用操作

1:设备安装完毕后,即可操作电控箱将链码放置电子皮带秤的称量段上。

2:将链码的每米重量输入称重仪表内。

3:启动输送机

4:按仪表操作说明进行间隔校准,仪表标定结束后显示标定误差,送入后仪表可以自动修改参数,直到达到标准

电子皮带秤管理制度

电子皮带秤管理实施细则 批准: 审核: 编写: 大唐长春第二热电有限责任公司 二〇一二年十一月一日 电子皮带秤管理实施细则 第一章总则 第一条为加强电子皮带秤的计量管理,提高电子皮带秤的计量精度,保证其处于良好的运行状态,精确计量入炉煤量,特制订本办法。 第二条本办法适用于大唐长春第二热电有限责任公司。 第二章电子皮带秤管理职责 第三条运行管理部和设备管理部是电子皮带秤管理的职能部门,分别指定管理人员负责电子皮带秤的管理。 第四条运行管理部负责电子皮带秤使用过程和设备可靠性的管理,对电子皮带秤使用过程具有指导、监督、检查及考核权。 第五条设备部负责公司电子皮带秤的检修技术管理与设备分工,对各分场皮带秤检定与检修工作具有指导、监督、检查及考核权。 第六条热控分场负责电子皮带秤的校验,做好电子皮带

秤的原始数据记录,负责所管辖部分日常管理、维护和保养工作,保证皮带秤的准确、可靠和稳定。 第七条燃运分场作为电子皮带秤的使用单位,负责设备检查与维护,为电子皮带秤的校验和检修提供条件。 第三章电子皮带秤使用与维护保养 第八条燃运分场要保证皮带秤所在皮带机的运行状态良好,防止由于皮带跑偏造成物料偏向一侧,改变称重传感器受力引起称重桥路输出误差导致测量误差,此外皮带跑偏还会影响计量仪表的零点漂移。皮带的跑偏量应控制在60毫米以内。 第九条燃运分场每班接班后和交班前由运行人员对皮带秤秤架进行清扫,确保秤架无积煤、卡煤及矸石,防止秤上附加力影响计量精度。 第十条燃运分场要保证称重区内托辊的运行状态完好,不得缺少,托辊运转平稳无卡滞,无窜轴,无移位、歪斜;托辊架要端正,不得随意调整托辊架的距离,保证秤区托辊架间距一致,使用规格一致,减少皮带跳动产生阶越或脉冲信号对皮带秤计量精度的影响。 第十一条燃运分场每次粘补、更换五段皮带时,要确保皮带的粘接质量,接头要平滑,不能打金属卡子。粘接一天后通知维护分场对电子皮带秤精度进行复核,并对电子皮带秤重新进行零点校验标定,维护分场皮带秤管理人员对所辖

验证码识别常用算法

验证码识别常用算法 图像处理(验证码识别)程序中常用算法:灰度,二值化,去噪(1*1像素或者3*3像素等) 代码: view plaincopy to clipboardprint? //灰度 private void btnGray_Click(object sender, EventArgs e) { try { int Height = this.picBase.Image.Height; int Width = this.picBase.Image.Width; Bitmap newbitmap = new Bitmap(Width, Height); Bitmap oldbitmap = (Bitmap)this.picBase.Image; Color pixel; for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { pixel = oldbitmap.GetPixel(x, y); newbitmap.SetPixel(x, y, Gray(pixel)); } } this.picBase.Image = newbitmap; } catch (Exception err) { MessageBox.Show("灰度化失败原因:" + err.Message); } } //灰度化算法 protected static Color Gray(Color c) { int rgb = Convert.ToInt32((double)(((0.3 * c.R) + (0.59 * c.G)) + (0.11 * c.B))); return Color.FromArgb(rgb, rgb, rgb); } //灰度 private void btnGray_Click(object sender, EventArgs e) { try { int Height = this.picBase.Image.Height; int Width = this.picBase.Image.Width; Bitmap newbitmap = new Bitmap(Width, Height); Bitmap oldbitmap = (Bitmap)this.picBase.Image; Color pixel; for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { pixel = oldbitmap.GetPixel(x, y);

电子皮带秤实物标定方法

皮带秤标定方法 电子皮带秤校准方式的比较 赛摩公司参照GB/T7721-2007(连续累计自动衡器),经过多年累积的现场工作经验,得出以下实物校验的方式方法: 1、建立测试周期 测试周期应不小于3周或不低于6分钟且应取整数圈。测量皮带一周长度,精确到毫米。在皮带上做一显著标识,开启皮带并以最大速度运行,当标识通过某一参考点时,用秒表开始测量皮带整数圈的运行时间。 通过面板上的菜单键选择主菜单2——校准数据——确定并按面板上的上下箭头键选择——建立测试周期——手动——输入皮带一周长度(米)——确定——输入运行周数3周——确定——输入3周运行的时间(秒)——确定后仪表自动根据输入的倒计时运行,运行完毕后仪表自动计算并存储输送机的最大速度。测试周期建立完毕。 2、零点调试

零点调试前让皮带先运行至少半小时,再开始调零。零点校准至少要运行5次,以观察零点稳定性,正常后记录零点值。 通过面板上的菜单键选择主菜单1——零点校准——选择开始后仪表自动按倒计时运行,运行完毕后在屏幕上自动显示本次零点校准的误差,零点误差应小于%。 3、物料标定 (1)物料准备:准备满足皮带秤标定用的物料量。 (2)控制衡器:物料标定的控制衡器采用磅秤。 (3)物料重量控制:根据“连续累计自动衡器(电子皮带秤)国家计量检定标准(JJG195-2002)”规定,试验物料量不小于最大流量下1小时累计载荷的2%,贵厂最大流量为100吨/小时,因此试验物料量应不小于2吨。 (4)物料流量控制:按检定标准规定,试验物料流最应在20%最大流量和最大流量之间,即在20t/h和100t/h之间。 (5)启动皮带调好零点后,将按规定范围的流量和重量的物料从秤体上通过,且须在测试周期内将物料放完;将通过秤体的全部物料用磅秤称重,并记录。重复做3到4次以观察其重复性。 (6)操作步聚:实物校准时选择菜单1——选择实物校准——选择开始——选择继续——然后开始下料,待物料下料结束后,请不要直接选择完成结束,待仪表运转一个周期或者一个周期的整数倍后选择完成结束。 (7)实物校准结束,输入实际重量后请按照仪表提示进行操作,最终显示本次校准的误差。如误差超过标准(±%),则应检查秤体的机械部分和输煤系统是否正常,找出影响精度的原因并排除,重新标定;如误差在允许的范围内(±%),记录标定结果和间隔值。皮带秤即可投入使用。 4、最后应详细认真地填写皮带秤的现场调试报告。 5、实物标定要注意: (1)准备物料时把好称量关! (2)物料通过皮带秤前保证没有洒料、存料现象!

201使用说明书(仪表)[1]

ICS系列电子皮带秤 (201仪表) 使 用 说 明 书

目录 一、概述 (3) 二、201积算器功能说明 (3) 1、积算器面板说明 (3) 2、键盘 (4) 3、操作提示符 (4) 4、错误提示符 (6) 三、皮带秤基本参数的确定 (6) 四、皮带秤的校准 (7) 1、设置工作参数 (7) 2、调零 (10) 3、有关计算公式: (12) 五、维护 (13) 一、概述 (13) 二、日常维护 (13) 三、故障排除 (14) 六、积算器的日常维护和常见故障的排除 (16) 一、概述 (16) 二、日常维护 (16) 三、仪表初始化和自诊断 (17) 四、总累计清除 (19) 五、常见故障的排除 (19) 1、无显示 (19) 2、乱显示 (20) 3、死机 (20) 4、流量不稳 (20) 5、02E消不掉-皮带下溢 (21) 6、03E消不掉-皮带上溢 (21) 7、常用称重传感器主要技术数据 (21) 8流量 (22) 9、主机板各点参考电压 (22) 10、链码标定简介 (23) 六、201仪表打印功能使用说明 (24)

第一部分-----称重仪表 本书主要针对配备201仪表的ICS-17A和ICS-20A系列皮带秤系统的安装、操作、校准和维修等方面加以介绍和说明,有关扩展板(打印和通讯)参见补充说明。 一、概述 皮带秤系统安装完毕,即可按本章所述内容进行操作和校准,校准完成后,皮带秤系统将能够进行精确地称重。 二、201积算器功能说明 1、积算器面板说明

2、键盘 所有的数字(常数或功能数)输入到积算器都要通过键盘完成,键入时,上显示器显示被键入的常数,下显示器在右边显示实际的流量,在左边显示所“设定”的操作提示符及字母“P”(00P、01P等)。 3、操作提示符

各种校验码校验算法分析

各种校验码校验算法分析二进制数据经过传送、存取等环节会发生误码1变成0或0变成1这就有如何发现及纠正误码的问题。所有解决此类问题的方法就是在原始数据数码位基础上增加几位校验冗余位。 一、码距一个编码系统中任意两个合法编码码字之间不同的二进数位bit数叫这两个码字的码距而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。如图1 所示的一个编码系统用三个bit来表示八个不同信息中。在这个系统中两个码字之间不同的bit数从1到3不等但最小值为1故这个系统的码距为1。如果任何码字中一位或多位被颠倒了结果这个码字就不能与其它有效信息区分开。例如如果传送信息001而被误收为011因011仍是表中的合法码字接收机仍将认为011是正确的信息。然而如果用四个二进数字来编8个码字那么在码字间的最小距离可以增加到2如图2的表中所示。信息序号二进码字 a2 a1 a0 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 图 1 信息序号二进码字 a3 a2 a1 a0 0 0 0 0 0 1 1 0 0 1 2 1 0 1 0 3 0 0 1 1 4 1 1 0 0 5 0 1 0 1 6 0 1 1 0 7 1 1 1 1 图 2 注意图8-2的8个码字相互间最少有两bit 的差异。因此如果任何信息的一个数位被颠倒就成为一个不用的码字接收机能检查出来。例如信息是1001误收为1011接收机知道发生了一个差错因为1011不是一个码字表中没

有。然而差错不能被纠正。假定只有一个数位是错的正确码字可以是100111110011或1010。接收者不能确定原来到底是这4个码字中的那一个。也可看到在这个系统中偶数个2或4差错也无法发现。为了使一个系统能检查和纠正一个差错码间最小距离必须至少是“3”。最小距离为3时或能纠正一个错或能检二个错但不能同时纠一个错和检二个错。编码信息纠错和检错能力的进一步提高需要进一步增加码 字间的最小距离。图8-3的表概括了最小距离为1至7的码的纠错和检错能力。码距码能力检错纠错 1 2 3 4 5 6 7 0 0 1 0 2 或 1 2 加 1 2 加 2 3 加 2 3 加 3 图3 码距越大纠错能力越强但数据冗余也越大即编码效率低了。所以选择码距要取决于特定系统的参数。数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错 率等因素。要有专门的研究来解决这些问题。 二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。例如单个的奇偶校验将使码的最小距离由一增加到二。一个二进制码字如果它的码元有奇数个1就称为具有奇性。例如码字“10110101”有五个1因此这个码字具有奇性。同样偶性码字具有偶数个1。注意奇性检测等效于所有码元的模二加并能够由所有码元的 异或运算来确定。对于一个n位字奇性由下式给出奇性a0⊕a1⊕a2⊕…⊕an 奇偶校验可描述为给每一个码字加一个

电子皮带秤(链码)校准规范

**********公司 电子皮带秤(链码)校准规范

一、概述: 为保证在现场进行电子皮带秤校准的量值准确可靠,校准结果达到公正、客观、准确,特制定本校准规范。 二、引用文献 国家计量检定规程JJG195-2002连续累计自动衡器(皮带秤)。 三、适用范围 本规范适用于京唐公司赛摩链码电子皮带秤的校准工作。 四、校准前准备 1、校准前必须按《管理规定》的要求,与生产厂取得联系,拿到操作牌,并按生产厂的规定做好相应的标识。 2、校准设备、工具和其它辅助材料的准备。 必要的校准设备和标准链码,确认其精度等级范围; 标准数字万用表; 测速仪器; 绝缘电阻测试仪; 对讲机一套; 通用仪器调试工具、扳手; 其它辅助材料如干净的毛刷、软布等。 3、检查传感器,测速等接线应无破损、短路、开路的迹象且接触良好。 4、校准前皮带秤的外观检查 确认皮带秤外型结构完好,制造厂名、商标、秤的名称、规格型号、额定流量、准确度等级、指示器分度值、出厂编号、制造年月、制造许可证标志; 仪器设备外露件应无松动和机械损坏,信号线、电源线、接地线各端子应连接可靠; 对秤目测检查四周间隙内不得有异物; 称重传感器是否有异物卡靠; 传感器输出是否正常,皮带运转有无跑偏,皮带托辊是否全部接触与皮带运

转正常。 五、校准 校准前对仪表预热30分钟,同时输送机承受负荷运行一段时间后,方可进行校检。其步骤及方法如下: 1、皮带速度变化率 (1)速度测量,空称运行五整圈后,停止运行,在皮带直线段上用卷尺量取一定的长度,并在首尾划定标记,然后开动输送机运转一整圈,当皮带首尾标记与皮带机机架上的固定标记重合时,打开秒表记时,当尾标记与固定标记重合时停秒表,读取示值,依次测量三次,取算术平均值,为皮带的运行速度V 0 。 V 0=L/T 0 式中: L 所量皮带长度(米) T 0 运行时间(秒) (2)速度变化率的计算 按上述方法检测输送机在60%最大流量下,输送物时的皮带速度V 1,则皮带速度变化率为: St= ?100% 所得结果应不大于额定速度的±5%。 2、皮带全长的测定 用钢卷尺在皮带机直线段上正确地测出皮带一周的长度(测定误差在±1/1000以上)。 3、零点调整 (1)皮带上为空载,确认皮带机周围安全后,运行皮带机; (2)把积算器的工作方式置为“零”的位置; (3)按下“零点校准”键,选择自动,校正灯亮,零点的变化被显示在累积器上; (4)当输入脉冲达到设定值时,自动停止计量,零点误差将显示在累积器 V 0 -V 1 V 1

ICS系列电子皮带秤说明书

ICS系列电子皮带秤 使 用 说 明 书

第一章序言 一:概论 ICS系列电子皮带秤是一种先进的微机控制动态称重仪表,是在皮带输送系统中对散状物料进行连续计量的理想设备,整机设计合理,紧凑,具有完善的称重合控制数学模型,并有多种输入,输出信号形式。其结构简单,称量准确,工作稳定,运行可靠,操作方便,维护量极少。不仅适用于常规环境,而且适用于酸,碱,盐及大气腐蚀环境。广泛的应用于冶金,电力,矿山,港口,化工,水泥,建材,粮食等行业。ICS系列电子皮带秤可根据你的选择提供各种高智能化仪表和进口传感器。 二:主要技术指标 1:系统性能 系统精度:ICS-17型为优于±0.25%;ICS-20型为优于±0.5% 仪表精度:优于±0.05% 称量围:1-6000t/h 皮带宽度:500-2200mm 皮带速度:0.05-4m/s 皮带输送机倾角:≤17° 适用托辊形式:三节槽型托辊及平托辊 环境温度:秤架为-30°-- +50°积算器为-10°-- +50° 2:载荷传感器性能 非线性:小于额定输出的0.03%FC 非重复性:小于额定输出的0.03%FC 滞后:小于额定输出的0.03%FC 允许短时过载:125% 激励电压:10VDC 3:速度传感器性能 频率围:0-1.2KHz 信号:0-30VAC 速度围:0.05-4m/s 4:积算器性能 精度:优于0.05% 电源:220V(-15%-+10%) 50HZ±2% 功率:50VA 重量输入:从一只,两只或四只称重传感器传来的毫伏信号 速度输入:从数字式传感器传来的脉冲信号 输出激励电压:10VDC 输出至速度传感器:24VDC(编码器用) 累计显示输出 流量显示输出 远程累计输出 电流输出:4-20MA 打印输出

电子皮带秤检定标准

电子皮带秤检定标准 一技术要求 1皮带秤应按照国家电子皮带秤标准及有关技术文件制造。修理用的配件应符合有关图纸的技术要求。 2标志 2.1在皮带秤称体的明显处,应有下列标志 2.1.1制造厂家的商标 2.1.2皮带秤的名称 2.1.3规格型号 2.1.4准确度 2.1.5出厂编号 2.1.6制造年月 2.1.7额定流量 3称体 3.1称重框架应牢固,可靠,在满载运行时,不应有影响计量性能的变形 3.2主,从滚筒应转动灵活,平稳,皮带与滚筒间无明显滑动,并配备皮带张力调节装置。托辊,滚筒与皮带相切的素线应在同一平面内,其直线度误差应不大于0.5MM,滚筒径向跳动应不大于0.3MM,同轴度误差不大于0.2MM。 3.3环形皮带必须采用无接头环带,整条环带的厚薄只差不能超过标称厚度的1/10.

4称重传感器 称重传感器必须密封,引出线不应有外伤和松动现象。其技术参数和对应等级符合称重传感器检定规程的技术要求并应满足皮带秤计量准确度的要求 5计量及控制仪表 5.1计量、控制仪表外壳、面板铭牌均应清洗完好,各标志符号、文字应清楚。 5.2各控制按钮、旋钮、开关均应安装牢固,无松动现象,并操作自如 5.3流量显示及累计值显示应清晰并标明计量单位。流量单位采用g/S ,kg/min或t/h;累计值单位采用kg或t。 6整机参数 6.1皮带秤的有效流量:额定流量的(20-100%) 二检定条件 7检定的环境要求 7.1环境温度:0-35度 7.2现对湿度:<85% 7.3大气压力:86-106KPa 8供电电源 8.1电源电压范围:交流187V-240V; 8.2电源频率:50HZ; 9附近无强磁场干扰

crc校验码 详细介绍看懂了就会了

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 编辑本段 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 【例】假设使用的生成多项式是G(x)=x^3+x+1。4位的原始报文为1010,求编码后的报文。 解: 1、将生成多项式G(x)=x^3+x+1转换成对应的二进制除数1011。 2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000 3、用生成多项式对应的二进制数对左移3位后的原始报文进行模2除,相当于按位异或: 1010000

电子皮带秤挂码校准

电子皮带秤挂马计算 具体计算过程 徐州默科仕测控技术有限公司提供 一、 17A电子皮带秤 1、挂码方法:一般挂二组,主副杠杆各一组,呈对称布置。 2、简易公式: 挂码总量Q1×挂码点到耳轴之距离L1=计量段物料重量Q2×计量段长度L的1/4 ...... 徐州默科仕测控技术有限公司,是一家专业从事工业计量、物料配比输送、输送过程监控保护产品的设计、制造服务专业厂家,其主导产品主要包括、配料系统、给料机、给煤机、除铁器、皮带输送保护、智能监控系统及MT2105显示测量仪表等。 有三种校验方式,电子、挂码、链码,链码校验方式,最接近实物方式。常用的是挂码校验。校验常数的计算很重要,因为挂码是直接施加在称体上,是传感器受力,模拟不了物料的特性,校验过程就是让仪表检测传感器受力和理论计算相一致的过程。如果计算不正确,会与实际值偏差很大。不同的皮带秤的计算公式并不一样。 1.挂码的悬挂位置 ICS-20A秤应在两组托辊的位置 ICS-20B秤应在两组托辊的中间位置 ICS-17A秤应在一、二和三、四组托辊的中间位置 ICS-17B秤应在两组托辊的中间位置 ICS-14秤应在第二及第三组托辊的位置 挂码施加时,应保证对称施加,受力均匀。该位置为各种电子秤的理论受力点,在该位置施加砝码时,杠杆比为1.0,否则应计算实际的杠杆比。杠杆比的计算公式为: 挂码到支点的距离(m) ———————————————

称体理论受力点到支点的距离(m) 2.挂码校准常数 2.1 挂码的等效载荷 挂码重量=施加在称重托辊的静态重量 计量段长度的测量方法是: 以米为单位的计量段长度,由以下方法确定 (1)分别从皮带输送机的两侧,测得从(十1)托辊到最远的称重托辊的距离。(2)分别从皮带输送机两侧测量从(-1)托辊到最远的称重托辊之间的距离。(3)计量段等于这四个数据的总和除以 4。 测量精度应精确到 1 毫米。 例:Kg = 200 D =4.8米 Kg/m=200÷4.8=41.67 Kg/m (2)挂码的标定常数的计算(单位为:吨): 挂码总重量(Kg) ————————× 杠杆比×皮带周长(m)× 圈数÷1000 计量段长度(m) 例:Lt=180米 N=5 挂码标定常数=41.67×180×5÷1000=37.5吨 c. 试验流量的计算(单位为:吨/小时): 砝码总重量(Kg)× 皮带周长(m)× 圈数————————————————————× 3.6 计量段长度(m)× 测试时间(s) 例:Lt=180米 N=5 T=450秒 挂码试验流量=41.67×180×5×3.6÷450=300T/H

校验链码说明书

CLM系列电子皮带秤 校验链码 使 用 说 明 书

CLM系列电子皮带秤校验链码 一:概述 中华人民共和国国家计量检定规程JJG650-90中规定链码是一种模拟负荷标准器在约定时间内可做为“电子皮带秤”的算验标定器。 电子“电子皮带秤”经过一段时间使用后,计量精度会发生变化,为了样核“电子皮带秤”的计量度,满足生产中的计量要求,CLM系列电子皮带秤校验链码符合中华人民共和国皮带秤计量检定规程JJG650-90的规定,是一种模拟负荷标准器,它能近拟的模拟物料作用于皮带上的单位长度的重量,作为“电子皮带秤”的校验标准器。 CLM系列“电子皮带秤校验链码”。动态校验计量精度高(静态3/1000,动态1/1000),操作方便,不占场地,即安全又减少了繁锁的劳动力,大大地提高了工作效率,节约企业的投资而且和实物校验装置“电子料斗秤”相比,“电子料斗秤”设备面积大,占用场地大,校验时又很麻烦,造价又高。CLM系列校验链码是解决皮带秤校验的首选设备。若加配自动收放卷扬装置能使链码在校验过程中进入自动化操作,大提高了工作效率。 二:链码的组成及工作原理 组成:链码由码辊和链板逐个连成一体,形状类似链条。 工作原理:链码模拟皮带上每米物料的负荷置于运行中的皮带上,两端用软绳呈“八”字形牵拉以防走偏或同皮带一起滑行,其位置应能覆盖电子皮带秤的称重托辊以及前后各二组托辊。记录皮带一圈的长度和运行的圈数,与链码的标称值之积作为基准值;以仪表在上述情况下的累积量值与基准值比较就能确定电子皮带秤的实际误差是否在允差范围,便能检定其计量精度是否合格。 三:技术指标及特点 精度:1/1000(自检精度3/1000) 特点:标定精度高 比实物校验结构简单,造价低 结构合理,构成均匀,操作方便 占地面积小,系统安全可靠 节省人力,工作效率高 可选的链码收卷装置,实现校验过程自动化

常用的检错码 - 奇偶校验码

3.2差错控制 3.2.2常用的检错码- 奇偶校验码 奇偶校验码是一种简单的检错码,奇偶校验码分为奇校验码和偶校验码,两者原理相同。它通过增加冗余位来使得码字中“1”的个数保持奇数或偶数。 ?无论是奇校验码还是偶校验码,其监督位只有一位; ?假设信息为为I1, I2, …, I n,对于偶校验码,校验位R可以表示为: R =I 1 ⊕I 2 ⊕Λ⊕I n ?假设信息为为I1, I2, …, I n,对于奇校验码,校验位R可以表示为: R =I 1 ⊕I 2 ⊕Λ⊕I n ⊕1 ?无论是奇校验码还是偶校验码,都只能检测出奇数个错码,而 不能检测偶数个错码。 4 4

讨论: 从检错能力、编码效率和代价等方面来评价垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验 3.2 差错控制 3.2.2 常用的检错码 - 奇偶校验码 奇偶校验在实际使用时又可分为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验等几种。 5

3.2.2常用的检错码–定比码 所谓定比码,即每个码字中“1”的个数与“0”的个数之比保持恒定, 故又名等比码或恒比码。 ?当码字长一定,每个码字所含“1”的数目都相同,“0”的数目也 都相同。 ?由于若n位码字中“1”的个数恒定为m,还可称为“n中取m”码 定比码(n中取m)的编码效率为: log C m R = ?2 n n 定比码能检测出全部奇数位错以及部分偶数位错。实际上,除了码 字中“1”变成“0”和“0”变成“1”成对出现的差错外,所有其它差 错都能被检测出来 6 4

代码“1011011”对应的多项式为x 6 + x 4 + x 3 +1 多项式“x 5 + x 4 + x 2 + x”所对应的代码为“110110” 3.2.2 常用的检错码 – 循环冗余检验 循环冗余码(Cyclic Redundancy Code ,简称CRC )是无线通信中用得最广泛的检错码,又被称为多项式码。 二进制序列多项式:任何一个由m 个二进制位组成的代码序列都可以和一个只含有0和1两个系数的m-1阶多项式建立一一对应的关系。 CRC 有关的多项式: ? 信息位多项式、冗余位多项式、码字多项式、和生成多项式 信息位1010001:K (x ) = x 6 + x 4 + 1 冗余位1101:R (x ) = x 3 + x 2 + 1; 码字10100011101: T (x ) = x 10 + x 8 + x 4 + x 3 + x 2 + 1 7

CRC校验码原理

CRC校验码 CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 目录 详细介绍 代数学的一般性运算 详细介绍 循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x3+x2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。

电子皮带秤挂码校准

电子皮带秤挂码校准Last revision on 21 December 2020

挂马计算 具体计算过程 徐州默科仕测控技术有限公司提供 一、 17A 1、挂码方法:一般挂二组,主副杠杆各一组,呈对称布置。 2、简易公式: 挂码总量Q1×挂码点到耳轴之距离L1=计量段物料重量Q2×计量段长度L的1/4 ...... 徐州默科仕测控技术有限公司,是一家专业从事工业计量、物料配比输送、输送过程监控保护产品的设计、制造服务专业厂家,其主导产品主要包括、配料系统、给料机、给煤机、除铁器、皮带输送保护、智能监控系统及MT2105显示测量仪表等。 有三种校验方式,电子、挂码、链码,链码校验方式,最接近实物方式。常用的是挂码校验。校验常数的计算很重要,因为挂码是直接施加在称体上,是传感器受力,模拟不了物料的特性,校验过程就是让仪表检测传感器受力和理论计算相一致的过程。如果计算不正确,会与实际值偏差很大。不同的皮带秤的计算公式并不一样。 1.挂码的悬挂位置 ICS-20A秤应在两组托辊的位置 ICS-20B秤应在两组托辊的中间位置 ICS-17A秤应在一、二和三、四组托辊的中间位置 ICS-17B秤应在两组托辊的中间位置 ICS-14秤应在第二及第三组托辊的位置

挂码施加时,应保证对称施加,受力均匀。该位置为各种电子秤的理论受力点,在该位置施加砝码时,杠杆比为,否则应计算实际的杠杆比。杠杆比的计算公式为: 挂码到支点的距离(m) ——————————————— 称体理论受力点到支点的距离(m) 2.挂码校准常数 挂码的等效载荷 挂码重量=施加在称重托辊的静态重量 计量段长度的测量方法是: 以米为单位的计量段长度,由以下方法确定 (1)分别从皮带输送机的两侧,测得从(十1)托辊到最远的称重托辊的距离。(2)分别从皮带输送机两侧测量从(-1)托辊到最远的称重托辊之间的距离。 (3)计量段等于这四个数据的总和除以 4。 测量精度应精确到 1 毫米。 例:Kg = 200 D =米 Kg/m=200÷= Kg/m (2)挂码的标定常数的计算(单位为:吨): 挂码总重量(Kg) ————————× 杠杆比×皮带周长(m)× 圈数÷1000 计量段长度(m) 例:Lt=180米 N=5

常见校验算法

常见校验算法 一、校验算法 奇偶校验 MD5校验 求校验和 BCC(Block Check Character/信息组校验码),好像也是常说的异或校验方法 CRC(Cyclic Redundancy Check/循环冗余校验) LRC(Longitudinal Redundancy Check/纵向冗余校验) 二、奇偶校验 内存中最小的单位是比特,也称为“位”,位有只有两种状态分别以1和0来标示,每8个连续的比特叫做一个字节(byte)。不带奇偶校验的内存每个字节只有8位,如果其某一位存储了错误的值,就会导致其存储的相应数据发生变化,进而导致应用程序发生错误。而奇偶校验就是在每一字节(8位)之外又增加了一位作为错误检测位。在某字节中存储数据之后,在其8个位上存储的数据是固定的,因为位只能有两种状态1或0,假设存储的数据用位标示为1、1、1、0、0、1、0、1,那么把每个位相加(1+1+1+0+0+1+0+1=5),结果是奇数,那么在校验位定义为1,反之为0。当CPU读取存储的数据时,它会再次把前8位中存储的数据相加,计算结果是否与校验位相一致。从而一定程度上能检测出内存错误,奇偶校验只能检测出错误而无法对其进行修正,同时虽然双位同时发生错误的概率相当低,但奇偶校验却无法检测出双位错误 三、MD5校验 MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc 发明,由MD2/MD3/MD4 发展而来的。MD5的实际应用是对一段Message(字节串)产生fingerprint(指纹),可以防止被“篡改”。举个例子,天天安全网提供下载的MD5校验值软件WinMD5.zip,其MD5值是1e07ab3591d25583eff5129293dc98d2,但你下载该软件后计算MD5 发现其值却是81395f50b94bb4891a4ce4ffb6ccf64b,那说明该ZIP已经被他人修改过,那还用不用该软件那你可自己琢磨着看啦。 四、求校验和 求校验和其实是一种或运算。如下: //-------------------------------------------------------------------------------------------------- //如下是计算校验位函数 // checkdata,包括起始位在内的前九位数据的校验和 //-------------------------------------------------------------------------------------------------- unsigned char CLU_checkdata(void) { //求校验和 unsigned char checkdata=0; for(point=0;point<9,TI=1;point++) { checkdata=checkdata | buffer[point]; } return(checkdata); } 四、BCC(Block Check Character/信息组校验符号)

电子皮带秤操作规程

电子皮带秤操作规程 一、皮重校准操作流程: 1.先保持皮带空转,等待运行平稳。 2.按菜单键,屏幕显示主菜单1界面。 3.按零点校准(正下方按键)。 4.按开始(正下方按键),自动调零倒计时开始(如I系列3圈159s,II系列3圈112s),倒计时结束,屏幕提示自动调零完成,误差值x%。 5.如果误差值在-0.09%到+0.09%范围之间,按改变(正下方按键),屏幕显示新零点值和旧零点值,按运行(正下方按键)返回主界面;如果误差值不在-0.09%到+0.09%范围之间,按改变(正下方按键),屏幕显示新零点值和旧零点值,按菜单(正下方按键)返回主菜单1重新零点校准,直至误差值介于-0.09%到+0.09%范围之间,按改变(正下方按键)保存,按运行(正下方按键)返回主界面。 6.如果主界面是累计界面,下卷切换至带有复位两字主界面。 二、链码校准操作流程: 1.链码校准前必须先皮重校准,操作同上。 2.固定链码:停止皮带运行,把链码平直放在皮带上(称体正上方处),首尾固定,两端必须全部压在有效称量段内,即覆盖电子皮带秤的称重托辊及前后的各一组托辊,并保持皮带表面

清洁,无杂物和水。 3.空转皮带,等待运行平稳,进行校准作业。 4.按菜单键一次,屏幕显示主菜单1界面 5.按间隔校准(正下方按键)。 6.按开始(正下方按键),自动间隔校准倒计时开始(I系列3圈159s,II系列3圈112s),倒计时结束,屏幕提示自动间隔校准完成,误差x%。 7.如果误差值在-1%到+1%范围之间,按运行键返回主界面。如果误差值不在-1%到+1%范围之间,按改变(正下方按键)保存,屏幕显示新间隔值和旧间隔值,按运行(正下方按键)返回主界面,按菜单键一次,屏幕显示主菜单1界面,按间隔校准(正下方按键),再按手动(正下方按键)据实际情况调整系数输入,按确定,按运行返回。间隔值手动改变后重新校准,直至误差值介于-1%到+1%范围之间,按运行按键返回主界面。 8.如果主界面是累计界面,下卷切换至带有复位两字主界面。 三、矿量查看: 1.连续按菜单键三次。 2.屏幕调至主菜单3。 4.按记录(正下方按键)。 5.按上下卷选择查询班次,查询结束 6.按运行返回主界面。

赛摩B皮带校验说明书完整版

赛摩B皮带校验说明书 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

赛摩6001B皮带秤参数设置及校验 1、初始参数设置 机械和电器安装完成后,对仪表进行初始化编程。以下参数应在校准前输入。设定累计单位 按菜单键两次,至屏幕 显示如下信息 按显示软键(下面)按下卷键(向下箭头),默认单位: t (吨) 带点的键,仪表显示仪表显示选择单位: t, Kg (公斤) 按选择键切换选项, 按确 认键确认选项 选择流量单位:按下卷键, 屏幕显示 默认单位: t/h(吨/小时) 选择单位: t/h, Kg/h, 百分比% 注: 百分比为当前流量相对最大秤容量的百分比值 设置最大秤流量:按菜单键, 返回主菜单2, 按秤数据屏幕显示 按卷动键, 默认: 最小值: 最大值: 200, 使用数字键输入最大秤容量, 按确认键 选择秤分度:按下卷键, 屏幕显示 默认: 1 选择: , , , 1 速度信号输入形式:按下卷键至屏幕显示 默认:外部 选择:外部,模拟 在未连接速度传感器时选择模拟速度信号功能,仪表内部模拟频率为20Hz 的速度信号。 选择校准模式:按菜单键返回主菜单2, 按校准数据,屏幕显示 按下卷键,屏幕显示默认:电子校准 选择:电子校准,链码校准 挂码校准 选择需要的校准方式,按确认键。

输入校准常数:按下卷键,屏幕显示 最大值:1000 最小值:0 默认值:1 根据皮带秤型号计算出校准常数,按数字键输入后,按确认。 自动建立测试周期 按下卷键,屏幕显示 选择自动(推荐使用)最大值:3000 在皮带上作出明显标志,,屏幕显示最小值:以称架上某点为参考点, 默认值:100 启动皮带,等到皮带上 测量出皮带秤上皮带一标志运行通过参考点时按 周长度,精确到 3mm ,开始键 输入后按确认键,屏幕 显示 当皮带运行需要的圈数按继续键,屏幕显示在建立测试周期中如选择后按完成键,屏幕显示手动,屏幕显示 该方式需要直接输入皮最大值:3000 最大值:100 带运行时间和皮带长度最小值:1 最小值:1 等参数,通常在操作者默认值:100 默认值:1 不能直接观测到皮带的输入皮带长度后按确认输入在测试时间内皮带情况下使用。按继续键后旋转的周数 最大值: 4800 如果在以上过程中按退 最小值:1 出键,中止手动建立 默认值:100 测试周期过程。 按确认键,皮带按照输 入的参数建立测试周期 自动零点校准 在自动零点校准期间, 皮带以最大速度运行 按菜单键至屏幕显示主菜单1 按零点校准键,屏幕显示按开始键后, 屏幕显示剩余时间为 0 时, 显示如需要改变零点按改变, 屏幕显示 自动间隔校准 零点校准完成后,按菜单键返回主菜单1,按间隔校准,屏幕显示 间隔校准可以使用三种不同的模拟载荷校准方式:电子校准、挂码校准、链码校准,仪表根据在校准数据中选择的校准方式和校准常数进行校准。

皮带秤检定规程

前言 本规程依据JJG195—2002《皮带秤检定规程》制定的。该规程等效采用国际法制计量组织(OIML)非自动衡器国际建议R76。 检定记录可参照JJG195—2002《皮带秤检定规程》制定。 由于水平有限,此规程在编写过程中难免出现许多不适当之处,望专家和同行们提出宝贵意见。

目录 1 适用范围 (1) 2 概述 (1) 3 计量技术要求 (1) 4 检定条件 (9) 5 检定项目和检定方法 (10) 6 检定结果处理和检定周期 (13)

电子皮带秤检定规程(试行) 1 适用范围 本规程适用于公司范围内用于安装、使用中和修理后的各种策略式累计计量皮带秤(以下简称皮带秤)的检定。 皮带秤是安装在皮带输送机的适当位置上,对散装物料自动地进行快速、连续、累计称量的计量器具。皮带秤称重系统由称重框架、称重传感器、测速传感器和称重指示控制器四大部分组成。 2 术语 JJG555-1996《非自动秤通用检定规程》的部分术语适用于本规程,为便于计量检定,特引用其计量管理中的部分术语。 2.1 检定 为评定秤的计量性能,确定其是否符合法定要求所进行的全部工作。 2.2 首次检定 对从未检定过的秤所进行的检定。 注:首次检定包括:新制造、新安装的检定。 2.3 随后检定 首次检定后的检定。 注:随后检定包括: a 周期检定; b 修理后检定; c 新投入使用强制检定的秤使用前申请的检定; d 周期检定有效期未到前的检定。该检定通常是根据被检单位或使用者的要求。

2.4 使用中检验 检验使用中的秤是否符合计量检定规程的要求;是否处于良好的工作状态;使用是否正确、可靠。通常使用中检验是一种监督性检验。 3 计量技术要求 3.1、皮带输送机 3.1.1 皮带输送机的制造和安装。 皮带输送机的制造和安装应符合国家标准《带式输送机技术条件》要求。 3.1.2 皮带输送机的基本参数 3.1.2.1 倾角 3.1.2.1.1 I、Ⅱ级秤≤6o。 3.1.2.1.2 Ⅲ、Ⅳ级秤≤18o。同时,倾角应保证物料在输送中无滚动和滑动。 3.1.2.2 三节槽形托辊组的槽角≤30o。 3.1.2.3 皮带长度 皮带展开长度一般取下列两值中的较少者。 3.1.2.3.1 长度≤200m 3.1.2.3.2 皮带在额定速度下运行3.0min的位移量。 3.1.2.4 皮带跑偏量不大于带宽的6%。 3.1.3 其它要求: 3.1.3.1 在输送过程中,物料在皮带上无粘留、阻塞、溢漏。 3.1.3.2 皮带接头不得超过三个,各速度段皮带的型号、规格应一致。 不能用金属卡子连接,应粘接。接缝与皮带侧边夹角不大于45o. 3.1.3.3 皮带每单位长度的质量应基本恒定,对于Ⅰ、Ⅱ级秤,其变化量应小于皮带单位长度平均质量的5%。对于Ⅲ、Ⅳ级秤,应小于皮带单位长度平均质量的10%。

相关文档