文档库 最新最全的文档下载
当前位置:文档库 › 列车轮轨接触几何参数

列车轮轨接触几何参数

列车轮轨接触几何参数
列车轮轨接触几何参数

轮轨接触几何参数

轮轨接触几何参数(wheel-rail contact geometry parameters)由轮轨接触几何关系所确定的轮对和钢轨上的一系列几何量。主要包括下述11种参数。

车轮名义直径由于车轮踏面具有斜度,各处直径是不相同的,根据规定,车辆在离轮缘内侧面70mm处(车辆)或73mm处(机车)测量得到的直径为名义直径,该圆称为滚动圆。车轮名义直径的大小影响机车车辆的性能。中国客车标准轮径为915mm,货车标准轮径为840mm,内燃机车标准轮径为1050mm,电力机车标准轮径为1250mm。

车轮滚动接触半径车轮在钢轨上滚动时接触点处的车轮半径(图中的r1和r2)。由于轮对沿钢轨向前滚动时,会一面相对钢轨横向移动、一面又绕通过其质心的铅垂轴转动,车轮和钢轨的接触点位置是在不断变化的,车轮滚动接触半径也是在不断变化的。

轮轨接触角过轮轨接触点的公切线与车轴中心线的夹角(图中的δ1和δ2)。在车辆运行过程中它是一个不断变化的量。

车轮踏面曲率半径轮轨接触点处车轮踏面横断面外形的曲率半径(图中的R1和R2)。对于锥形踏面车轮,车轮踏面曲率半径为无穷大。

轨头截面曲率半径轮轨接触点处轨头横断面外形的曲率半径(图中RT1和RT2)。

轮对侧滚角如果轮对离开轨道中心线位置而相对于轨道横向移动时,由于车轮踏面具有锥度,轮对左右车轮的滚动接触半径具有差别,这样车轴中心线相对于其原来的水平位置会产生一个夹角,此夹角即定义为轮对侧滚角(图中的φW)。

轮对横移量由于车轮踏面有锥度,轮对沿轨道向前运动时总是会伴随轮对相对轨道中心线横向移动,此移动量即为轮对横移量(图中的yw)。

轮对摇头角由于车轮踏面锥度的存在,轮对沿轨道向前运动时除了伴随轮对相对轨道中心线横向移动外,轮对还会绕通过其质心的铅垂轴转动,转动的角度即为轮对摇头角。

轮缘内侧距轮对两轮缘的内侧面间的距离即为轮缘内侧距(图中的b),对于标准轨距,轮缘内侧距为(1 353±2)mm。

轨距两根钢轨头部内侧间与轨道中心线相垂直的水平距离,并规定在轨顶下16mm处测量。世界上大部分国家均采用1435mm的标准轨距,即准轨。大于1435mm的称为宽轨,国外有1 676mm、1 524mm的轨距。小于1 435mm的称为窄轨,如1 067mm、1 000mm等。

轨底坡由于车轮踏面是有一定锥度的,且车轮均是外侧直径小内侧直径大,为了使车轮和钢轨合理配合并具有好的轮轨接触几何关系,轨道要设置轨底坡(一般轨底坡定为1:40),使轨头内倾,以适应车轮踏面的形状。

表2 LM踏面车轮与60kg钢轨配合时的轮轨接触参数

表1和表2分别是TB踏面车轮与50kg钢轨和LM踏面车轮与60kg钢轨两种标准轮轨的接触几何关系(车轮名义直径840mm,轮缘内侧距1 353mm,轨距1 435mm,轨底坡1:20)。

(完整版)3C车载接触网运行状态检测装置技术条件-20140710

车载接触网运行状态检测装置(3C) 暂行技术条件

目次 前言 (ii) 1. 范围 (1) 2. 规范性引用文件 (1) 3. 术语和定义 (1) 4. 组成和功能 (2) 5. 技术要求 (3) 6. 安装 (5) 7. 检验方法 (5) 8. 检验规则 (7) 9. 标志、包装、运输和贮存 (9) 10. 功能扩展 (9)

前言 为提高电气化铁路牵引供电系统的安全性和可靠性,应构建电气化铁路供电安全检测监测系统(6C系统)。车载接触网运行状态检测装置(以下简称3C装置)是6C系统的组成部分。 3C装置安装在运营动车组或电力机车上,实现对接触网的动态检测,检测结果用于指导接触网维修。 为了规范和统一3C装置的组成与功能、技术要求、安装和试验,确保检测数据的完整性、有效性及其应用效果,特制定本技术条件。 本技术条件由中国铁路总公司运输局负责解释。 本技术条件主编单位:中国铁道科学研究院、西南交通大学。 本技术条件主要起草人:王保国、王祖峰、李志峰、张克永、孟葳、韩通新、刘会平、吴积钦。

1.范围 本技术条件规定了车载接触网运行状态检测装置的术语和定义、组成及功能、技术要求、安装、检验方法、检验规则,标志、包装、运输和存储以及功能扩展等。 本技术条件适用于6C系统的车载接触网运行状态检测装置。 2.规范性引用文件 下列文件中的条款,通过引用而成为本技术条件的条款。凡是注日期的引用文件,其随后所有的修正或修订,只有当修正或修订被本技术条件引用之后,才适用于本技术条件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 146.1-1983 标准轨距铁路机车车辆限界 GB/T 17626.2-2006 电磁兼容性试验和测量技术静电放电抗扰度试验 GB/T 17626.3-2006 电磁兼容性试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.4-2008 电磁兼容性试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容性试验和测量技术浪涌(冲击)抗扰度试验 GB/T 17626.6-2008 电磁兼容性试验和测量技术射频场感应的传导骚扰抗扰度 GB/T 191-2008 包装储运图示标志 GB/T 21413.1-2008 铁路应用机车车辆电气设备第1部分:一般使用条件和通用规则 GB/T 21413.1-2008 铁路应用机车车辆电气设备第1部分:一般使用条件和通用规则 GB/T 2423.1-2008 电工电子产品环境试验第2部分试验方法试验A 低温 GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db:交变湿热(12h+12h 循环) GB/T 21563-2008 轨道交通机车车辆设备冲击和振动试验 GB/T 24338.4-2009 轨道交通电磁兼容第3-2部分:机车车辆设备 GB/T 25119-2010 轨道交通机车车辆电子装置 GB/T 4208-2008 外壳防护等级(IP代码) TB 10758-2010 高速铁路电力牵引供电工程施工质量验收标准 TB/T 1335-1996 铁道车辆强度设计及试验鉴定规范 TB/T 1484-2001 铁路机车车辆电缆 TB/T 1677-1997 电气化铁道牵引供电系统术语 TB 3271-2011 铁路应用受流系统受电弓与接触网相互作用准则 EN 50317-2002 铁路应用受流系统受电弓与接触网动态相互作用的测量要求与确认 铁运【2012】136号高速铁路供电安全检测监测系统(6C系统)总体技术规范 3.术语和定义 TB/T 1677-1997确立的以及下列术语和定义适用于本文件。 3.1 受电弓pantograph 从一条或多条接触线集取电流的装置,由弓头、框架、底架和传动系统等部分组成。 3.2 接触网overhead contact line equipment 通过受电弓供给机车/动车组电能的架空导线系统,主要由支柱、基础、支持结构及接触悬挂等组成。

FTJC-1接触网几何参数测量仪

FTJC-1接触网几何参数测量仪 产品概述与功能 FTJC-1接触网几何参数测量仪是电气化铁路接触网几何参数测量的专用仪器。本仪器系采用红光半导体激光器和相位脉冲技术,可对接触网的导高、拉出值、定位器坡度、锚段关节、线岔、超高、轨距和红线等参数进行快速测量。 产品特点 应用工业级TFT液晶,构成了全新的视频瞄准系统,从根本上解决了传统仪器瞄准的难题,基于B/S架构的软件,实现真正网络化管理。仪器具有现场数据处理功能,也可方便组合含GPRS与GPS模块的PDA(或者笔记本电脑)实现大规模数据详细分析、实时数据网络传输、部门间即使通讯等功能。 产品执行标准: TB/T3235-2010铁路专用几何计量器具通用技术条件; TB/T3227-2010接触网几何参数测量仪。 主要技术参数: 1、轨距:范围1410mm~1470mm,精度±0.5mm; 2、水平(超高):范围±200mm,精度±0.5mm; 3、导高:范围3000~15000mm,精度±3mm; 4、拉出值:范围±3000mm,精度±4mm; 5、线岔中心:精度±3mm; 6、500mm处高差:精度±4mm;

7、红线:精度±4mm; 8、侧面限界:精度±4mm; 9、承力索与接触线高差:精度±4mm; 10、跨铁道输电线与接触线的距离:精度±4mm; 11、锚段关节:精度士4mm 12、定位器坡度:1:n(n精确到0.1); 13、自由测量:水平精度±4mm,垂直精度:±3mm; 14、跨距测量:范围70000mm,精度±5mm; 15、导高 1 :范围: 3000-15000mm 精度:±3mm; 16、拉出值1 :范围:±3000mm,精度:±4mm; 17、导高: 2 :范围: 3000-15000mm 精度:±3mm; 18、拉出值2 :范围:±3000mm,精度:±4mm; 19、高差:精度 :±4mm; 20、导高 1 :范围: 3000-15000mm 精度:±3mm; 21、拉出值1 :范围:±3000mm,精度:±4mm; 22、定位器坡度:1:1(n精确到0.1); 23、导高: 2 :范围: 3000-15000mm 精度:±3mm; 24、拉出值2 :范围:±3000mm,精度:±4mm; 25、定位器坡度:2:1(n精确到0.1); 26、导高 1 :范围: 3000-15000mm 精度:±3mm; 27、拉出值1 :范围:±3000mm,精度:±4mm; 28、导高: 2 :范围: 3000-15000mm 精度:±3mm; 29、拉出值2 :范围:±3000mm,精度:±4mm; 30、高差:精度 :±4mm。

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之间的相互作用。

接触网几何参数检测仪的原理及应用

修改稿! 接触网几何参数检测仪的原理及应用于志刚1吴东波1赵少鹏1翟瑞占1 李庆卓1孟令华1 ( 1. 山东省科学院激光研究所 272017 ) 摘要:本文提供了一种全新的智能接触网检测系统,该系统融合激光测距,倾角、水平、光栅传感技术,以及CCD视频成像技术,并配合网络化的接触网数据管理模式,为铁路电气化接触网检测提供完美的解决方案,大大提高了检测和数据管理的工作效率。 关键词:激光接触网几何参数数字化智能网络化管理 Abstract :This article provides a new intelligent catenary measure system, which integrated laser range finder, angle, level, grating organ technology, as well as the CCD video imaging technology and cooperate the catenary network data management model, provide the perfect solution for railway electrification Catenary testing, would greatly improving the detection and data management efficiency. Key word: laser; Geometric parameters of catenary; digital;intelligent;network management 接触网是电气化铁路的重要供电设备,列车高速运行时通过受电弓和接触网滑动接触供电。为保证接触网供电的安全可靠,供电部门必须周期性的对接触网各项几何参数进行巡检和检修,保证行车安全。各项参数误差一旦超出允许范围,就很有可能发生工网事故,造成严重后果。随着列车运行速度的不断提高,列车对接触网的几何参数精度要求越来越高,传统的检测工具和管理模式已不能满足要求,急需更新换代。 1.系统概述 “DJJ-8数字化激光接触网检测仪”是山东省科学院激光研究所济南蓝动激光技术有限公司最新研制的新一代智能接触网几何参数检测管理系统。该系统由数据采集、数据分析、数据网络管理三部分构成,在接触网工区、供电段、铁路局之间实现无缝连接,形成一个有机整体。数据采集部分是检测仪的重要部分,利用激光测距技术和多种传感器融合技术测量接触网多种几何参数,并对数据进行初步分析和保存。数据分析和网络管理两部分是系统的核心部分,利用基于B/S架构的网络化数据分析软件,实现数据的智能化分析和数据共享,为铁路部门搭建接触网参数数字化管理平台。 2.接触网几何参数测量基本原理 DJJ-8系统的数据采集部分由主机和测量架两部分组成。参数测量时,先根据放置标准将测量架卡在钢轨上,主机卡在测量架固定座上,形成一个以钢轨面和钢轨中心为基准的测量平台。测量过程中,旋转主机,或前后移动测量架,使激光点打在目标测量点中心,按“测量键”即完成测量工作。在仪器内部,主机会根据键盘指令调动激光测距模块,光栅测角模块和内部各种传感器分别测量距离和角度,距离,水平,位移数据,按照一定的公式计算计

接触网组成及各部参数

7 施工技术要求 7.1技术标准与规范 本项目遵循的主要技术标准及规范(包括但不限于)以下所示,所采用的标准均应为项目执行时的最新有效版本。若投标人采用除上述之外的其它被承认的相关国内、国际标准,应明确提出并提供相应标准复印件,经招标人批准后方可采用。当相关标准发生冲突时,以较高版本的技术要求为准。 《地铁设计规范》(GB50157-2003) 《铁路电力牵引供电设计规范》(TB10009-2005) 《城市轨道交通直流牵引供电系统》(GB10411-2005) 《铁路电力牵引供电施工规范》(TB10208-98) 《铁路电力牵引供电工程施工质量验收标准》(TB10421-2003) 《地下铁道工程施工及验收规范》GB50299-1999 由招标人组织设计,监理工程师就某些特殊项目制定的标准。 有关设备及材料的制造、试验及验收等标准详见技术规格书。 7.2施工技术条件 7.2.1悬挂类型及组成

绝缘等级按重污区标准,绝缘子标称泄漏距离不小于250mm。 7.2.5绝缘间隙 绝缘间隙应符合GB50157-2003标准即带电体距结构体、车体之间的绝缘距离:静态为150mm,动态为100mm,绝对最小动态60mm。 7.2.6接触线悬挂高度 刚性接触网正线的最大拉出值一般为±200mm,辅助线道岔处工作支一般不超过350mm。 7.2.8跨距 刚性接触网悬挂点的间距一般为6~10m,最大不超过12m。 7.2.9锚段长度 刚性悬挂锚段长度一般不大于250m,最大不超过300m。 7.2.10中心锚结 刚性悬挂在锚段的中部设置中心锚结。在车站和矩形隧道内采用悬挂点两旁设防爬金具(可用汇流排电连接线夹替代)形式的中心锚结;盾构隧道内采用2个棒形的合成绝缘子“V”形布置在悬挂点两侧构成的中心锚结。 7.2.11电连接设置 刚性悬挂电连接设置 (1)非绝缘锚段关节处设置电连接。 (2)道岔处设电连接。

接触网常用参数标准及测量计算

接触网常用参数标准及测量计算 一、拉出值(跨中偏移值) 1、技术标准 160km/h及以下区段: 标准值:直线区段200-300mm;曲线区段根据曲线半径不同在0-350mm之间选用。 安全值:之字值≤400mm;拉出值≤450mm。 限界值:之字值450mm;拉出值450mm。 160km/h以上区段: 标准值:设计值。 安全值:设计值±30mm。 限界值:同安全值。 2、测量方法 利用DJJ多功能激光接触网检测仪进行拉出值测量:受电弓滑板平面与两钢轨平面平行,检测仪与两钢轨平面平行,测量时无需考虑外轨超高,直接校准定位点在检测仪上的投影位置,此位置与检测仪中心点的距离就是拉出值。 二、导线高度 1、技术标准 标准值:区段的设计采用值。 安全值:标准值±100mm。 限界值:小于6500mm;任何情况下不低于该区段允许的

最低值。 当隧道间距不大于1000m时,隧道内、外的接触线可取同一高度。 2、测量方法 利用DJJ多功能激光接触网检测仪进行导高测量:将测量仪置于两钢轨之上与两轨面平行,利用测量仪上的观察窗校准定位点位置,测出定位点至两轨面的垂直距离即为导高。 三、导线坡度及坡变率 1、技术标准 标准值: 120km/h及以下区段≤3‰;120-160km/h区段≤2‰;200km/h区段≤2‰,坡度变化率不大于1‰;200-250km/h区段≤1‰,坡度变化率不大于1‰。 安全值:120km/h及以下区段≤5‰;120-160km/h区段≤4‰。其他同标准值。 限界值:120km/h及以下区段≤8‰;120-200km/h区段≤5‰;200km/h及以上区段同安全值。 160km/h及以上区段,定位点两侧第一根吊弦处接触线高度应相等,相对该定位点的接触线高度允许误差±10mm,但不得出现V字型。 2、测量与计算方法 定位点A与定位点B之间的坡度测量:1、测出A点的

列车轮轨接触几何参数

轮轨接触几何参数 轮轨接触几何参数(wheel-rail contact geometry parameters)由轮轨接触几何关系所确定的轮对和钢轨上的一系列几何量。主要包括下述11种参数。 车轮名义直径由于车轮踏面具有斜度,各处直径是不相同的,根据规定,车辆在离轮缘内侧面70mm处(车辆)或73mm处(机车)测量得到的直径为名义直径,该圆称为滚动圆。车轮名义直径的大小影响机车车辆的性能。中国客车标准轮径为915mm,货车标准轮径为840mm,内燃机车标准轮径为1050mm,电力机车标准轮径为1250mm。 车轮滚动接触半径车轮在钢轨上滚动时接触点处的车轮半径(图中的r1和r2)。由于轮对沿钢轨向前滚动时,会一面相对钢轨横向移动、一面又绕通过其质心的铅垂轴转动,车轮和钢轨的接触点位置是在不断变化的,车轮滚动接触半径也是在不断变化的。 轮轨接触角过轮轨接触点的公切线与车轴中心线的夹角(图中的δ1和δ2)。在车辆运行过程中它是一个不断变化的量。 车轮踏面曲率半径轮轨接触点处车轮踏面横断面外形的曲率半径(图中的R1和R2)。对于锥形踏面车轮,车轮踏面曲率半径为无穷大。 轨头截面曲率半径轮轨接触点处轨头横断面外形的曲率半径(图中RT1和RT2)。 轮对侧滚角如果轮对离开轨道中心线位置而相对于轨道横向移动时,由于车轮踏面具有锥度,轮对左右车轮的滚动接触半径具有差别,这样车轴中心线相对于其原来的水平位置会产生一个夹角,此夹角即定义为轮对侧滚角(图中的φW)。 轮对横移量由于车轮踏面有锥度,轮对沿轨道向前运动时总是会伴随轮对相对轨道中心线横向移动,此移动量即为轮对横移量(图中的yw)。 轮对摇头角由于车轮踏面锥度的存在,轮对沿轨道向前运动时除了伴随轮对相对轨道中心线横向移动外,轮对还会绕通过其质心的铅垂轴转动,转动的角度即为轮对摇头角。 轮缘内侧距轮对两轮缘的内侧面间的距离即为轮缘内侧距(图中的b),对于标准轨距,轮缘内侧距为(1 353±2)mm。 轨距两根钢轨头部内侧间与轨道中心线相垂直的水平距离,并规定在轨顶下16mm处测量。世界上大部分国家均采用1435mm的标准轨距,即准轨。大于1435mm的称为宽轨,国外有1 676mm、1 524mm的轨距。小于1 435mm的称为窄轨,如1 067mm、1 000mm等。 轨底坡由于车轮踏面是有一定锥度的,且车轮均是外侧直径小内侧直径大,为了使车轮和钢轨合理配合并具有好的轮轨接触几何关系,轨道要设置轨底坡(一般轨底坡定为1:40),使轨头内倾,以适应车轮踏面的形状。

接触网技术参数统计

接触网技术参数统计 1刚性接触网 1.1锚段及跨距 每个锚段一般不超过250米。 1.2锚段关节 (1)关节中间处两接触线等高。 (2)转换悬挂点处非工作支不得低于工作支,可以比工作支高出0~8mm(0~4mm),困难情况下不超过10mm。 (3)受电弓在双向通过时应平滑无撞击和拉弧现象。 (4)非绝缘锚段关节两支接触悬挂的拉出值均为±100mm(75mm),汇流排中心线之间距离为200mm(150??),允许误差±20mm。接触线外露长度为150mm。 (5)绝缘锚段关节两支接触悬挂的拉出值均为±150mm(130mm),汇流排中心线之间距离为300mm(260??),允许误差±20mm。接触线外露150mm。 绝缘貌端关节示意图

1.3线岔 (1)在受电弓可能同时接触两支接触线范围内的两支接触线应等高。 (2)在受电弓始触点后至岔尖方向,渡线接触线应比正线接触线高出0~10mm(0~4)。(3)在受电弓双向通过时应平滑无撞击及不应出现固定拉弧点。 (4)单开道岔悬挂点的拉出值距正线汇流排中心线为200mm,允许误差±20mm。平行段距离为2000mm。 (5)交叉渡线道岔处的线岔,在交叉渡线处两线路中心的交叉点处,两支悬挂的汇流排中心线均距交叉点100mm,允许误差±20mm。 (6)侧线端部向上弯70mm左右。 (7)线岔处电连接线、接地线应完整无遗漏,连接牢固。 道岔分类

刚性悬挂线岔示意图 1.4刚柔过度 (1)两根柔性接触网等高并列运行进入刚柔过渡元件约500mm后,在过渡原件外面的导线逐渐抬高脱离接触,其最终的抬高量不应小于35mm。 (2)刚柔过渡处刚性悬挂应比柔性悬挂高20~50mm。 (3)柔性悬挂升高下锚处绝缘子边缘应距受电弓包络线不得小于75mm。 (4)刚性悬挂带电体距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于150mm。(5)受电弓距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于100mm。 (6)受电弓双向通过时平滑不撞击及不应出现固定拉弧点。 (7)两支悬挂的拉出值为±100mm,间距为200mm,允许误差±20mm。 贯通式刚柔过渡单链悬挂示意图

TYJJ-2型接触网几何参数测量仪使用说明书

目录 一、概述 1 二、组成 1 三、主要技术指标 2 四、基本操作 4 五、使用说明 5 六、仪器校正7 七、查看数据9 八、充电说明9 九、注意事项10 十、保修条款11 十一、免责声明12

前言 尊敬的客户: 欢迎你购买和使用我公司的产品,向您对我公司产品的信任表示衷心的感谢! 本公司自成立以来,始终将生产具有国际先进水平的检测仪器产品作为自身的奋斗目标。本公司生产的检测仪器外形美观,性能可靠,界面友好,操作简便。使用仪器前请仔细阅读本操作手册。 您在使用仪器过程中如发现问题或提出建议,请及时向我们反馈,我们将竭诚为你服务并表示衷心的感谢! 为保持仪器的良好工作状态,建议您严格按操作手册使用仪器。

为保持仪器的良好工作状态,建议您每年在销售网点或厂家进行一次专业的仪器保养。 北京精准伟业测控技术有限公司 2014年3月 手册中使用的符号 本手册中使用的符号有如下含义: 警告: 表明潜在的不良或危险的使用,如不防止,将会导致人员或仪器损伤。 注意: 表明用户如果不按照规定操作,将导致错误

的测量结果。 用户说明: 帮助用户在技术上正确有效的操作。 安全说明: 本说明可使TYJJ-2型接触网几何参数测量仪的使用人员正确了解使用过程中可能出现的危险情况,以便提前采取预防措施。负责人应该确保所有使用人员阅读并遵循此手册。 仪器的使用范围: 电气化铁路接触网设备几何参数测量。 仪器的禁用范围: 在未阅读本手册的情况下开启本仪器。 在仪器指定的使用范围之外。 破坏安全系统,取掉说明或危险标志。

在未经授权的情况下,用工具打开本仪器。 在未经授权的情况下,更新或改造本仪器。 未取得使用资格。 使用未经本公司认可的其它厂家的附件。 直接瞄准太阳。 故意指向其它耀眼的物体。 未采取安全措施的测量现场。 警告: 1、在未掌握仪器的使用方法前,勿操作此仪器。 2、本产品设置有可见激光,从仪器的顶端发射。 3、本产品属于二级安全激光产品,连续观察激 光束有害,要避免激光直射眼睛。 4、当激光照射在如棱镜、平面镜、玻璃上时, 眼睛直接观察发射光可能具有危险性。

接触网全参数激光测量仪

第四代 JQJ-Z型接触网全参数激光测量仪 产品简介 JQJ-Z型第四代接触网全参数激光测量仪是我公司JQJ系列 视频激光测量仪的升级产品,是电气化铁道接触网作业一体化测 量的首选产品。测量仪采用全数字信号视频采集模块,工业级的 摄像头直接将各测量位置成像在仪器的3.5英寸真彩色TFT液晶 屏幕上,并在同一屏幕中同时显示图象和测量数据,避免了来回 切换界面的繁琐操作,使得整个瞄准和测量过程更加方便迅速。 其采用徕佧原装工业级激光测距传感器,结合高精度角度传感 仪,可以在白天、夜晚、刮风、有雾天对接触网的各项几何参数 进行快速准确测量。该测量仪能实现接触网基础数据的迅速精确 测量、自动存储分析、实时传输共享,支持含3G或WiFi模块的 平板电脑、智能手机与系统进行无缝连接,实现远距离存储及分 析功能。 产品应用 该仪器可实现包括接触网导高、拉出值、侧面限界、轨距、超高等十几项常规参数的测量,线岔、锚段关节等复杂项目等只需简单一键式测量均可自动计算并显示需要的结果。仪器独创一分钟现场自检、现场校验功能,并具有简洁的人机界面、一键式测量、影像及数据同屏显示、数据查看等实用功能。仪器广泛应用于国铁普速、客专高铁、城轨地铁等电气化接触网线路,至今已为多家铁路单位的电气化铁道建设维护提供了有力的支持,同时该产品也是第三届全国铁道行业职业技能竞技比赛用测量仪。 功能特点 ◆ 3.5英寸真彩色液晶屏幕、图像清晰,瞄准十字激光点可选,快速精确 ◆基于高端相机原理的新型底座:全不锈钢材质,单手45度旋转安装一步到位,自动清除电极氧化层, 确保机械和电气部件连接可靠 ◆夜间背光按键设计可选,夜间操作方便 ◆无死角测量,角度范围达到-120度到+120度 ◆内置电池,两块3600mAh大容量锂电池,可连续工作8小时以上 ◆全中文操作界面、高精度数据测量,精度完全满足高速铁路检测需要 ◆面板可抬升收纳,多角度抬升适应不同测量习惯,不工作时收起缩小占用空间 ◆SD卡或掌上电脑(增配)实时接收保存数据、掌上电脑语音报数,数据存储方便 ◆一体化测量,接触网常规参数全测量:白天、夜晚、刮风、有雾天,区间、站场、隧道接触网参数均 能准确测量 根据用户需求,提供软件升级支持和功能的不断拓展

高速列车轮轨接触关系研究

高速列车轮轨接触关系研究 作者:邓柯 来源:《科学与信息化》2020年第31期 摘要高速列车是指车头流线造型设计,行驶速度在200km/h及以上的列车。随着列车运行速度的提高,复杂轮轨载荷占比的提升。由轮轨滚动接触引起的钢轨接触疲劳裂纹、钢轨磨耗、剥离掉块等钢轨损伤问题越来越严重,对列车运行安全造成极大的威胁。轮轨接触关系在高速轨道交通系统动力学中的重要性变得很突出。为了研究高速运行的列车更加实际的轮轨接触关系,本文从轮轨接触原理出发,运用先进的轮轨几何接触关系算法,构建出三维模型,利用仿真验证算法的有效性和准确性,以解决轮对在不同姿态下的轮轨接触问题。建立了高速列车轮轨接触力学模型,在此基础上进行相应的数值计算、分析和研究。 关键词高速列车;轮轨动力学;车轮擦伤;动力学建模;轮轨接触行为 引言 随着科学技术的不断发展,铁路运输的变化也十分巨大,最突出的变革就是高速动车组运行速度的不断提高。长期高速高频率地运行造成的结果是轮轨的磨耗严重,轮轨相互作用加强。轮轨的外形也会因此发生改变、轨道以及车轮轮面几何参数都会变化,介于车轮与铁轨间的强烈相互作用对轨道运输系统的安全性和平稳性带来了严重影响。不仅如此,车轮轮面轨距、轨底坡和轮对内侧距等参数直接改变了轮轨接触几何关系,造成车轮踏面伤损日益严重。学者普遍认识到轮轨接触关系对车辆系统的重要影响。为了确保列车关键零部件不因疲劳运行危及运输安全,加速轨道变形和降低轨道的稳定性。研究轮轨关系中轮轨几何参数和接触条件对轮轨关系的影响很有必要。 1 车辆轮轨接触分析 1.1 车辆动力学的提出及发展 车辆动力学的发展始于18世纪末期和19世纪初期,在轨道交通的发展历程上,数学模型在车辆系统的应用始终没有停滞,从20世纪50年代初的210km/h的日本高速铁路,到法国电

轮轨接触力学

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这 一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取 得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及 其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之 间的相互作用。

总结轮轨关系汇总

轮轨关系 轨道车辆和线路的作用问题是铁路轮轨接触式运输的基本问题。发展重载运输必须解决好轮轨之间的动力作用,努力减轻重载列车与线路的动态作用。但由于轮轨关系自身的复杂性,目前的研究理论和模型仍然基于一些假设[1]: 1)法向接触满足Hertz 接触条件; 2)轮轨接触副视为弹性半空间; 3) 接触表面是理想光滑连续的,而接触表面之间的 “第三介质 ,’ 如水、油和其它污染物的影响被忽略; 4) 轮轨接触斑以外边界支撑和约束条件对轮轨接触行为的影响被忽略; 5) 高速轮轨滚动接触时的惯性力被忽略; 6) 不考虑温度的影响。 上述几点假设是不符合实际但是理论的前提。 轮轨关系的主要研究内容为轮轨接触几何的确定和轮轨滚动接触理论的应用。实际接触参数计算和列解微分方程的过程可简述如下: 在某一瞬时位置确定轮轨接触点是关键,之后就可以在确定了接触点的基础上利用几何推导出各个重要的接触几何参数,如左右轮/轨在接触点的接触角L δ、R δ,左右轨在接触点处的钢轨顶面曲率半径RR ρ、RL ρ,左右轮在接触点处的踏面曲率半径WR ρ、WL ρ,左右轮实际滚动半径R r 、L r ,轮轨接触时的侧滚角k θ,轮对中心的上下位移k z ,其中变量为轮对相对轨道的横移量和摇头角w y 、w ψ。利用已求得的接触参数和Hertz 接触理论公式计算出接触椭圆的长短半轴,从而确定轮轨接触斑。然后利用接触椭圆的长短半轴长和查表得到的kalker 系数及材料常数计算得到蠕滑系数,之后再通过实际速度和纯滚动速度计算出蠕滑率,将二者带入蠕滑力公式求得蠕滑力。最后就可以列出含有蠕滑力,悬挂力,惯性力的运动微分方程,利用计算机求解得到位移、速度、加速度和相关模态值。 最初进行轮轨接触几何关系研究并确定接触参数的实用方法有两种:一种是圆弧形截面模型,一种是任意截面模型。前者可直观的用数学解析的方法确定其几何关系,后者是数值方法,需编程实现。前者在综述中提到;现重点论述后者,它是一种通用性很强的求解轮轨接触几何的数值方法。

轮轨接触关系仿真计算

西南交通大学 轮轨接触几何参数的仿真计算 学院:机械工程学院 专业:机车车辆 姓名:温朋哲 学号: 2015200312 2016年6月

1.引言 轮轨关系是轨道交通工程的重要研究课题。轮轨接触几何是轮轨关系研究的基本内容。高速铁路的车辆运行稳定性和曲线通过能力的矛盾激化,轮轨作用加剧。因此,高速铁路的发展提出许多轮轨关系研究的新问题。世界范围内,不同的国家采用的钢轨、车轮踏面和轮对内侧距不尽相同。国内外研究表明,车轮踏面形状和轮对内侧距直接改变轮轨接触几何关系,由此产生不同的轮轨作用,进而影响高速列车系统动力学性能。当今世界高速铁路主要存在三种主流踏面及与其对应的钢轨,即中国车轮踏面LMA与钢轨断面CHN60、日本新干线圆弧车轮踏面JP- ARC与钢轨JIS60和欧洲标准车轮踏面S1002和钢轨UIC60。本文以SIMPACK数据库中自带的踏面S1002与钢轨UIC60为例,应用SIMPACK动力学软件,对其接触几何关系进行了仿真计算。 2.求解方法 2.1基本假设 (1)刚体假定。假定车轮与钢轨均为刚体,他们不存在影响接触关系的弹性变形,或者说车轮表面上任一点不能嵌入钢轨内部。而且在各种条件下轮轨始终保持接触,轮轨的相对运动除纵向位移外还有横向位移和摇头角位移。轮轨几何参数与轮对在钢轨上的纵向位置无关,这些参数实际上是车轮相对轨道的横移和摇头角的函数。 (2)同一侧车轮上的接触点和钢轨上的接触点具有相同的空间位置。 (3)轮轨接触点处车轮与钢轨具有公切面。

2.2求解方法 文献[1]提出的采用迹线法思想来处理轮轨空间接触几何关系,目前已得到了较好的应用[2,3]。其基本思路是在求轮轨接触几何关系时,可以暂时抛开轨面的形状,仅由轮对的位置(摇头角y、侧滚角ψ)和踏面主轮廓线参数(滚动圆半径R、接触角W)确定可能接触点,每个滚动圆上有且仅有一个可能接触点,这些可能接触点的集合形成一条在踏面上的空间曲线。该方法具有精度高、速度快、稳定性好等优点。 3.建立模型 3.1创建文件 主窗口>>File>>Open File,弹出文件选择窗口。 选择建立的文件目录,点击New,输入文件名,回车。

浅谈接触网动态检测

浅谈接触网动态检测 冯磊 摘要:接触网检测技术是高速铁路建设的关键之一。随着铁路的不断提速对电 气化接触网的要求会更高。不确定因素会更多,对检测设备要求也会更高。因此, 不断提高检测技术及设备水平才能保证电气化接触网的良好状态,才能保证电气 化铁路的运输畅通。 关键词:接触网动态监测 一概述 铁路发展经历了从蒸汽时代、内燃时代到电气时代的过程,提速离不开电气化铁路。接触网担负着把从牵引变电所获得的电能直接输送给电力机车使用的重要人物,因此接触网的质量和工作状态将直接影响着电气化铁道的运输能力。 接触网是沿公务线路架空布臵,向电气列车连续提供电力的设备,是电气化铁路的重要组成部分。它具有露天、无备用、架空等特性,运行状态和技术参数受机车车辆、公务线路和自然环境影响极大。运行中的电气列车通过受电弓滑板和接触线间的滑动摩擦从网上取流,弓网间机械运动会对接触网造成不同程度的损伤,随时改变接触网设备的技术状态,甚至造成行车事故,如发生弓网故障造成断线,断续的取流过程有可能造成接触线烧损,机车带电过分相会毁坏分相绝缘器,受电弓状态不良造成定位线夹脱落、偏移等。公务线路外轨超高的改变会造成动态拉出值增大,发生刮弓故障。严冬季节雨雪天气会造成接触网覆冰,发生接触网断线故障,风力过大甚至导致支持装臵翻转和接触网舞动,严重危及行车安全。因此随时掌握接触网的运行状态以及有关参数,及时对接触网设备进行检修,确保接触网设备技术参数和运行状态符合安全运行的要求,对安全运输的顺利进行有着

至关重要的作用,接触网动态检测就为这种要求提供了可靠的保证。二重要性 接触网是一个复杂、庞大的供电系统,要达到向电气列车安全不间断的供电目的,必须满足以下几个方面技术条件: 1、符合安全运行要求的几何参数,如拉出值、导线高度、各种限界等。 2、具有与运输能力相匹配的供电能力,电器参数复合要求,如网压、主导电回路载流能力等。 3、在一定速度下要有良好的弓网关系,如硬点产生的冲击尽可能小,接触压力不得过大或过小,离线时间较短等。 4、接触设备各部件质量良好,如接触网零部件、线索、支持装臵的材质、工艺等符合要求。 接触网动态监测主要是针对前三方面的要求进行动态测量,并根据对检测数据的综合分析,对接触网当前的运行状态和弓网关系做出恰当的判断,向生产站段提出接触网检修设备的检修内容。 接触网检测是运用技术手段对接触网参数进行在线检测,根据接触网设备可测得的和外部可辨认的特征对其工作状况进行评价。在高速铁路的建设和发展上,电气化铁路以其显著的优点被许多国家作为大力研究和重点发展的目标,使得接触网设备的检测特别是动态监测变的越来越重要,主要体现在以下几方面: 1、高速电气化铁路的建设和发展需要不断的积累经验,通过不同条件、各种项目检测的结果分析,验证预期效果,找出设备运行规律,为今后设计、施工、维修持续改进提供依据。 2、接触网作为电气化铁路的重要设备,其质量优越与电力机车运行安全直接相关,由于接触网设备露天布臵且无备用,工作环境恶劣,如不加强设备检修,及时发现整治设备隐患,就会危及行车安全,

浅析铁路接触网几何参数测量仪的应用及检定

浅析铁路接触网几何参数测量仪的应用及检定 摘要:随着经济的快速发展,我国电力系统发展迅速,接触网激光测量仪广泛 的应用于铁路供电系统的检修作业当中,本文就铁路接触网激光测量仪的应用及 检定进行论述分析。 关键词:铁路;接触网几何参数测量仪;应用;检定 0引言 铁路是我国交通运输的重要方式之一,是我国交通运输发展的重要方向,在 实际运输过程中,铁路接触网几何参数的检测、参数管理直接关系到铁路运输的 安全,近年来,随着科学技术的不断发展,我们单位引进了多台接触网几何参数 测量仪,实现了对供电设备参数的智能化管理。 1接触网几何参数测量仪在铁路供电作业中的应用 1.1接触网几何参数测量仪的概述 随着列车运行速度的不断提高,列车对接触网的几何参数精度要求越来越高,在供电系统中,我们将接触网几何参数测量仪运用于对电气化铁路接触网几何参 数的测量中,可对接触线高度、拉出值、轨道轨距、水平(超高)以及支柱侧面 限界等几何参数进行准确测量。接触网几何参数测量仪由测头和支架组成,测头 功能主要包括激光测量、垂直角度测量,支架为平放于轨道间的横杆,主要起支 撑测头、测量轨距、测量水平倾斜角度等作用。 1.2简述接触网几何参数测量仪的现场使用方法 将测量架放置于待测目标下方的轨道面上,拨动测量架右端的轨距手柄,使 测量架两端的固定测脚和活动测脚都紧靠钢轨内沿,保持测量架与轨道基本垂直,将主机放置于测量架的定位盘上,并使旋紧旋钮处于旋紧状态。 根据提示用手轻轻旋转主机头,直至显示屏上出现视频图像,即表示仪器进 入正常测量状态,可以开始测量。在测量状态下,瞄准目标后即可按下相应功能 键进行测量,并显示测量结果,如果没有瞄准目标则提示“进入盲区或未对准目标请重新测量”。根据屏幕的提示:“请输入杆号”,输入杆号后按“确认”,就可以看 到该杆号下测量的数据。当完成所有测量任务后,把数据用U盘导出可存入电脑,进行数据统计分析。 图一、接触网几何参数测量仪的现场测量 2接触网几何参数测量仪的检定 为保证接触网几何参数测量仪在现场作业中测量的准确性,我段建立了接触 网几何参数测量仪检定标准,每半年对设备进行一次检定,达到检定要求方可继 续使用。检定标准的建立使测量仪的定期检定和校准更加方便和及时,可有效保 证接触网几何参数检测和维护工作的准确、可靠,从而保证了铁路运营的安全。 图二接触网几何参数测量仪检定台架的组成 2.1 接触网几何参数测量仪检定标准概况 接触网几何参数测量仪属于铁路专用计量器具,根据相关法律法规要求,应 定期对该量具进行检定,合格后方可使用。天津供电段于2017年底建立了接触 导线几何参数测量仪检定标准,该标准包括检定台架、配套设备及相应的技术文 件集等,其中检定台架是根据测量仪的工作状态和工作环境进行模拟设计的,由 模拟接触线组件、模拟钢轨组件以及模拟支柱侧面限界组件三部分组成,相应的

轮轨接触几何关系探讨

轮轨接触几何关系探讨 卜庆萌 指导教师姚林泉 摘要: 轮轨接触几何关系在高速、安全的轨道交通中具有重要的作用。本文根据我国使用的三种主要车轮踏面的轮廓线,采用对其一、二阶导函数比较分析的方法研究它们的光滑度。同时考察不同规格钢轨的光滑度以及与各车轮踏面相配合的结果。从轮轨几何光滑接触的角度,指出了较优的车轮踏面,较优的轮轨配合以及几何优化原则。 关键字:轮轨关系,接触几何,车轮踏面,钢轨 Abstract: The geometric relation of wheel-rail contact plays an important part in fast and safety rail transportation. Based on the three main Chinese wheels, we work out the first and second derivative of the contours in order to compare their smoothness. Also we research the smoothness of different rails and the effect to work in different wheels. From the aspect of that wheel and rail contact in smoothness, the better interface, the better coupling of wheel-rail and the principle of geometric optimization are shown. Keywords: wheel-rail relation,contact geometry,wheel treads,rail 1 引言 随着铁路列车运行速度、运载重量和运输密度的大幅度提高,机车车辆与轨道结构之间的相互作用引发的问题更加严重,也更趋复杂。列车运行速度越高,机车车辆在线路上的行车安全性与运行平稳性问题越显突出,既要保证机车车辆快速通过线路平纵断面曲线、道岔及桥头过度段等关键段时不颠覆、不脱轨,又要确保车辆具有良好的乘坐舒适度[1]。 由于车速的提高和轴重的加大,不可避免地会增大轮轨间的相互作用力,加剧车轮与钢轨磨损,导致钢轨、车轮频繁维修甚至更换,这不仅增加了运营成本,而且对环境造成了负面影响。据资料记载,我国每年仅在曲线轨道上换轨耗费就超过10.5亿元。若采用综合减磨措施能将钢轨使用寿命延长50%,每年可节省3.5亿元[2]。如何在提高铁路运能的同时,降低其运营成本,是急需研究的重要课题。轮轨的磨损按位置分有侧磨面和踏面磨损,而轮缘和钢轨侧面的磨耗是轮轨主要的磨耗, 约占轮轨磨耗总量的三分之二[3]。在平直轨段,由于扰动等因素使列车产生蛇行运动时,轮轨之间要发生侧磨;在转弯段,一般外侧轮缘要挤压钢轨以提供向心力,即该状况下也会产生侧磨,在小半径大坡道地段, 这种磨耗特别明显。列车轴重增加会加重轮面对钢轨轨头的伤损, 在曲线上,同时会因导向力的变大加剧侧磨。

轮轨接触几何关系及滚动理论

第三节轮轨接触几何关系及滚动理论 轨道车辆沿钢轨运行,其运行性能与轮轨接触几何关系和轮轨之间的相互作用有着密切的关系。同时,由于轮轨的原始外形不同和运用中形状的变化,轮轨之间的接触几何关系和接触状态也是不同和变化的。 米用车轮轴承、滚动是车辆获取导向、驱动或制动力的主要方式,轨道车辆中地铁、轻轨常采用钢轮钢轨方式,而独轨、新交通系统及部分地铁则采用充气轮胎走行在硬质导向路面上。车轮与导轨间的滚动接触关系决定了它们间的作用力、变形和相对运动。因此滚动接触直接影响城市轨道车辆的性能、安全、磨耗与使用寿命。 一轮轨接触参数和接触状态 当车辆沿轨道运行时,为了避免车轮轮缘与钢轨侧面经常接触和便于车辆通过曲线,左右车轮的轮缘外侧距离小于轨距,因此轮对可以相对轨道作横向位移和摇头角位移。在不同的横向位移和摇头角位移的条件下,左右轮轨之间的接触点有不同位置。于是轮轨之间的接触参数也出现变化。对车辆运行中动力学性能影响较大的轮轨接触几何参数如下(图5一8): 1左轮和右轮实际滚动半径r L ,r R。当轮对为刚性轮对,轮对绕其中心线转动时,各部分的转速是一致的,车轮滚动半径大,在同样的转角下行走距离长。同一轮对左右车轮滚动半径越大,左右车轮滚动时走行距离差就加大,车轮滚动半径的大小也影响轮轨接触力。 2左轮和右轮在轮轨接触点处的踏面曲率半径和 3左轨相石轨在稚轨接触点处的矶头截曲曲率半径和轮轨接触点处的曲率半 径大小将会影响轮轨实际接触斑的大小、形状和轮轨的接触应力。 4左轮和右轮在接触点处的接触角s:和6R,即轮轨接触点处的轮轨公切面与轮对中心。 线之间的夹角。轮轨接触角的大小影响轮轨之间的法向力和切向力在垂向和水平方向分量的大小。 5轮对侧滚角小w。轮对侧滚角会引起转向架的侧滚和车体侧滚。 6.轮对中心上下位移Z w。该量的变化会引起转向架和车体的垂向位移。 研究轮轨接触关系时应特别注意轮轨间的接触状态。车轮与钢轨之间的接触状态可能有

相关文档
相关文档 最新文档