文档库 最新最全的文档下载
当前位置:文档库 › 新型螺线管磁场测定实验报告

新型螺线管磁场测定实验报告

新型螺线管磁场测定实验报告
新型螺线管磁场测定实验报告

新型螺线管磁场测定

一.实验目的

1.验证霍耳传感器输出电势差与螺线管磁感应强度成正比。 2.测量集成线性霍耳传感器的灵敏度。 3.测量螺线管磁感应强度与位置之间的关系,求得螺线管均匀磁场围及边缘的磁感应强度。 4.学习补偿原理在磁场测量中的应用。 二.实验原理

霍耳元件的作用(如右图2所示):若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直于该半导体,是电子流方向由洛伦茨力作用而发生改变,在薄片两个横向面a 、b 之间应产生电势差, 这种现象称为霍耳效应。在与电流I 、磁场B 垂直方向上产生的电势差称为霍耳电势差,通常用UH 表示。霍耳效应的数学表达式为:

IB K IB d

R U H H

H ==)(

(1)

其中RH 是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。B 为磁感应强度,I 为流过霍耳元件的电流强度,KH 称为霍耳元件灵敏度。

虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,UH=0,但是实际情况用数字电压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍耳传感器(结构示意图如图3所示)是一种高灵敏度集成霍耳传感器,它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。测量时输出信号大,并且剩余电压的影响已被消除。对SS95A 型集成霍耳传感器,它由三根引线,分别是:“V+”、“V-”、“Vout ”。其中“V+”和“V-”构成“电流输入端”,“Vout ”和“V-”构成“电压输出端”。由于SS95A 型集成霍耳传感器,它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处在该标准状态。在实验时,只要在磁感应强度为零(零磁场)条件下,调节“V+”、“V-”所接的电源电压(装置上有一调节旋钮可供调节),使输出电压为2.500V(在数字电压表上显示),则传感器就可处在标准工作状态之下。

上图为95A 型集成霍耳元件部结构图

当螺线管有磁场且集成霍耳传感器在标准工作电流时,与(1)式相似,由(1)式可得:

K

U K U B '

)500.2(=-=

式中U 为集成霍耳传感器的输出电压,K 为该传感器的灵敏度,经用2.500V 外接电压补偿

以后,用数字电压表测出的传感器输出值(仪器用mV 档读数)。 三.实验仪器

FD-ICH-II 新型螺线管磁场测定仪由集成霍耳传感器探测棒、螺线管、直流稳压电源;数字电压表组成,仪器连线图如图所示。

上海复旦天欣科教仪器有限公司

螺线管测量磁场仪器连接图

四.实验过程 1.必做实验

1)实验接线如图1所示。左面数字直流稳流源的“励磁恒流输出”端接电流换向开关,然后接螺线管的线圈接线柱。右面稳压电源4.8V —5.2V 的输出接线柱(红)接霍耳元件的V +(即引脚2-红色导线),直流稳压电源的(黑)接线柱接霍耳元件的V-(即引脚3-黑色导线),霍耳元件的VOUT (引脚1-黄色导线)接右边电压表‘电压输入’的+(红)接线柱,电压表

的-(黑)接线柱与直流稳压源的(黑)接线相连。电压表切换到V 档(即拨动开关向上拨)。 2)检查接线无误后接通电源,断开电流换向开关,集成霍耳传感器放在螺线管的中间位置 (X=16.0cm 处),调节中间直流电源4.8V —5.2V 的输出旋钮,使右边数字电压表显示2.500V ,这时集成霍耳元件便达到了标准化工作状态,即集成霍耳传感器通过电流达到规定的数值,且剩余电压恰好达到补偿,U0=0V 。

3)仍断开开关K2,在保持“V+”和“V-”电压不变的情况下,把开关K1指向2,调节2.4V —2.6V 电源输出电压,使数字电压表指示值为0(这时应将数字电压表量程拨动开关指向mV 档),也就是用一外接2.500V 的电位差与传感器输出2.500V 电位差进行补偿,这样就可直接用数字电压表读出集成霍耳传感器电势差的值'U 。 4)测定霍耳传感器的灵敏度K

(1)改变输入螺线管的直流电流m I ,将传感器处于螺线管的中央位置(即X=17.0cm),测量'U —m I 关系,记录10组数据,m I 围在0—500mA ,可每隔50mA 测一次。

(2)用最小二乘法求出'

U —m I ,直线的斜率m

I U K ??='

'

和相关系数r 。

(3)对于无限长直螺线管磁场可利用公式:B=m nI 0μ(0μ真空磁导率,n 为螺线管单位长度的匝数),求出集成霍耳传感器的灵敏度

B

U K ??='

注:实验中所用螺线管参数为:

螺线管长度L=260±1mm ,N=(3000±20)匝,平均直径D =35±1mm ,而真空磁导率

m H /10470-?=πμ。由于螺线管为有限长,由此必须用公式:m I D

L N B 2

20

+=μ进

行计算。

即B

U K ??='

=

'02

2'02

2K N

D

L I U N D L m μμ+=??+ (单位:伏/特斯拉,即:V/T)

5.测量通电螺线管中的磁场分布

(1)当螺线管通恒定电流m I (例如250mA)时,测量'U —X 关系。X 围为0—30.0cm ,两端的测量数据点应比中心位置的测量数据点密一些。

(2)利用上面所得的传感器灵敏度K 计算B —X 关系,并作出B —X 分布图。

(3)计算并在图上标出均匀区的磁感应强度'

0B 及均匀区围(包括位置与长度),理论值

m I D

L N

B 220

0+=μ,假定磁场变化小于1%的围为均匀区(即%1%100|

|0'

00≤?-B B B )。 (4)已知螺线管长度L=26.0cm ,在图上标出螺线管边界的位置坐标(即P 与'P 点,一般认为在边界点处的磁场是中心位置的一半,即'

02

1'B B B P P ==)。验证'P P -间距约26.0cm 。

注意:

1.测量m I U ~'

时,传感器位于螺线管中央(即均匀磁场中)。

2.测量X U ~'时,螺线管通电电流应保持不变。 3.常检查m I =0时,传感器输出电压是否为2.500V 。 4.用mV 档读'U 值。当m I =0时,mV 指示应该为0。

5.实验完毕后,请逆时针地旋转仪器上的三个调节旋钮,使恢复到起始位置(最小的位置)。

五.实验数据及表格

1.霍耳电势差与磁感应强度B 的关系

霍耳传感器处于螺线管中央位置(即X=16cm 处):

m I /mA

0 50 100 150 200 250 300 350 400 450 500

U/mV 0 22.3 44.8 67.0 89.3 111.9 134.2 156.5 179.0 201.3 223.9

2.通电螺线管磁感应强度分布测定(螺线管的励磁电流m I =250mA)

1'U 为螺线管通正向直流电流时测得集成霍耳传感器输出电压

2'U 为螺线管通反向直流电流时测得集成霍耳传感器输出电压 'U 为(1'U -2'U )/2的值。

(测量正、反二次不同电流方向所产生磁感应强度值取平均值,可消除地磁场影响)

螺线磁感应强度B 与位置刻度X 的关系(B=)/'

K U

根据以上实验数据绘成的表格,得到x与磁场B的关系图如下:

六.数据处理及误差分析 (1)研究霍耳效应:

运用MATLAB 带入表中数据由最小二乘法可以求出

A V I U K m /4465.05038.22''

≈=??=

相关系数r=0.99999。

由于螺线管磁感应强度B 与通过螺线管I 成正比,所以表中数据可以证明霍耳电势差U 与磁感应强度B 成正比。

计算集成霍耳元件的灵敏度K :已知:螺线管m I D

L N B 2

2

+=μ中心, N=3000匝,

L=26.00cm,D =35.0mm (为螺线管的平均直径),所以:

B

U K ??='

=

A V K N D L I U N D L m /07.314465.03000

104035.0260.07

-22'

02

2'02

2≈????+=+=??+πμμ 根据95A 型集成霍耳元件产品说明书上注明,该传感器灵敏度(31.3±1.3)V/T ,现计算值与说明书提供的技术指标相符。 (2)确定磁场均匀区和螺线管长度: 螺线管中心磁感应强度理论值:

T

I D L N B m 32

27

2

20

010592.325.0035.026.03000104--?=?+?=+=πμ

由可视为理想的。

,因此本次实验测量值%1%22.0%100||0

'

00≤=?-B B B

并且由上式相对误差小于等于1%可以求出落线管的均匀区。即可以求出'

0B =3.556mT,从而定出螺线管的均匀区。

由以上实验数据绘成的x-B 关系图可以看出,在X 1=9.0cm 到X 2=22.0cm 螺线管为均匀磁场区。 由于

mT B 796.12

=,在P ≈2.40cm 处P B =1.79mT ;'P ≈28.60cm 处,'

P B =1.79mT, 所以螺线管长度cm P P 20.2640.2-60.28'==-,与理论值26cm 的百分误差为0.77%。

【参考资料】

[1]陆申龙 焦丽凤. 用集成霍耳传感器研究霍耳效应及测量螺线管磁场分布,实验技术与管理、第17卷第2期,2000.4:27-30

[2]元华 陆申龙. 基础物理实验, :高等教育,2003

700223霍尔效应法测螺线管磁场(实验23)

霍耳效应法测螺线管磁场实验报告 【一】实验目的及实验仪器 实验目的 1.了解和熟悉霍尔效应的重要物理规律 2.熟悉集成霍尔传感器的特性和应用,掌握测试霍尔效应器件的工作特性 3.学习用霍尔效应测量磁场的原理和方法 4.学习用霍尔器件测绘长直螺线管的轴向磁场分布 实验仪器FD-ICH-II 新型螺线管磁场测定仪 【二】实验原理及过程简述 霍尔元件如图4-23-1所示。若电流I流过厚度为d的半导体薄片,且磁场B垂直于该半导体,于是电子流方向由洛伦磁力作用而发生改变,在薄片两个横向面a,b之间应产生电势差,这种现象称为霍尔效应。在与电流I、磁场B垂直方向上产生的电势差称为霍尔电势差,通常用UH 表示。霍尔效应的数学表达式为: 随着科技的发展,新的集成元件不断被研制成功。本实验采用的SS95A型集成霍尔传感器,是一种高灵敏度集成化传感器,它由霍尔元件放大器和薄膜电阻剩余电压补偿组成,测量时输出信号大,并且剩余电压的影响已被消除。SS95A型集成霍尔传感器,他的工作电流已设定被称为标准,工作电流使用传感器时,必须使工作电流处在该标准状态,在实验 室只要在磁感应强度为零条件下调节v +v - 所接的电源电压是输出电压为 2.500伏,则传感器就可处在标准工作状态之下。 当螺线管内有磁场且集成霍尔传感器的标准工作电流时 螺线管是由绕在圆柱面上的导线构成的,对于密绕的螺线管可以看成是一列有共同轴线的圆形线圈的并列组合,因此一个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆电流在轴线上该点所产生的磁感应强度进行积分求和得到,对于一限长的螺线管,在距离两端等远的中心点磁

感应强度为最大,且等于 过程简述 1.装置接线 2.断开开关K2,调节使集成霍尔传感器达到标准化工作状态。 3.测量霍尔传感器的灵敏度 4.测量通电螺线管中的磁场分布 【三】实验数据处理及误差计算: 5让风吹 1.根据实验所测,描绘螺线管中间位置霍尔电势差与螺线管通电电流的关系; 2.求出K/ 和r以及K; ∴K’=0.4169V/A r=1

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔效应法测螺线管磁场-实验报告

实验数据处理 1.霍尔电势差U 与螺线管通电电流Im 的关系图(x=17.0cm 处): 0 450 500 0 22.2 44.1 66.1 88.1 110.1 132 154.1 176 198 220 直线的斜率K'=0.4301;相关系数r=1 L=26.0±0.1cm,N=(3000±20)匝,平均直径D=3.5±0.1cm μ。=4π×10*-7H/m K N D L K '+= 。μ2 ^2^=30.01(V/T) U/mV Im/mA

2.通电螺线管内磁感应强度分布测定(Im=250mA)螺线内磁感应强度B与位置刻度X的关系 x/cm U1'/mV U2'/mV U'/mV B/mT 1 9.6 -10.1 10.1 0.34 1.5 13.8 -14.6 14.2 0.47 2 20.5 -21. 3 20.9 0.7 2.5 30.9 -31.7 31.3 1.04 3 44.8 -45.5 45.15 1.5 3.5 60.8 -61.6 61.2 2.04 4 74 -74.9 74.4 5 2.48 4.5 83.3 -84.1 83.7 2.80 5 89.8 -90.7 90.25 3.01 5.5 93.4 -94.2 93.8 3.12 6 95.9 -96.5 96.2 3.21 6.5 9 7.7 -9 8.6 98.15 3.27 7 98.8 -98.6 98.7 3.29 7.5 100.8 -101.1 100.95 3.36 8 101.4 -102.3 101.85 3.39 10 105.2 -106 105.6 3.52 14 106.5 -107.1 106.8 3.55 16 107.3 -107.8 107.55 3.58 21 106.5 -106.8 106.65 3.55 24 104.8 -105.1 104.95 3.5 25 102.3 -102.6 102.45 3.41 25.5 100.5 -100.9 100.7 3.36 26 98.7 -99 98.85 3.29 26.5 96.6 -97 96.8 3.23 27 93.9 -94.2 94.05 3.13 27.5 89.2 -89.7 89.45 2.98 28 82.3 -82.9 82.6 2.75 28.5 70.9 -71.5 71.2 2.37 29 55.8 -56.3 56.05 1.87 29.5 39.8 -40.5 40.15 1.34 30 25.9 -26.7 26.3 0.88

霍尔效应法测量螺线管磁场

霍尔效应法测量螺线管磁场实验报告 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速 度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =? 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE = ,与m e F ev B =? 反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,

与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而 且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍 尔电压测量部分就采用了这种电路,使得整个实验过程变得 较为容易操作,不过实验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 式中0μ——真空磁导率;N ——单位长度的线圈匝数;I ——线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: 101 2 B NI μ= 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图 2

霍尔效应测磁场实验报告

实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。

图1 霍耳效应示意图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有 E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4) 通过的电流H I 可表示为 nevbd I H -= 式中n 是电子浓度,得 nebd I v H - = (5) 将式(5)代人式(4)可得 ned B I U H H - = 可改写为

新型螺线管磁场测定实验报告

新型螺线管磁场测定 一.实验目的 1.验证霍耳传感器输出电势差与螺线管磁感应强度成正比。 2.测量集成线性霍耳传感器的灵敏度。 3.测量螺线管磁感应强度与位置之间的关系,求得螺线管均匀磁场围及边缘的磁感应强度。 4.学习补偿原理在磁场测量中的应用。 二.实验原理 霍耳元件的作用(如右图2所示):若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直于该半导体,是电子流方向由洛伦茨力作用而发生改变,在薄片两个横向面a 、b 之间应产生电势差, 这种现象称为霍耳效应。在与电流I 、磁场B 垂直方向上产生的电势差称为霍耳电势差,通常用UH 表示。霍耳效应的数学表达式为: IB K IB d R U H H H ==)( (1) 其中RH 是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。B 为磁感应强度,I 为流过霍耳元件的电流强度,KH 称为霍耳元件灵敏度。 虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,UH=0,但是实际情况用数字电压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加电势差,该电势差U0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍耳传感器(结构示意图如图3所示)是一种高灵敏度集成霍耳传感器,它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。测量时输出信号大,并且剩余电压的影响已被消除。对SS95A 型集成霍耳传感器,它由三根引线,分别是:“V+”、“V-”、“Vout ”。其中“V+”和“V-”构成“电流输入端”,“Vout ”和“V-”构成“电压输出端”。由于SS95A 型集成霍耳传感器,它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处在该标准状态。在实验时,只要在磁感应强度为零(零磁场)条件下,调节“V+”、“V-”所接的电源电压(装置上有一调节旋钮可供调节),使输出电压为2.500V(在数字电压表上显示),则传感器就可处在标准工作状态之下。

用霍尔效应测量螺线管磁场实验报告(空)解读

华 南 师 范 大 学 学院 普通物理 实验报告 年级 专业 实验日期 2011 年 月 姓名 教师评定 实验题目 用霍尔效应测量螺线管磁场 用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法。 一、实验目的 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、实验原理 图1所示的是长直螺线管的磁力线分布,有图可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。根据电磁学毕奥-萨伐尔)Savat Biot (-定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁感应强度的1/2: 22M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7(T·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 附加电势差的消除 应该说明,在产生霍尔效应的同时,因伴随着多种副效应(见附录),以致实验测得的电压并不等于真实的V H 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B (即l M )的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的A 、A′两点之间的电压V 1、 V 2、

仿真实验--测螺线管磁场

仿真实验---测螺线管磁场

由表一 x=0时,选取频率750Hz 电流25.0mA ,由公式一计算:B1=0.000402特斯拉 由公式二计算:B1=0.000411特斯拉 由表二 x=L时,选取频率750Hz 电流25.0mA 由公式一计算:B2=0.000202特斯拉 由公式二计算B2=0.000219特斯拉

比较两种测量方法的优缺点,由测量的结果得出什么结论? 公式一使用的测量方法比较简单,测量的都是长度单位。在本次实验中,除x 需要测量外,其余均全部给出,极大地简化了实验的过程,缺点是公式很复杂,代入计算比较麻烦;公式二采用了一个电学量v来求得磁感应强度,公式简单,有利于后期的数据处理,缺点是测量电学量会带来一定的误差,给结果造成不利影响。由测量数据得出的结论如下:一、用两种方法测量的数据差别很小,都达到了实验的精度要求;二、发现结论,在误差允许的范围内,B(x=0)/B(x=L)=2。 由V-I曲线,可以得到什么规律: 根据V—I曲线,可以得知:一、 V和I近似满足线性关系,且I越大,V越大; 二、 V—I图回归直线的斜率的大小跟外界交流电频率有关,频率f越大,斜率越大;三、存在一个电流I0,当螺线管电流I 由内容1表二,可以得出什么结论 当x不变时,在线圈电流与频率的乘积恒定的情况下,感应电压在误差范围内保持不变。可以推出:感应电压的大小正比于螺线管线圈电流与频率的乘积。 计算: V(x=L)/V(x=0)0.51 以上结果是否为1/2,为什么? 可以认定。根据公式一,将x=L=15cm和x=0代入,化简,因为R的平方远小于L的平方,可得B(x= L)/B(x=0)=1/2;根据公式二,知感应电动势V正比于B,故V(x= L)/V(x=0)= B(x= L)/B(x=0)=1/2。 作V(x)-x曲线 它的变化规律是怎样的,它是否就是相应的B(x)-x曲线? V—X曲线的整体变化规律是:起初V随X变化很小,在感应线圈出了螺线管后,V随X迅速减小,再加大X,V的变化趋于缓慢。在一定程度上,V—X曲线可以看成B—X曲线,这是因为感应电动势V正比于B,故V—X曲线与B—X曲线仅相差一个常数k,B—X曲线变化规律与V—X曲线一致。 内容三: 两次测得结果是否一样,为什么? 在实验误差允许的范围内,可以认为两次测得的数据是一样的。螺线管和线圈本质上都是线圈,当一个线圈的电流发生变化时,不仅在自身线圈中产生自感电动势,同时在相邻线圈中也产生感应电动势。这种现象叫互感现象,所产生的感应电动势称为互感电动势。故改变接线方式,得到的结果仍会一致。 分析和讨论结果: 一、实验结果分析:本次实验使用感应法测量通电螺线管内的磁感应强度,实验原理及测量过程都相对简单,从最后的实验结果来看,实验误差在允许的范围内,可以说实验是比较成功的。二、实验误差分析:本次实验是以微机仿真实验的方式进行,各方面的数据都能做到精确的模拟,本次实验的主要误差来自电压表读数以及电压表调零。本次实验中的电压表会不时跳动,需经常调零,读数时不可避免会产生误差。 试比较仿真实验和普通实验异同及优缺点 1)异:仿真实验的载体是微机,普通实验的载体是实验器材;同:实验原理一致。 2)优缺点:仿真实验的优点在于能使实验过程大大简化,节省了大量时

物理实验报告3-利用霍尔效应测磁场

物理实验报告3-利用霍尔效应测磁场

实验名称:利用霍耳效应测磁场 实验目的: a .了解产生霍耳效应的物理过程; b .学习用霍尔器件测量长直螺线管的轴向磁场分布; c .学习用“对称测量法”消除负效应的影响,测量试样的S H I V -和M H I V -曲线; d .确定试样的导电类型、载流子浓度以及迁 移率。 实验仪器: TH -H 型霍尔效应实验组合仪等。 实验原理和方法: 1. 用霍尔器件测量磁场的工作原理 如下图所示,一块切成矩形的半导体薄片长为l 、宽为b 、厚为d ,置于磁场中。磁场B 垂直于薄片平面。若沿着薄片长的方向有电流I 通过,则在侧面A 和B 间产生电位差B A H V V V -=。此电位差称 为霍尔电压。

半导体片中的电子都处于一定的能带之中,但能参与导电的只是导带中的电子和价带中的空穴,它们被称为载流子。对于N 型半导体片来说,多数载流子为电子;在P 型半导体中,多数载流子被称为空穴。再研究半导体的特性时,有事可以忽略少数载流子的影响。 霍尔效应是由运动电荷在磁场中收到洛仑兹力的作用而产生的。以N 型半导体构成的霍尔元件为例,多数载流子为电子,设电子的运动速度为v ,则它在磁场中收到的磁场力即洛仑兹力为 B ev F m ?-= F 的方向垂直于v 和B 构成的平面,并遵守右手螺旋法则,上式表明洛仑兹力F 的方向与电荷的正负有关。 自由电子在磁场作用下发生定向便宜,薄片两侧面分别出现了正负电荷的积聚,以两个侧面

有了电位差。同时,由于两侧面之间的电位差的存在,由此而产生静电场,若其电场强度为x E , 则电子又受到一个静电力作用,其大小为 x E eE F = 电子所受的静电力与洛仑兹力相反。当两个力的大小相等时,达到一种平衡即霍尔电势不再变化,电子也不再偏转,此时, BV E x = 两个侧面的电位差 b E V x H = 由nevbd I =及以上两式得 B H I ned V )]/(1[= 其中:n 为单位体积内的电子数;e 为电子电量;d 为薄片厚度。 令霍尔器件灵敏度系数 S H I V - 则 IB K V H H = 若常数H K 已知,并测定了霍尔电动势H V 和电流I 就可由上式求出磁感应强度B 的大小。 上式是在理想情况下得到的,实际测量半导体薄片良策得到的不只是H V ,还包括电热现象(爱 廷豪森效应)和温差电现象(能斯特效应和里纪勒杜克效应)而产生的附加电势。另外,由于霍

霍尔效应测磁场实验报告记录

霍尔效应测磁场实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。

图1 霍耳效应示意图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有 E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4) 通过的电流H I 可表示为 nevbd I H -= 式中n 是电子浓度,得 nebd I v H - = (5) 将式(5)代人式(4)可得 ned B I U H H - = 可改写为

螺线管内的磁场的测量-实验报告

University of Science and Technology of China 96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China 螺线管内的磁场的测量实验报告 李方勇 PB05210284 05010 第29组2号(周五下午) 2006.10.26 实验题目 螺线管内的磁场的测量实验 实验目的 1、测量通电螺线管线圈内的磁感应强度,讨论通电螺线管线圈内部I 、L 、x 和B 之间关系; 2、计算出真空中的磁导率。 实验仪器 ① 螺线管线圈;②大电流电源;③磁场强度计;④探针(霍耳元件);⑤导线和有机玻璃支架等。 实验原理 按照Biot-Savart 定律可以推出在螺线管内任意一点P 的磁感应强度B 为: ?--=-+=2 /2/2102/32220 )cos (cos 2 ])([2L L nI l x R Indl R B ββμμ 式中 2 2 1) 2/(2/cos L x R L x +++= β 2 2 2) 2/(2/cos L x R L x -+-= β 螺线管的长为L ,x 为螺线管中点到P 点的距离。I 为通过螺线管的电流。n 为螺线管单位 长度的匝数。 图3-1通电螺线管磁场分布

实验内容 1、 按下图装好仪器设备,将螺线管接到电流源上,将霍耳元件(探针)接到磁强计上,并将探针头放在螺线管的中央 a 点处。选择磁强计的测量范围为20mT ,利用磁强计的”Compensation”钮调零。 图3-2. 实验设备接线图 2、 实验测量:(螺线管总圈数N=30 ) (1)测量螺线管内电流I 变化时a 点的磁感应强度B 。将螺线管的b 点放在16cm 处,c 点放在24cm 处,此时线圈长L 为8cm 。调节电流源从0开始每次增加2A ,记录B ,但要注意每次测量时都要将电流源打到0点,将磁强计重新调零。 (2)以a 点为中点,改变b 、c 点的距离,使线圈长L 分别为8、10、15、20、25、30、35、40cm ,分别纪录B ,注意每次测量时都要将电流源打到0点,将磁强计重新调零。 (3)如果探针没有处在螺线管的轴心位置,对实验结果有否影响?用实验测量结果回答,说明原因。 (4)自行设计利用该设备来测量当地的地磁场,如果不成功则分析出原因。如果成功写出数据和结论。(选) 实验数据 表3-1 I-L 关系 /L cm /B mT /I A 8 10 15 20 25 30 35 40 0 -0.06 0.05 -0.02 -0.02 0.01 -0.02 -0.03 0.01 2 0.64 0.54 0.37 0.29 0.25 0.22 0.21 0.15 4 1.12 1.08 0.70 0.65 0.56 0.46 0.41 0.33 6 1.76 1.53 1.15 0.98 0.88 0.69 0.62 0.50 8 2.32 2.00 1.62 1.23 1.05 0.88 0.83 0.67 10 2.84 2.55 1.99 1.56 1.34 1.11 1.02 0.84 12 3.32 3.06 2.32 1.85 1.65 1.38 1.22 1.03 14 3.99 3.53 2.65 2.19 1.86 1.62 1.42 1.20 16 4.63 4.05 3.04 2.51 2.13 1.88 1.62 1.38 18 5.17 4.62 3.50 2.80 2.41 2.13 1.81 1.57 20 5.70 5.13 3.83 3.13 2.65 2.40 2.03 1.76 注:R=4.5cm , N=30圈,螺线管内磁场方向朝北。 1 2 3 4 5 1 3

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

大学物理实验报告 螺线管磁场的测量

实验报告 螺线管磁场的测量 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。 关键词:霍尔效应;霍尔元件;电磁场;磁场 一、实验目的 1.了解螺线管磁场产生原理。 2.学习霍尔元件用于测量磁场的基本知识。 3.学习用“对称测量法”消除副效应的影响,测量霍尔片的U H -I S (霍尔电压与工作电流 关系)曲线和U H -I M ,B-I M (螺线管磁场分布)曲线。 二、实验原理 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流I S (称为工作电流),假设 载流子为电子(N型半导体材料),它沿着与电流I S 相反的X轴负向运动。 由于洛伦兹力f L 作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由 于两种积累的异种电荷形成的反向电场力f E 的作用。则电子积累便达到动态平衡。这时 在A、B两端面之间建立的电场称为霍尔电场E H ,相应的电势差称为霍尔电势U H 。 设电子按均一速度,向图示的X负方向运动,在磁场B作用下,所受洛伦兹力为 f L =-e B 式中,e为电子电量,为电子漂移平均速度,B为磁感应强度。

测螺线管磁场实验报告记录

测螺线管磁场实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

测螺线管磁场———实验原理 图1 图1是一个长为2l,匝数为N的单层密绕的直螺线管产生的磁场。当导线中流过电流I时,由毕奥—萨伐尔定律可以计算出在轴线上某一点P的磁感应强度为 式中,为单位长度上的线圈匝数,R为螺线管半径,x为P 点到螺线管中心处的距离。在SI单位制中,B的单位为特斯拉(T)。图1同时给出B 随x的分布曲线。 磁场测量的方法很多。其中最简单也是最常用的方法是基于电磁感应原理的探测线圈法。本实验采用此方法测量直螺线管中产生的交变磁场。下图是实验装置的实验装置的示意图。

图2 当螺线管A中通过一个低频的交流电流i(t) = I0sinωt时,在螺线管内产生一个与电流成正比的交变磁场B(t) = C p i(t) = B0sinωt其中C p是比例常数,把探测线圈A1放到螺线管内部或附近,在A1中将产生感生电动势,其大小取决于线圈所在处磁场的大小、线圈结构和线圈相对于磁场的取向。探测线圈的尺寸比较小,匝数比较多。若其截面积为S1,匝数为N1,线圈平面的法向平面与磁场方向的夹角为θ,则穿过线圈的磁通链数为: Ψ = N 1S 1 B(t)cosθ 根据法拉第定律,线圈中的感生电动势为: 通常测量的是电压的有效值,设E(t)的有效值为V,B(t)的有效值为B,则有 ,由此得出磁感应强度: 其中r1是探测线圈的半径,f是交变电源的频率。在测量过程中如始终保持A和A1在同一轴线上,此时,则螺线管中的磁感应强度为 在实验装置中,在待测螺线管回路中串接毫安计用于测量螺线管导线中交变电流的有效值。在探测线圈A1两端连接数字毫伏计用于测量A1中感应电动势的有效值。 使用探测线圈法测量直流磁场时,可以使用冲击电流计作为探测仪器,同学们可以参考冲击电流计原理设计出测量方法。 测螺线管磁场———实验内容 1.研究螺线管中磁感应强度B与电流I和感生电动势V之间的关系,测量螺线管中的磁感应强度。

相关文档
相关文档 最新文档