文档库 最新最全的文档下载
当前位置:文档库 › 复合函数单调性(讲解+练习)

复合函数单调性(讲解+练习)

复合函数单调性(讲解+练习)
复合函数单调性(讲解+练习)

课题:函数的单调性(二)

复合函数单调性

北京二十二中 刘青

教学目标

1.掌握有关复合函数单调区间的四个引理.

2.会求复合函数的单调区间.

3.必须明确复合函数单调区间是定义域的子集.

教学重点与难点

1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间.

2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.

教学过程设计

师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.

生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.

师:很好.下面我们再复习一下所学过的函数的单调区间.

(教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)

(教师板书,可适当略写.)

例 求下列函数的单调区间.

1.一次函数y=kx+b(k ≠0).

解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.

2.反比例函数y=x k

(k ≠0).

解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.

3.二次函数y=ax 2+bx+c(a ≠0).

解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b

2,+∞)是它的单调增

区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b

2,+∞)是它的单调减区间;

4.指数函数y=ax(a >0,a ≠1).

解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.

5.对数函数y=log a x(a >0,a ≠1).

解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.

师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析.

师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何?

生:它在(-∞,+∞)上是增函数.

师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理.

(板书)

引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.

(本引理中的开区间也可以是闭区间或半开半闭区间.)

证明在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.

因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).

因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.

师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢?

生:不能.因为并非所有的简单函数都是某区间上的增函数.

师:你回答得很好.因此,还需增加一些引理,使得求复合函数的单调区间更容易些.

(教师可以根据学生情况和时间决定引理2是否在引理1的基础上做些改动即可.建议引理2的证明也是改动引理1的部分证明过程就行了.)

引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.

证明在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.

因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).

因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.

师:我们明白了上边的引理及其证明以后,剩下的引理我们自己也能写出了.为了记忆方便,咱们把它们总结成一个图表.

(板书)

师:你准备怎样记这些引理?有规律吗?

(由学生自己总结出规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数.)

师:由于中学的教学要求,我们这里只研究y=f(u)为u的单调函数这一类的复合函数.做例题前,全班先讨论一道题目.(板书).

例1 求下列函数的单调区间:

y=log4(x2-4x+3)

师:咱们第一次接触到求解这种类型问题,由于对它的解题步骤、书写格式都不太清楚,我们先把它写在草稿纸上,待讨论出正确的结论后再往笔记本上写.

师:下面谁说一下自己的答案?

生:这是由y=log4u与u=x2-4x+3构成的一个复合函数,其中对数函数y=log4u在定义域(0,+∞)上是增函数,而二次函数u=x2-4x+3,当x∈(-∞,2)时,它是减函数,当x ∈(2,+∞)时,它是增函数,.因此,根据今天所学的引理知,(-∞,2)为复合函数的单调减区间;(2,+∞)为复合函数的单调增区间.

师:大家是否都同意他的结论?还有没有不同的结论?我可以告诉大家,他的结论不正确.大家再讨论一下,正确的结论应该是什么?

生:……

生:我发现,当x=1时,原复合函数中的对数函数的真数等于零,于是这个函数没意义.因此,单调区间中不应含原函数没有意义的x的值.

师:你说得很好,怎样才能做到这点呢?

生:先求复合函数的定义域,再在定义域内求单调区间.

师:非常好.我们研究函数的任何性质,都应该首先保证这个函数有意义,否则,函数都不存在了,性质就更无从谈起了.刚才的第一个结论之所以错了,就是因为没考虑对数函数的定义域.注意,对数函数只有在有意义的情况下,才能讨论单调性.所以,当我们求复合函数的单调区间时,第一步应该怎么做?

生:求定义域.

师:好的.下面我们把这道题作为例1写在笔记本上,我在黑板上写.

(板书)

解设y=log4u,u=x2-4x+3.由

u>0,

u=x2-4x+3,

解得原复合函数的定义域为x<1或x>3.

师:这步咱们大家都很熟悉了,是求复合函数的定义域.下面该求它的单调区间了,怎样求解,才能保证单调区间落在定义域内呢?

生:利用图象.

师:这种方法完全可以.只是再说清楚一点,利用哪个函数的图象?可咱们并没学过画复合函数的图象啊?这个问题你想如何解决?

生:……

师:我来帮你一下.所有的同学都想想,求定义域也好,求单调区间也好,是求x的取值范围还是求复合函数的函数值的取值范围?或是求中间量u的取值范围?

生:求x的取值范围.

师:所以我们只需画x的范围就行了,并不要画复合函数的图象.

(板书)

师:当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,±∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.

师:除了这种办法,我们还可以利用代数方法求解单调区间.下面先求复合函数单调减区间.

(板书)

u=x2-4x+3=(x-2)2-1,

x>3或x<1,(复合函数定义域)

x<2 (u减)

解得x<1.所以x∈(-∞,1)时,函数u单调递减.

由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.

(板书)

u=x2-4x+3=(x-2)2-1,

x>3或x<1,(复合函数定义域)

x >2 (u 增)

解得x >3.所以(3,+∞)是复合函数的单调增区间.

师:下面咱们再看例2.

(板书)

例2 求下列复合函数的单调区间:

y=log 3

1 (2x -x 2) 师:先在笔记本上准备一下,几分钟后咱们再一起看黑板,我再边讲边写.(板书) 解 设 y=log

3

1u,u=2x -x 2.由 u >0

u=2x -x 2

解得原复合函数的定义域为0<x <2.

由于y=log 3

1u 在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x -x 2的单调性正好相反.

易知u=2x -x 2=-(x -1)2+1在x ≤1时单调增.由

0<x <2 (复合函数定义域)

x ≤1,(u 增)

解得0<x ≤1,所以(0,1]是原复合函数的单调减区间.

又u=-(x -1)2+1在x ≥1时单调减,由

x <2, (复合函数定义域)

x ≥1, (u 减)

解得0≤x <2,所以[0,1=是原复合函数的单调增区间.

师:以上解法中,让定义域与单调区间取公共部分,从而保证了单调区间落在定义域内. 师:下面我们再看一道题目,还是自己先准备一下,就按照黑板上第一题的格式写. (板书)

例3 求y=267x x --的单调区间.

(几分钟后,教师找一个做得对的或基本做对的学生,由他口述他的全部解题过程,教师在黑板上写,整个都写完后,教师边讲边肯定或修改学生的做法,以使所有同学再熟悉一遍解题思路以及格式要求.)

解 设y=u ,u=7-6x -x 2,由

u ≥0,

u=7-6x -x 2

解得原复合函数的定义域为-7≤x ≤1.

因为y=u 在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.

易知u=-x 2-6x+7=-(x+3)2+16在x ≤-3时单调增加。由

-7≤x ≤1,(复合函数定义域)

x ≤-3,(u 增)

解得-7≤x ≤-3.所以[-7,3]是复合函数的单调增区间.

易知u=-x 2-6x+7=-(x+3)2+16在x ≥-3时单调减,由

-7≤x ≤1 (复合函数定义域)

x ≥-3, (u 减)

解得-3≤x ≤1,所以[-3,1]是复合函数的单调减区间.

师:下面咱们看最后一道例题,这道题由大家独立地做在笔记本上,我叫一个同学到黑板上来做.

(板书)

例4 求y=1

22)21(--x x 的单调区间.

(学生板书)

解 设y=u

)21(.由

u ∈R,

u=x 2-2x -1,

解得原复合函数的定义域为x ∈R.

因为y=u

)21(在定义域R 内为减函数,所以由引理知,二次函数u=x 2-2x -1的单调性与复合函数的单调性相反.

易知,u=x 2-2x -1=(x -1)2-2在x ≤1时单调减,由

x ∈R, (复合函数定义域)

x ≤1, (u 减)

解得x ≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.

师:黑板上这道题做得很好.请大家都与黑板上的整个解题过程对一下.

师:下面我小结一下这节课.本节课讲的是复合函数的单调性.大家注意:单调区间必须是定义域的子集,当我们求单调区间时,必须先求出原复合函数的定义域.另外,咱们刚刚学习复合函数的单调性,做这类题目时,一定要按要求做,不要跳步.

(作业均为补充题)

作业

求下列复合函数的单调区间.

1.y=log 3(x 2-2x);(答:(-∞,0)是单调减区间,(2,+∞)是单调增区间.)

2.y=log 21

(x 2-3x+2);(答:(-∞,1)是单调增区间,(2,+∞)是单调减区间.) 3.y=652-+-x x ,(答:[2,25是单调增区间,][25

,3]是单调减区间.) 4.y=x

17.0;(答:(-∞,0),(0,+∞)均为单调增区间.注意,单调区间之间不可以取并集.)

5.y=232x -;(答(-∞,0)为单调增区间,(0,+∞)为单调减区间)

6.y=3

)31(+x ,(答(-∞,+∞)为单调减区间.) 7.y=x 2log 3

;(答:(0,+∞)为单调减区间.) 8.y=)4(1log

2x x -π;(答:(0,2)为单调减区间,(2,4)为单调增区间.) 9.y=426x x -;(答:(0,3)为单调减区间,(3,6)为单调增区间.)

10.y=2

27x x -;(答(-∞,1)为单调增区间,(1,+∞)为单调减区间.) 课堂教学设计说明

1.复习提问简单函数的单调性.

2.复习提问复合函数的定义.

3.引出并证明一个引理,用表格的形式给出所有的引理.

4.对于例1,教师要带着学生分析,着重突出单调区间必须是定义域的子集.例2中的第一题,还是以教师讲解为主.例2中的第二题,过渡到以学生讲述自己解法为主.例2中的

第三题,以学生独立完成为主.

5.小结,作业.

我为什么要采取这几个环节呢?因为从以往的经验看,当要求学生求复合函数的单调区间时,他往往不考虑这个函数的定义域,而这种错误又很顽固,不好纠正.为此,本节课我在廛为什么要求复合函数的定义域,以及定义域与单调区间的关系上,投入了较大的精力.力求使学生做到,想法正确,步骤清晰.为了调动学生的积极性,突出课堂的主体是学生,我把四道例题分了层次,第一道由教师引导、逐步逐层导出解题思路,由教师写出解题的全过程;第二题,思路由学生提供,格式还是再由教师写一遍,这样,既让学生有了获得新知识的快乐,又不必因对解题格式的不熟悉而烦恼;后两道例题是以中上等的学生自己独立解答为主的.每做完一道题,由教师简单地小结、修改,以使好学生掌握得更完备,较差的学生能够跟得上.

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

复合函数的概念和性质

复合函数的概念和性质 一、知识点内容和要求: 理解复合函数的概念,会求复合函数的单调区间 二、教学过程设计 (一)复习函数的单调性 引例:函数y=f(x)在上单调递减,则函数(a>0,且a≠1)增减性如何? (二)新课 1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)] 叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立,a是中间变量。 2、复合函数单调性 由引例:对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地, 定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。即:同增异减。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 解:① 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域 练习:求下列函数的单调区间。 1、(1)减区间,增区间; (2)增区间(-∞,-3),减区间(1,+∞); (3)减区间,增区间;

复合函数的单调性完全解析与练习(终审稿)

复合函数的单调性完全 解析与练习 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

课题:函数的单调性(二) 复合函数单调性 北京二十二中刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若AB ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间; 当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何

复合函数的单调性例讲

复 合 函 数 的 单 调 性 例 讲 山西忻州五寨一中 摄爱忠 高考主要考查:①求复合函数的单调区间;②讨论含参复合函数的单调性或求参数范围问题. ①“中间变量”是形成问题转化的桥梁. ②函数思想是解决问题的关键. 复合函数定义: 1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ?,则y 关于x 的函数)]([x g f y =叫做函 数 f 与 g 的复合函数,u 叫中间变量. 外函数:)(u f y =; 内函数:)(x g u = 复合函数的单调性:同增异减. 2. 若)(x g u = )(u f y = 则)]([x g f y = 增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数 增函数 减函数 3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性; (4)将中间变量的取值范围转化为自变量的取值范围; (5)求出复合函数的单调性。 题型1:内外函数都只有一种单调性的复合型. 例 题1: ◇已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )

(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0, ∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0 g(1)=2-a ·1>0 ,解得a<2,∴1-x ,得 00知函数的定义域为),1()3, (∞+-?--∞∈x , 因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2 +4x+4在x ∈(-∞,-3)上是减函数, 在(-1,+ ∞)上是增函数,根据复合规律知, 函数y=log 0.5(x 2 +4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数. 变式训练: ◇讨论函数3 4252+-? ? ? ??=x x y 的单调性。 解:函数定义域为R. 令u=x 2 -4x+3,y=0.8u 。 指数函数u y ?? ? ??=52在u ∈(-∞,+∞)上是减函数, u=x 2 -4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数, ∴ 函数3 4252+-? ? ? ??=x x y 在(-∞,2]上是增函数,在[2,+∞)上是减函数。 这里没有第四步,因为中间变量允许的取值范围是R ,无需转化为自变量的取值范围。 题型3:外函数有两种单调性内函数有一种单调性的复合型. 例 题3:

复合函数的单调性典型习题

复合函数的单调性练习题 山东 王宪华 ._____________,)21(.1322减区间为的增区间为-+-=x x y ._____________,2.2822减区间为的增区间为++-=x x y ._______________,)32(log .322减区间为的增区间为--=x x y .______________,)82-(log 4.22减区间为的增区间为++=x x y 的取值范围上是减函数,求在且a a a ax y a ]1,0[)1,0)(2(log 5.≠>+-= . 3-13-)(,)(log )(6.25.0的取值范围求)上是增函数,,在(且的值域为a x f R a ax x x f --=

参考答案 ]1,(:),,1[:.1-∞+∞减区间为增区间为 ]4,1[:]1,2[.2,减区间为增区间为:- )1,(:),,3(:.3--∞+∞减区间为增区间为 )4,1[:],1,2(:.4减区间为增区间为- 21:)2)(1() 2......(..................................................1),0(log . ]2,0[)2(log , 0,]2,0[2]2,0[,2s log ]1,0[),1(log ) 1........(..........2021, ]1,0[2,0.]1,0[)2(log ,02],1,0[]1,0[)1,0)(2(log 5min <<>∴+∞=∴+-=>+-=∈+-==∈+-=+?-=∴+-=∴>+-=>+-=∈?∴≠>+-=a a a t y ax y s ax s x ax s y x ax y a a s ax s a ax y ax s x a a ax y a a a a a a 的取值范围为式可知由上是增函数 在知由复合函数的单调性可上是减函数在且上是减函数在而的复合函数,与是上是减函数在上且递减在且上是减函数 在且解 )1...(..................................................04, )(log )(6.2225.0≥+=?∴--=∴--=a a a ax x s R a ax x x f 可以取到所有正实数 的值域为解 上是增函数 在且上是增函数, ,在)31,3()(log )()2.(....................0),31,3()3-13-()(log )(25.0225.0----=>--=--∈?∴--=a ax x x f a ax x s x a ax x x f 0)31()31()2()3........(. (312) :)31,3(:)31,3()(log ),0(log )31,3(,log ) 31,3(),(log )(2225.05.025.02≥--?--?-≥--∴----=∴----=+∞=--∈--==--∈--=a a a a ax x s a ax x y s y x a ax x s s y x a ax x x f a 且由二次函数的图象可知上是减函数在知由复合函数的单调性可上是增函数在是减函数,在而的复合函数 与是 200)31()31(312 04) 3)(2)(1(22≤≤???????≥--?---≥--≥+∴a a a a a a a 解得:同时满足综上可知

复合函数单调性(讲解+练习)

课题:函数的单调性(二) 复合函数单调性 北京二十二中 刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例 求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增 区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几 种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数. 师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+ ∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考 虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

复合函数的单调性完全解析与练习

复合函数单调性 北京二十二中 刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例 求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解 当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间;当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不 妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数. 师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上 的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单 调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理. (板书) 引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数. (本引理中的开区间也可以是闭区间或半开半闭区间.) 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数. 师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢? 生:不能.因为并非所有的简单函数都是某区间上的增函数.

复合函数知识总结及例题

复合函数问题 一、复合函数定义:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知的定义域,求 的定义域 思路:设函数 的定义域为D ,即 ,所以 的作用范围为D ,又f 对 作用,作用范围 不变,所以D x g ∈)(,解得 ,E 为 的定义域。 例1.设函数的定义域为(0,1),则函数的定义域为_____________。 解析:函数 的定义域为(0,1)即 ,所以的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以 解得,故函数 的定义域为(1,e ) 例2.若函数 ,则函数 的定义域为______________。 解析:先求f 的作用范围,由,知 即f 的作用范围为 ,又f 对f(x)作用所以 ,即 中x 应 满足即,解得 故函数的定义域为 (2)、已知的定义域,求的定义域 思路:设 的定义域为D ,即 ,由此得,所以f 的作用范围为E ,又f 对x 作 用,作用范围不变,所以 为 的定义域。 例3.已知的定义域为,则函数的定义域为_________。 解析: 的定义域为 ,即 ,由此得 所以f 的作用范围为,又f 对x 作用,作用范围不变,所以

即函数的定义域为例4.已知,则函数的定义域为------- 解析:先求f 的作用范围,由f x x x ()lg 2 2 248 -=-,知 解得,f 的作用范围为 ,又f 对x 作用,作用范围不变,所以, 即 的定义域为 (3)、已知的定义域,求的定义域 思路:设 的定义域为D ,即 ,由此得, 的作用范围为E ,又f 对 作 用,作用范围不变,所以 ,解得 ,F 为 的定义域。 例5.若函数 的定义域为 ,则 的定义域为____________。 解析:的定义域为,即,由此得 的作用范围为,又f 对作用,所以,解得 即的定义域为 评注:函数定义域是自变量x 的取值范围(用集合或区间表示)f 对谁作用,则谁的范围是f 的作用范围,f 的作用对象可以变,但f 的作用范围不会变。利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。 三、复合函数单调性问题 (1)引理证明 已知函数))((x g f y =.若)(x g u =在区间b a ,()上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,()上是增函数. 证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21 因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,)(22x g u =即 ),(,21,21d c u u u u ∈>且

有关复合函数单调性的定义和解题方法

有关复合函数单调性的定义和解题方法 一、复合函数的定义 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、函数的单调区间 1.一次函数y=kx+b(k ≠0). 解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调 增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 三、复合函数单调性相关定理 引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数. (本引理中的开区间也可以是闭区间或半开半闭区间.) 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数. 引理2 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数. 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.

复合函数的单调性

函数的值域与函数的单调性 我们将复习函数的值域与函数的单调性两部分内容. 通过本专题的学习,同学们应掌握求函数值域的常用方法;掌握函数单调性的定义,能用定义判定函数的单调性;会判断复合函数的单调性;了解利用导数研究函数单调性的一般方法. [知识要点] 一.函数的值域 求函数值域的方法主要有:配方法、判别式法、换元法、基本不等式法、图象法,利用函数的单调性、利用函数的反函数、利用已知函数的值域、利用导数求值域等. 二.函数的单调性 1.定义 如果对于给定区间上的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就称f(x)在这个区间上是减函数.如果y=f(x)在某个区间上是增函数或减函数,就说y=f(x)在这一区间上具有严格的单调性,这一区间叫做f(x)的单调区间. 注:在定义域内的一点处,这个函数是增函数还是减函数呢?函数的单调性是就区间而言,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题. 2.函数单调性的运算规律 在共同的定义域上,设“f 型”是增函数,“g 型”是减函数,则: (1)f 1(x)+f 2(x)是增函数; (2)g 1(x)+g 2(x)是减函数; (3)f(x)-g(x)是增函数; (4)g(x)-f(x)是减函数. [典型例题] 一.函数值域的求法 (一)配方法 例1. 的值域求函数2234x x y -+-= 解: . 4244)1(4224)1(044)1(04)1(42222≤≤∴≤+---≤∴≤+--≤∴≤+--≤+---=y x x x x y 值域

复合函数的单调性和单调区间

复合函数的单调性和单调区间 一、选择题(本大题共10小题,共50.0分) 1.函数f(x)=log?1 2 (x2?2x?3)的单调递减区间是( ) A. (?∞,1) B. (?∞,?1) C. (3,+∞) D. (1,+∞) 2.函数y=(1 3 ) ?x2+x+2的单调增区间为( ) A. [?1,1 2] B. (?∞,?1] C. [2,+∞) D. [1 2 ,2] 3.函数f(x)=1 2 x2?ln x的单调减区间( ) A. (?1,1] B. (0,1] C. (1,+∞) D. (0,+∞) 4.函数f(x)=log a(6?ax)在(0,2)上为减函数,则a的取值范围是( ) A. (1,3] B. (1,3) C. (0,1) D. [3,+∞) 5.函数y=log1(?x2+2x+3)的单调增区间是( ) A. (?1,1] B. (?∞,1) C. [1,3) D. (1,+∞) 6.函数y= ?x2+2x+3的单调递减区间是( ) A. (?∞,1) B. (1,+∞) C. [?1,1] D. [1,3] 7.函数f(x)=lg(?x2+x+6)的单调递减区间为( ) A. (?∞,1 2) B. (1 2 ,+∞) C. (?2,1 2 ) D. (1 2 ,3) 8.函数f(x)=(1 2 ) x?x2的单调递增区间为( ) A. (?∞,1 2] B. [0,1 2 ] C. [1 2 ,+∞) D. [1 2 ,1] 9.若f(x)=lg(x2?2ax+1+a)在区间(?∞,1]上递减,则a的取值范围为( ) A. [1,2) B. [1,2] C. [1,+∞) D. [2,+∞) 10.已知函数f x=1 2 x2?4ax+8 在[2,6]上单调,则a的取值范围为( ) A. (?∞,1]∪[3,+∞) B. (?∞,1] C. [3,+∞) D. [3 2,11 6 ] 二、解答题(本大题共1小题,共12.0分) 11.求函数f(x)=log?1(x2?5x+4)的定义域和单调区间. 第1页,共1页

复合函数单调性教案

复合函数单调性教案 教学目标 知识目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 能力目标 培养学生的数学转化思想和构建数学建模能力。 情感目标 培养学生分析问题,解决问题的能力。 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A,u=g(x)的值域为B,若AíB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例求下列函数的单调区间. 1.一次函数y=kx+b(k≠0). 解当k>0时,(-∞,+∞)是这个函数的单调增区间;当k<0时,(-∞,+∞)是这个函数的单调减区间.

2.反比例函数y= x k (k≠0). 解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a≠0). 解 当a >0时(-∞,- a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间;当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=a x (a >0,a≠1). 解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这 个函数的单调减区间. 5.对数函数y=log a x(a >0,a≠1). 解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数. 师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理. (板书) 引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数. (本引理中的开区间也可以是闭区间或半开半闭区间.) 证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b. 因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u 1=g(x 1),u 2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d). 因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],

复合函数的单调性

复合函数的单调性 1、复合函数的概念 如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的函数[()]y f g x =叫做函数()y f u =和()u g x =的复合函数,其中u 是中间变量,自变量为x ,函数值y 。 例如:函数y = y =和函数223u x x =+-复合而成, 其中u 是中间变量 例1、 指出下列函数有那些函数复合而成 y =21y x =- 2、复合函数的单调性 对于函数()y f u =和函数()u g x =,若在区间(),a b 上具有单调性,当(),x a b ∈时,(),u m n ∈,且()y f u =在区间(),m n 上具有单调性,则复合函数[()]y f g x =在区间 (),a b 上单调性规律如下: (1)证明:设12,x x 是区间(),a b 上的任意两个值,且12x x <,因为()u g x =在区间(),a b 上是增函数,所以12()()g x g x <,且()12(),(),g x g x m n ∈, 又因为()y f u =在(),m n 上是增函数,所以12[()][()]f g x f g x <, 所以函数[()]y f g x =在(),a b 上是增函数。 其它三种情况仿照(1)自己证明。

结论:复合函数[()]y f g x =的单调性规律可以概括为四个字“同增异减”。 例2、求复合函数y = 的单调递减区间。 例3、若函数()y f x =在R 上是减函数,求复合函数(1)y f x =-的单调递增区间。 方法总结:

复合函数(知识点总结、例题分类讲解)

复合函数的定义域和解析式以及单调性 【复合函数相关知识】 1、复合函数的定义 如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y 。 例如:函数2 1 2x y += 是由2u y =和21u x =+ 复合而成立。 说明:⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 2.求有关复合函数的定义域 ① 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域的方法: 已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。实际上是已知中间变量的u 的取值范围,即 )(b a u ,∈,)()(b a x g ,∈。通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。 ② 已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域的方法: 若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。实际上是已知直接变量x 的取值范围, 即)(b a x ,∈。先利用b x a <<求得)(x g 的范围,则)(x g 的范围即是)(x f 的定义域。 3.求有关复合函数的解析式 ①已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。 ②已知 )]([x g f 求)(x f 的常用方法有:配凑法和换元法。 配凑法:就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换 成x 而得 )(x f 。

复合函数单调性

复合函数的单调性专题 复合函数定义: 1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ?,则y 关于x 的函数 )]([x g f y =叫做函数f 与g 的复合函数,u 叫中间变量. 外函数:)(u f y =; 内函数:)(x g u = 复合函数的单调性:同增异减. 2. 若)(x g u = )(u f y = 则)]([x g f y = 增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数 增函数 减函数 3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性; (4)将中间变量的取值范围转化为自变量的取值范围; (5)求出复合函数的单调性。 题型1:内外函数都只有一种单调性的复合型. 例 题1:已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ) (A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0, ∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0 g(1)=2-a ·1>0 ,解得a<2,∴1-x ,得 0

相关文档
相关文档 最新文档