文档库 最新最全的文档下载
当前位置:文档库 › 安徽华东光机所传感器实验教案

安徽华东光机所传感器实验教案

安徽华东光机所传感器实验教案
安徽华东光机所传感器实验教案

金属箔式应变计性能——应变电桥

实验目的:

1、观察了解箔式应变片的结构及粘贴方式。

2、测试应变梁变形的应变输出。

3、比较各桥路间的输出关系。

实验原理:

本实验说明箔式应变片及直流电桥的原理和工作情况。

应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也

随之发生相应的变化。通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电

阻乘积相等,电桥输出为零,在桥臂四个电阻R

1、R

2

、R

3

、R

4

中,电阻的相对变

化率分别为△R

1/ R

1

、△R

2

/ R

2

、△R

3

/ R

3

、△R

4

/ R

4

,当使用一个应变片时,

?

=

R

R

R;当二个应变片组成差动状态工作,则有∑

?

=

R

R

2

R;用四个应变片

组成二个差动对工作,且R

1= R

2

= R

3

= R

4

=R,∑

?

=

R

R

4

R。

实验所需部件:(括号{ }内为2001B型内容)

直流稳压电源+4V、公共电路模块(一){公共电路模块}、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表

实验步骤:

1、连接主机与模块电路电源连接线,差动放大器增益臵于最大位臵(顺时针方向旋到底),差动放大器“+”“—”输入端对地用实验线短路。输出端接电压表2V档。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

观察贴于悬臂梁根部的应变计的位臵与方向,按图(1)将所需实验部件连接成测试桥路,图中R 1、R 2、R 3分别为固定标准电阻,R 为应变计(可任选上梁或下梁中的一个工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。

将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位臵。

3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的W D 电位器,使桥路输出为零。

4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm ,每位移1mm 记录一个输出电压值,并记入下表:

根据表中所测数据在坐标图上做出V —X 曲线,计算灵敏度S :S=X /V ??。 注意事项:

1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。

2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位臵后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。

3、实验中实验者用螺旋测微仪进行位移后应将手离开仪器后方能读取测试系统输出电压数,否则虽然没有改变刻度值也会造成微小位移或人体感应使电压信号出现偏差。

4、因为是小信号测试,所以调零后电压表应臵2V档,用计算机数据采集时应选用200mv量程。

双孔应变传感器——称重实验

实验目的:

1、掌握电桥电路的应用;

2、测试重量与双孔应变传感器产生的电压关系。 实验原理:

本实验选用的是标准商用双孔悬臂梁式称重传感器,四个特性相同的应变片贴在如图所示位臵,弹性体的结构决定了R1和R3、R2 和R4的受力方向分别相同,因此将它们串接就形成差动电桥。

当弹性体受力时,根据电桥的加减特性其输出电压为:

R

R 4E 4R R R R R R R R 4E U 44332211???=???? ???-?+?-?=

实验所需部件:

直流稳压电源、双孔悬臂梁称重传感器、公共电路模块(一){公共电路模块},称重砝码(20克/个)、数字电压表。

(图2)

实验步骤:

1、观察称重传感器弹性体结构及贴片位臵,连接主机与实验模块的电源连接线,开启主机电源,调节放大器调零电位器使无负载时的称重传感器输出为零。

2、接好传感器测试系统线路,称重传感器工作电压选用+4V,差动放大器增益为最大(100倍),输出端接电压表。调节电桥 WD调零电位器使无负载时的称重传感器输出为零。

3、逐步将砝码放上称重平台,调节增益电位器,使V0端输出电压与所称重量成一比例关系,记录W(克)与V(mv)的对应值,并填入下表:

4、记录W与V值,并做出W-V曲线,进行灵敏度、线性度与重复性的比较。

5、与双平行悬臂梁组成的全桥进行性能比较。

注意事项:

称重传感器的激励电压请勿随意提高。

注意保护传感器的引线及应变片使之不受损伤。

光纤传感器——位移测量

实验目的:

1、观察光纤结构;

2、测试光纤传感器输出电压与位移量的关系。

实验原理:

反射式光纤传感器工作原理如图(22)所示,光纤采用Y型结构,两束多模光纤合并于一端组成光纤探头,一束作为接收,另一束为光源发射,红外二级管发出的红外光经光源光纤照射至被测物,由被测物反射的光信号经接收光纤传输至光电转换器件转换为电信号,反射光的强弱与反射物与光纤探头的距离成一定的比例关系,通过对光强的检测就可得知位臵量的变化。

(图22)

实验所需部件:

光纤(光电转换器)、光电传感器模块、{光纤光电传感器实验模块}、支架、电压表示波器、螺旋测微仪、反射镜片

实验步骤:

1、观察光纤结构:本实验仪所配的光纤探头为半圆型结构,由数百根导光纤维组成,一半为光源光纤,一半为接收光纤。

2、连接主机与实验模块电源线及光纤变换器探头接口,光纤探头装上通用支架(原装电涡流探头),{探头支架},探头垂直对准反射片中央(镀铬圆铁片),螺旋测微仪装上支架,以带动反射镜片位移。

端接电压表,首先旋动测微仪使探头紧

3、开启主机电源,光电变换器V

贴反射镜片(如两表面不平行可稍许扳动光纤探头角度使两平面吻合),此时输出≈0,然后旋动测微仪,使反射镜片离开探头,每隔0.2mm记录一数值并V

记入下表:

位移距离如再加大,就可观察到光纤传感器输出特性曲线的前坡与后坡波形,作出V-X曲线,通常测量用的是线性较好的前坡范围。

注意事项:

1、光纤请勿成锐角曲折,以免造成内部断裂,端面尤要注意保护,否则会光通量衰耗加大造成灵敏度下降。

2、每台仪器的光电转换器(包括光纤)与转换电路都是单独调配的,请注意与仪器编号配对使用。

3、实验时注意增益调节,输出最大信号以3V左右为宜,避免过强的背景光照射。

PSD光电位臵传感器实验

实验目的:

1、观察PSD光电位臵传感器结构;

2、测试位移变化与电压的关系。

实验原理:

PSD(Position sensitive detector)是一种新型的横向光电效应器件,当入射光点照在光敏面上时由于光生载流子的流动产生光生电流I,经运算后即可知光点的位臵。

(图21)PSD器件工作原理

实验所需部件:

PSD传感器、固体激光器、被测物、位移装臵、PSD实验模块、{PSD光电位臵传感器实验模块}、电压表、示波器

实验步骤:

1、观察PSD器件及安装位臵,激光器臵于PSD组件中,调节反射体(被测

端接电压表及示波器,连接物)与激光管的位臵大约为70~80mm ,模块输出V

主机与实验模块的电源线及传感器探头。

2、开启主电源,连接激光电源,激光束射到被测物体后反射光经透镜聚焦入射PSD光敏面(激光器的光点可以调整,以提高PSD器件的光电流输出),调节位移装臵,使光斑位于PSD光敏面中点(通过观察窗口确认),调节模块“增益”旋钮,用示波器观察,输出波形不应有自激,此时模块电路输出为零。

3、分别向前和向后位移被测体,每位移0.1mm记录一电压值,并记入下表:

作出V-X曲线,计算灵敏度,分析工作线性。

4、用遮挡物盖住观察窗口,使PSD器件不受背景光影响,重新进行位移测试,看结果是否有变化。

注意事项:

本实验仪中的固体激光器只能作为实验光源之用,严禁实验者用激光光束照射人的眼睛,否则将会造成视力不可恢复的伤害。

需注意的是由于背景光的影响及变化,会使多次实验的结果有所不同。

光电传感器——热释电红外传感器

实验目的:

1、观察热释电红外传感器结构;

2、测试温度变化与电压的关系。

实验原理:

热释电红外传感器是一种红外光传感器,属于热电型器件,当热电元件PZT 受到光照时能将光能转换为热能,受热的晶体两端产生数量相等符号相反的电荷,如果带上负载就会有电流流过,输出电压信号。

实验所需部件:

热释电红外传感器、菲涅耳透镜、温控电加热炉、热释电红外传感器实验模块、{温度传感器实验模块}、电压表、示波器

(图20)热释电传感器结构及电路原理

实验步骤:

1、观察传感器探头,探头表面的滤光片使传感器对10μm左右的红外光敏感,可以安装在传感器前的菲涅耳透镜是一种特殊的透镜组,每个透镜单元都有一个不大的视场,相邻的两个透镜单元既不连续也不重叠,都相隔一个盲区,

它的作用是将透镜前运动的发热体发出的红外光转变成一个又一个断续的红外信号,使传感器能正常工作。

2、连接主机与实验模块电源线及传感器接口,转换电路输出端接电压表。

3、开启主机电源,待传感器稳定后,人体从传感器探头前移过,观察输出信号电压变化,再用手放在探头前不动,输出信号不会变化,这说明热释电传感器的特点是只有当外界的幅射引起传感器本身的温度变化时才会输出电信号,即热释电红外传感器只对变化的温度信号敏感,这一特性就决定了它的应用范围。

4、将传感器探头对准加热炉方向,开启加热炉并将温度控制在50?左右,用遮挡物断续探头前面的热源,观察传感器的反应。

5、在传感器探头前加装菲涅耳透镜,试验传感器的探测视场和距离,以验证菲涅透镜的功能。

霍尔式传感器——直流激励特性

实验目的:

1、观察霍尔式传感器结构;

2、霍尔式传感器的直流激励特性。

实验原理:

霍尔元件是根据霍尔效应原理制成的磁电转换元件,当霍尔元件位于由两个环形磁钢组成的梯度磁场中时就成了霍尔位移传感器。

霍尔元件通以恒定电流时,就有霍尔电势输出,霍尔电势的大小正比于磁场强度(磁场位臵),当所处的磁场方向改变时,霍尔电势的方向也随之改变。

(图23)

实验所需部件:

霍尔传感器、直流稳压电源(2V )、公共电路模块(一)、{霍尔传感器实验模块}、电压表、测微仪 实验步骤:

1、{安装好梯度磁场及霍尔传感器}连接主机与实验模块电源及传感器接口,确认霍尔元件直流激励电压为2V ,另一激励端接地,实验接线按图(23)所示,差动放大器增益10倍左右。

2、用螺旋测微仪调节振动平台{精密位移装臵}使霍尔元件臵于梯度磁场中

W D

间,并调节电桥直流电位器W

,使输出为零。

D

3、从中点开始,调节螺旋测微仪,上下{左右}移动霍尔元件各3.5mm,每变化0.5mm读取相应的电压值,并记入下表:

作出V-X曲线,求得灵敏度和线性工作范围。如出现非线性情况,请查找原因。

注意事项:

直流激励电压只能是2V,不能接+2V(4V)否则锑化铟霍尔元件会烧坏。

电涡流传感器——测转速实验

实验目的:

1、观察电涡流传感器的结构;

2、测试电涡流传感器输出频率。

实验原理:

电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率,导磁率、厚度、温度以及与线圈的距离X 有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X 的单值函数。

当电涡流线圈与金属被测体的位臵周期性地接近—脱离时,电涡流传感器的输出信号也转换为相同周期的脉动信号。

实验所需部件:

电涡流传感器、电涡流传感器实验模块、螺旋测微仪、电压表、示波器

(图25)

(图25)

实验所需部件:

电涡流传感器、电涡流传感器实验模块、测速电机、电压/频率表、示波器实验步骤:

1、将电涡流支架顺时针旋转约700,安装于电机叶片之上,{将电涡流线圈安装到振动平台旁的支架上},线圈尽量靠近叶片,以不碰擦为标准,线圈面与叶片保持平行。

2、开启主机电源,调节电机转速,根据示波器波形调整电涡流线圈与电机叶片的相对位臵,使波形较为对称。

3、仔细观察示波器中两相邻波形的峰值,如有差异则是电机叶片不平行或是电机振动所致,可利用实验三十九特性曲线大致判断叶片的不平行度。

4、用电压/频率表2KHz档测得电机转速,转速=频率表显示值÷2。

气敏传感器演示实验

实验目的:

1、观察气敏传感器结构;

2、了解气敏传感器的特性。

实验原理:

气敏传感器的核心器件是半导体气敏元件,不同的气敏元件对不同的气体敏感度不同,当传感器暴露于便其敏感的气体之中时,电导率会发生变化,当加上激励电压且负载条件确定时,负载电压就会发生相应变化,由此可测得被测气体浓度的变化。

(图31)

实验所需部件:

气敏传感器(MQ

)、气敏传感器实验模块、酒精、电压表、示波器

3

实验步骤:

1、连接主机与实验模块的电源线及传感器接口,观察气敏传感器探头,探头6个管脚中2个是加热电极,另四个接敏感元件,{探头的红线接加热电源,黄线为信号输出端},工作时加热电极应通电二~三分钟温度稳定后传感器才能

端接电压表或示波器,并用电桥调节到一设定值。进入正常工作。模块的输出V

(必要时电桥wD电位器的另一端可接稳压电源的﹢2V档或﹣2V档。)

2、开启主机电源,待稳定数分钟后记录初始输出电压值。

打开酒精瓶盖,瓶口慢慢地接近传感器,用电压表或示波器观察输出电压上升情况,当将气敏传感器最靠近瓶口时电压上升至最高点,超过告警设定电压,电路告警红灯亮。

3、移开酒精瓶,传感器输出特性曲线立刻下降,这说明传感器的灵敏度是非常高的。

注意事项:

实验时气敏探头勿浸入酒精中,酒精气就足够了。

电感传感器—差动螺管式传感器位移测量

实验目的:

1、观察电感传感器结构;

2、测试差动螺管式传感器位移变化与输出电压的关系。

实验原理:

差动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位臵的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。

实验所需部件:

差动变压器二组次级线圈、音频信号源、公共电路模块(一)(二)、{公共电路实验模块}、电感传感器实验模块、电压表、示波器、测微仪

(图16)

实验步骤:

1、连接主机与实验模块电源线,按图(16)组成测试系统,两个次级线圈必须接成差动状态,差动放大器增益不要太大,具体调节注意点可参照实验二十三。

2、旋动测微仪使衔铁居中线圈,此时L

O ′=L

O

″,系统输出为零。

3、当衔铁在线圈中上{左}、下{右}位移时,L

O ′≠L

O

″,电桥失衡,输出

电压信号的大小与衔铁位移量成比例,相位则与衔铁位移方向有关,衔铁向上{左}和向下{右}移动时输出波形相差约1800,(可用示波器观察相敏检波器①、②端),因此必须经过相敏检波器才能判断电压极性。

以衔铁位臵居中为起点,分别向上{左}、向下{右}各位移5mm,记录V、X 值并填入下表(每位移0.5mm记录一个数值):

依此做出V-X曲线,求出灵敏度S,指出线性工作范围。

电涡流传感器—静态标定

实验目的:

1、观察电涡流传感器的结构;

2、测试电涡流传感器涡流片移动距离与输出电压的关系。

实验原理:

电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率,导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

实验所需部件:

电涡流传感器、电涡流传感器实验模块、螺旋测微仪、电压表、示波器

(图25)

(图25)

实验所需部件:

电涡流传感器、电涡流传感器实验模块、螺旋测微仪、电压表、示波器

传感器实验教案

目录 实验一金属箔式应片性能——单臂电桥 (1) 实验二移相器实验 (3) 实验三相敏检波器实验 (4) 实验四差动变压器(互感式)的性能 (6) 实验五霍尔式传感器的静态位移特性——直流激励 (7) 实验六光纤位移传感器的动态实验一 (8) 实验七光纤位移传感器的动态实验二 (9) 实验八热敏电阻测温演示实验 (10)

实验一金属箔式应片性能——单臂电桥 实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。 所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、V/F表。 旋钮初始位置:直流稳压电源打N_+2v档,V/F表打到2V档,差动放大增益调到最大。 实验步骤: (1)观察所需单元、部件在实验仪上的所在位置观察梁上的应变片,上下二片梁的外表面各贴二片受力应变片,测微头在双平行粱右端的支座上,可以上、下、前、后、左、右调节。 (2)将差动放大器调零:用lOom长的连线将差动放大器的正(+)、负(一)、地短接。将差动放大器的输出端与V/F表的输入端Vi相连;开启主、副电源:调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使V/F表显示为零(或接近零)。关闭主、副电源。 (3)实验仪内配备的锁紧式插头线的使用方法:连线时,将连线的插头插入仪器上的插座后顺时针方向旋转30度左右接触就很可靠。并可在此插头的上方可继续插入很多插头,可任意扩展,立体布线。将插头逆时针方向旋转30度左右即可拔出。注意拔出连线时千万不能直接拉导线,要拿住连线头部拨起,以免拉断实验连线。 (4)根据图1接线。R1、B2、R3为电桥单元的固定电阻;Rx=R4为应变片。将稳压电源的切换开关置±4v档,V/F表置20V档。调节测微头脱离双平行梁。开启主、副电源,调节电.桥平衡网络中的P,D(W1),使V/F显示为零,然后将V/F表置2V档,再慢慢调电桥RD(W1),使V/F表显示为零。 (5)将测微头转动到10mm刻度附近,按装到双平行梁的右端即自由端(与自由端磁钢吸合).调节测微头支柱的高度(梁的自由端跟随变化)使V/F表显示值最小,再旋动测微头,使V/F表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (6)往下或往上旋动测微头,使粱的自由端产生位移记下V/F表显示的值。每旋动测微头一周即△x=0.5mm衄记一个数值填入下表: (7)据所得结果计算灵敏度△s=△v/△x(式中△x为梁的自由端位移变化,△v为V/F 表显示的电压值的相应变化)。 (8)实验完毕,关闭主、副电源,所有旋钮转到初始位置。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

传感器-实验教案

邢台学院 实验教案2013 ~2014 学年度第一学期 课程名称传感器原理与应用实验学时学分18学时 0.5学分 专业班级10级自动化、电科本 授课教师梁丽娟 系部物理与电子工程学院

课程教学日历 课程名称:传感器原理与应用实验授课学期:第7学期

实验一 金属箔式应变片单臂、半桥、全桥性能实验 一、实验目的: 1、了解金属箔式应变片的应变效应,单臂电桥、半桥、全桥的工作原理和性能 2、比较单臂电桥、半桥、全桥的不同性能,了解其特点 3、比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论 二、基本原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =?/ 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /?=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。 单臂电桥输出电压U O14/εEK =。 不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压Uo 2=2/εEK 。 全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻值:R 1= R 2= R 3= R 4,其变化值ΔR 1=ΔR 2=ΔR 3=ΔR 4时,其桥路输出电压U o3=εKE 。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、需用器件与单元: 应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源 四、实验步骤: 1、根据图1-1应变式传感器已装于应变传感器模块上。传感器中各应变片已接入模块的左上方的R 1、R 2、R 3、R 4。加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。 固固 图1-1 应变式传感器安装示意图

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

超声波传感器技术试验--学案

超声波传感器技术试验--导学案 一、知识点: 1、技术试验是为了某种目的所进行的尝试、检验、优化等探索性实践活动。 2、技术试验步骤:制定计划==》抽取样本==》进行试验==》分析数据==》得出结论。 3、人类耳朵能听到的声波频率为20Hz-20000Hz。我们把频率高于20000赫兹的声波称为“超声波”。声音在干燥、摄氏20度的空气中的传播速度大约为343米/秒,合34,300厘米/秒,转换为29.15 微秒/厘米。但是发送后到接收到回波,声音走过的是2倍的距离,所以实际距离就是1厘米,对应58.3微秒。 4、超声波测距原理图: 5、HC-SR04与Arduino接线示意图: 6、程序代码: const int TrigPin = 2; // 设定SR04引脚 const int EchoPin = 3; float distance; void setup() { Serial.begin(9600); pinMode(TrigPin, OUTPUT); pinMode(EchoPin, INPUT); Serial.println("Ultrasonic sensor:"); } void loop() { // 产生一个10us的高脉冲去触发TrigPin digitalWrite(TrigPin, LOW); delayMicroseconds(2); digitalWrite(TrigPin, HIGH); delayMicroseconds(10); digitalWrite(TrigPin, LOW); // 检测脉冲宽度,计算出距离并串口发送 distance = pulseIn(EchoPin, HIGH) / 58.00; Serial.print(distance); Serial.print("cm"); Serial.println(); delay(1000); } 二、探究实验: 1、定性实验记录

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

传感器技术与应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。 知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

传感器实验指导书(实际版).

实验一 金属箔式应变片性能实验 (一)金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =? 式中R R ?为电阻丝电阻相对变化, K 为应变灵敏系数, l l ?=ε为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受 力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压4 1ε EK U O =。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。 四、实验步骤: 1.应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。加热丝也接于模板上,可用万用表进行测量判别, Ω====3504321R R R R ,加热丝阻值为Ω50左右。 2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好) ,接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。检查接线无误后,合上主控箱电源

物理传感器实验实例

欢迎使用朗威?DISLab 愿我们共同开启实验教学的数字化时代朗威?数字化信息系统实验室(DISLab) llongwill? Digital Information System Laboratory V6.0物理实验实例 上海市中小学数字化实验系统研发中心 山东省远大网络多媒体有限责任公司 2007年9月

目 录 1、静摩擦力研究…………………………………….……………………………………………P5 2、滑动摩擦力研究……………………………………….………………………………………P5 3、重力大小与质量的关系…………………………….…………………………………………P7 4、力的合成与分解……………………………………………………………………………P7 5、研究匀速直线运动……………………………………………….……………………………P8 6、研究匀加速直线运动………………………………………….……………………………P10 7、平均速度的测量…………………………………………….………………………………P11 8、平均速度与瞬时速度的关系……………………………………………………….………P12 9、加速度的测量………………………………………………………………………………P13 10、加速度与拉力的关系 ……………………….……………………………………………P15 11、加速度与质量的关系……………………………….......………..…………………………P16 12、牛顿第三定律………………………….……………………………………………………P17 13、浮力的相互作用……………………………….……………………………………………P18 14、用位移传感器研究自由落体运动………………………….………………………………P19 15、用光电门传感器测自由落体的加速度…………………….………………………………P21 16、超重与失重……………………………………………….…………………………………P22 17、动量定理(恒力)…………………………………….…..…………………………………P22 18、动量定理(变力)……………………………………………….……………………………P24 19、动量守恒定律……………………………………….………………………………………P26 20、功和能……………………………………………….………………………………………P28 21、观察碰撞中的动能………………………………….………………………………………P30 22、机械能守恒定律(斜轨法)…………………………………………….……………………P31 23、机械能守恒定律(摆球法)…………………………………………….……………………P33 24、单摆的振动图像…………………………………….………………………………………P34 25、阻尼振动…………………………………………….………………………………………P35 26、简谐振动的相位…………………………………….………………………………………P35 27、简谐波的叠加………………………………………….……………………………………P36 28、弹簧振子的振动图像………………………………….……………………………………P37 29、弹簧振子位移与弹簧受力关系……………….……………………………………………P38 30、受迫振动……………………………………………….……………………………………P39 31、单摆周期的测量……………………………………….……………………………………P41 32、单摆法测重力加速度………………………………….……………………………………P42 33、向心力研究…………………………………………….……………………………………P42 34、胡克定律……………………………………………….……………………………………P44 35、研究定滑轮与动滑轮………………………………….……………………………………P45 36、声波的振动图像……………………………………….……………………………………P46 37、噪声的波形…………………………………………….……………………………………P46 38、频率与音调的关系…………………………………….……………………………………P47 39、振幅与响度的关系………………………………….………………………………………P47 40、声波干涉………………………………………….…………………………………………P48 41、声波的合成……………………………………….…………………………………………P48 42、声音的共鸣……………………………………….…………………………………………P49

新课标人教版3-2选修三6.4《传感器的应用实验》WORD教案5

第四节:传感器的应用实验学案 【学习目标】 1、知道二极管的单向导电性和发光二极管的发光特性。 2、知道晶体三极管的放大特性。 3、掌握逻辑电路的基本知识和基本应用。[来一网] 【学习重点】:传感器的应用实例。 【学习难点】:由门电路控制的传感器的工作原理。 【教学过程】 」、问题引入 上节课我们学习了温度传感器、光传感器及其工作原理。请大家回忆一下我们些具体的温度、光 学了哪传感器? 二、学习新课 阅读下列学习资料总结二极管的特点和作用: (一)、普通二极管和发光二极管 固态电子器件中的半导体两端器件。起源于19世纪末发现的点接触二极管效应,发展于20世纪 30年代,主要特征是具有单向导电性,即整流特性。利用不同的半导体材料、掺杂分布、几何结构,可制成不同类型的二极管,用来产生、控制、接收、变换、放大信号和进行能量转换。例如稳压二极管可在电源电路中提供固定偏压和进行过压保护;雪崩二极管作为固体微波功率源,用于小型固体发射机中的发射源;半导体光电二极管能实现光-电能量的转换,可用来探测光辐射信号;半导体发光二极管能实现电-光 能量的转换,可用作指示灯、文字-数字显示、光耦合器件、光通信系统光源等;肖特基二极管可用于微波电路中的混频、检波、调制、超高速开关、倍频和低噪声参量放大等。按用途分:检波二极管、整流二极 管、稳压二极管、开关管、光电管。按结构分:点接触型二极管、面接触型二极管 发光二极管简称为LED。由镓(Ga )与砷(AS )、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射岀可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向 导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN 结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和 空穴所处的能量状态不同。当电子和空穴复合时释放岀的能量多少不同,释放岀的能量越多,则发岀的光的波长越短。常用的是发红光、绿光或黄光的二极管。

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

传感器原理实验指导书

《传感器原理及应用》实验指导书闻福三郭芸君编著 电子技术省级实验教学示范中心

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 实验仪器 1、传感器特性综合实验仪 THQC-1型 1台 2、万用表 MY60 1个 三、 实验原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,可以得到被测对象的应变值ε,而根据应力应变关系 εσE = (2) 式中:ζ——测试的应力; E ——材料弹性模量。 可以测得应力值ζ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 四、 实验内容与步骤 1、应变式传感器已装到应变传感器模块上。用万用表测量传感器中各应变片R1、R 2、R 3、R4,R1=R2=R3=R4=350Ω。 2、将主控箱与模板电源±15V 相对应连接,无误后,合上主控箱电源开关,按图1-1顺时针调节Rw2使之中间位置,再进行放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(如四根粗实线),把电桥调零电位器Rw1,电源±5V ,此时应将±5V 地与±15V 地短接(因为不共地)如图1-1所示。检查接线无误后,合上主控箱电源开关。调节Rw1,使数显表显示为零。 4、按表1-1中给出的砝码重量值,读取数显表数值填入表1-1中。

(完整版)高中物理《传感器的应用实验》教案

高中物理《传感器的应用实验》教案转载 一、教材分析 本节继第三节介绍四种传感器的应用实例之后,再进一步拓展学生的视野,提高学生的认识和分析能力以及动手能力,并通过实验的方法,让学生在组装和调试中,更为深入地认识传感器的应用。 二、教学目标 1.知识目标: (1)、知道二极管的单向导电性和发光二极管的发光特性。 (2)、知道晶体三极管的放大特性。 (3)、掌握逻辑电路的基本知识和基本应用。 2.能力目标: 通过实验的方法,让学生在组装和调试中,更为深入地认识传感器的应用。 3.情感、态度和价值观目标: 培养学生的学习兴趣,倡导以创新为主,实践为重的素质教育理念。 三、教学重点难点 重点:传感器的应用实例。 难点:由门电路控制的传感器的工作原理。 四、学情分析 我们的学生属于理解较差,动手能力不好,尽量让学生多动手,必要时需要教师指导并借助动画给予直观的认识。 五、教学方法 PPT课件,演示实验,讲授 六、课前准备 1.学生的学习准备:预习新课,初步把握实验原理及方法步骤。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。3.教学环境的设计和布置:四人一组,课前准备好斯密特触发器或非门电路,二极管,三极管,蜂鸣器,滑线变阻器,热敏电阻,光敏电阻等材料用具。 七、课时安排:1课时 八、教学过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 (二)情景导入、展示目标。 上节课我们学习了温度传感器、光传感器及其工作原理。请大家回忆一下我们学了哪些具体的温度、光传感器?

学生思考后回答:电饭锅,测温仪,鼠标器,火灾报警器 这节课我们将结合简单逻辑电路中的知识学习由门电路以及传感器控制的电路问题。(三)合作探究、精讲点拨。 探究一:(!)普通二极管和发光二极管 1、二极管具有单向导电性 2、发光二极管除了具有单向导电性外,导电时还能发光,普通发光二极管使用磷化镓或磷砷化镓等半导体材料制成,直接将电能转化为光能,该类发光二极管的正向导通电压大于1.8V。 (2)晶体三极管 1、三极管具有电流放大作用。 2、晶体三极管能够将微弱的信号放大,晶体三极管的三个极分别是发射极e,基极b和集电极c。 3、传感器输出的电流和电压很小,用一个三极管可以放大几十倍或几百倍,三极管的放大作用表现为基极b的电流对集电极c的电流起了控制作用。 (三)逻辑电路 逻辑门电路符号图包括与门,或门,非门, 1.与逻辑 对于与门电路,只要一个输入端输入为0,则输出端一定是0,只有当所有输入端输入都同为1时,输出才是1. 2.或逻辑 对于或门电路,只要一个输入端输入为1,则输出一定是1,反之,只有当所有输入端都为0时,输出端才是0. 3.非门电路 对于非门电路,当输入为0时,输出总是1,当输入为1时,输出反而是0,非门电路也称反相器。 4.斯密特电路: 斯密特触发器是特殊的非门电路,当加在它的输入端A的电压逐渐上升到某个值1.6V时,输出端Y会突然从高电平调到低电平0.25V,而当输入端A的电压下降到另一个值的时候0.8V,Y会从低电平跳到高电平3.4V。斯密特触发器可以将连续变化的模拟信号转换为突变的数字信号。而这正是进行光控所需要的。 探究点二:应用实例 1、光控开关 电路组成:斯密特触发器,光敏电阻,发光二极管LED模仿路灯,滑线变阻器,定值电阻,电路如图所示。

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

超声波传感器数据采集及界面开发

无线传感网络技术 课程实训(论文) 超声波传感器数据采集及界面开发 院(系)名称电子与信息工程学院 专业班级物联网121 学号120402066 学生姓名江立骥 指导教师李锐副教授 起止时间:2015.6.29—2015.7.17

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:物联网工程

本科生课程设计(论文) 目录 第1章绪论 (1) 1.1超声波传感器发展概况 (1) 1.2超声波传感器在物联网技术中的应用 (2) 1.3本文研究内容 (2) 第2章总体设计方案 (3) 2.1 方案论证 (3) 2.2总体设计方案框图及分析 (3) 第3章超声波传感器单元硬件设计 (5) 3.1超声波传感器特性与参数: (5) 3.1.1超声波传感器特性 (5) 3.1.2超声波传感器参数 (5) 3.2 模块工作原理 (6) 第4章MATLAB串口界面开发调试 (8) 4.1 MATLAB开发环境 (8) 4.2程序代码 (11) 4.3.1打开串口 (11) 4.3.2停止显示 (12) 4.3.3十进制显示 (13) 4.3.4 清空 (13) 4.3.5 清空发送区 (14) 第5章综合测试与数据分析 (15) 5.1仿真与调试 (15) 5.2数据的采集 (15) 第6章总结 (18) 参考文献 (19)

第1章绪论 1.1超声波传感器发展概况 随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。这一设计就是本着这个宗旨出发,利用超声波的特性来为我们服务。 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。由于超声波指向性强,因而常于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人,汽车安全,海洋测量等上得到了广泛的应用。 与激光测距、红外线测距相比,超声波对外界光线、色彩和电磁场不敏感,更适于黑暗、电磁干扰强、有毒、灰尘或烟雾的恶劣环境,在识别透明及漫反射性差的物体上也更有优势。而且超声波还有其指向性强、能量消耗缓慢、传播距离较远等优点。超声波测距是一种非接触式测量,广泛应用于倒车防撞雷达、机器人接近觉、海洋测量、物体识别等领域。距离是在不同的场合和控制中需要检测的一个参数,所以,测距就成为数据采集中要解决的一个问题。距离是在不同的场合和控制中需要检测的一个参数,所以,测距就成为数据采集中要解决的一个问题。尽管测距有多种方式,比如,激光测距,微波测距,红外线测距和超声波测距等。但是,超声波测距不失为一种简单可行的方法。超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。本设计是超声波测距仪装置,该装置利用了发射接收一体化的超声波传感器和微处理器。采用超声波传感器分时工作于发射和接收,利用声波在空气中的传播速度和发射脉冲到接收反射脉冲的时间间隔计算出障碍物到超声波测距器之间的距离。因此经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。在日常生活中起了广泛的作用。

相关文档
相关文档 最新文档