文档库 最新最全的文档下载
当前位置:文档库 › 深入分析 Linux 内核链表

深入分析 Linux 内核链表

深入分析 Linux 内核链表
深入分析 Linux 内核链表

Linux内核通用链表 linuxlist.h阅读

Linux内核通用链表 阅读 2008-10-23 22:43 #ifndef _LINUX_LIST_H #define _LINUX_LIST_H //宏定义,不做过多解释,就是检查是否包含了linux/list.h #ifdef __KERNEL__ #include #include #include /* * These are non-NULL pointers that will result in page faults * under normal circumstances, used to verify that nobody uses * non-initialized list entries. */ 这些非空的指针会导致页错误,在正常环境下,用来验证无人使用为初始化的链表节点,入口.也有解释说能引起中断,或者关于这个地址的处理内核处理的很简单,要么打印日志信息报错,要么直接不处理. #define LIST_POISON1 ((void *) 0x00100100) #define LIST_POISON2 ((void *) 0x00200200) /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ entry似乎应该翻译成表或者节点。 简单的双向链表实现:一些内部函数在熟练操作整个链表比单个入口更有用,当我们已经知道next/prev入口,通过使用直接它们比使用一般的单入口程序产生更好的代码。 struct list_head { struct list_head *next, *prev; };

关于Linux 内核中五个主要子系统的介绍

关于Linux 内核中五个主要子系统的介绍 发布时间:2008.01.02 06:23来源:赛迪网作者:sixth 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

Linux内核的等待队列

Linux内核的等待队列 Linux内核的等待队列是以双循环链表为基础数据结构,与进程调度机制紧密结合,能够用于实现核心的异步事件通知机制。在Linux2.4.21中,等待队列在源代码树include/linux/wait.h中,这是一个通过list_head连接的典型双循环链表,如下图所示。 在这个链表中,有两种数据结构:等待队列头(wait_queue_head_t)和等待队列项(wait_queue_t)。等待队列头和等待队列项中都包含一个list_head类型的域作为"连接件"。由于我们只需要对队列进行添加和删除操作,并不会修改其中的对象(等待队列项),因此,我们只需要提供一把保护整个基础设施和所有对象的锁,这把锁保存在等待队列头中,为wq_lock_t类型。在实现中,可以支持读写锁(rwlock)或自旋锁(spinlock)两种类型,通过一个宏定义来切换。如果使用读写锁,将wq_lock_t定义为rwlock_t类型;如果是自旋锁,将wq_lock_t 定义为spinlock_t类型。无论哪种情况,分别相应设置wq_read_lock、 wq_read_unlock、wq_read_lock_irqsave、wq_read_unlock_irqrestore、wq_write_lock_irq、wq_write_unlock、wq_write_lock_irqsave和 wq_write_unlock_irqrestore等宏。 等待队列头 struct __wait_queue_head { wq_lock_t lock; struct list_head task_list; }; typedef struct __wait_queue_head wait_queue_head_t; 前面已经说过,等待队列的主体是进程,这反映在每个等待队列项中,是一个任务结构指针(struct task_struct * task)。flags为该进程的等待标志,当前只支持互斥。 等待队列项 struct __wait_queue { unsigned int flags; #define WQ_FLAG_EXCLUSIVE 0x01 struct task_struct * task; struct list_head task_list;

Linux测验题100道

吉林工商学院 Linux红帽认证模拟(2015年6月版) 说明:均为多选题,每题一分,共一百分。可以翻书或在Linux实验环境中验证。 竞赛时间100分钟。 一、执行 su 命令后,$PATH变量被重置,一般可以通过修改/etc/login.defs中的_______ 值来改变 1 PATH 2 ENV_PATH 3 ENV_SUPATH 4 SU 二、在/etc/fstab文件中,我们可以看到以下信息 : 1 文件系统名 2 文件系统类型 3 文件系统大小 4 文件系统在系统中被fsck检查的顺序 三、为了能够使用 ls 程序列出目录的内容,并能够使用 cd 进入该目录,操作者需要有 _____ 该目录的权限 1 读 2 写 3 执行 4 递归 四、常用的输入输出重定向符号有: 1 > 2 < 3 >> 4 << 五、Linux系统中的设备的类型包括: 1 块设备 2 字符设备

精选文库 4 缓冲设备 六、Linux系统安全管理的内容包括: 1 普通用户的系统安全 2 文件系统的安全 3 进程安全 4 文件内容安全 七、在/etc/passwd文件中保存的其它特殊帐户缺省情况下包括: 1 syslog 2 ftp 3 mail 4 lp 八、bash环境中,常用的逻辑运算符有: 1 -a 2 -o 3 ! 4 != 九、为运行一个写好的shell程序,我们可以使用下列方法: 1 改变程序的属性 2 启动shell后,在外壳下运行 3 加入初使行#!/bin/sh 4 使用命令替换方式 十、使用chmod命令修改文件权限时,可以使用的有关用户的选项参数有: 1 g 2 u 3 o 4 a 十一、bash环境中,常用的字符串运算符有: 1 = 2 !=

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.wendangku.net/doc/4c2033238.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

LINUX内核源文件介绍以及头文件介绍

LINUX 内核源文件介绍以及头文件介绍 LINUX 内核源文件介绍以及头文件介绍.txt两人之间的感情就像织毛衣,建立的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。*******************LINUX 内核(0.11)源文件介绍****************** 1、内核源文件放置目录: | |————boot 系统引导汇编程序目录 | |————fs 文件系统目录 | |————include 头文件目录 | |————init 内核初始化程序目录 | |————kernel 内存进程调度、信号处理、系统调用等程序的目录 | |————lib 内核库函数目录 | |————mm 内存管理程序目录 | |————tools 生成内核Image文件的工具程序目录 | |————Makefile文件 | 2、引导启动程序目录boot 包含3个汇编语言文件,是内核源文件中最先被编译的程序。 功能:当计算机家电时引导内核启动,将内核代码加载到内存中,并完成系统初始化工作。 boot | |————bootsect.s 磁盘引导块程序,编译后会驻留在磁盘的第一个扇区中| |————setup.s 读取机器的硬件配置参数,并把内核模式system移动到适当的内存位置处 |

|————head.s 会被编译连接在system模块的最前部分,主要进行硬件设备的探测配置和内存管理页面的配置工作 | 3、文件系统目录fs 包含17个C语言程序 fs | |——buffer.c 管理高速缓冲区 | |——file_table.c 在0.11仅定义了一个文件句柄(描述符)结构数组 | |——ioctl.c 将引用kernel/chr_dev/tty.c中的函数,实现字符设备的IO 控制功能 | |——exec.c 主要包含一个执行程序函数do_execve() | |——fcntl.c 实现文件I/O控制的系统调用函数 | |——read_write.c 实现文件读/写和定位的三个系统调用函数 | |——stat.c 实现了两个获取文件状态的系统调用函数 | |——open.c 主要包含实现修改文件属性和创建与关闭文件的系统调用函数 | |——char_dev.c 主要包含字符设备读写函数rw_char() | |——pipe.c 包含管道读写函数和创建管道的系统调用函数 | |——file_dev.c 包含基于i节点和描述符结构的文件读写函数。 | |——namei.c 主要包括文件系统中目录名和文件名的操作函数和系统调用函数 | |——block_dev.c 包含块数据读和写函数 | |——inode.c 包含针对文件系统i节点操作的函数 | |——truncate.c 用于在删除文件时释放文件所占用的设备数据空间 | |——bitmap.c 用于处理文件系统中i节点和逻辑数据块的位图 |

linux-2.6.18移植

Linux-2.6.18移植 有了我们的交叉编译环境和我们先前学的内核基础知识,下面我们就开始我们的内核移植了,我们所用的是博创的 S3C2410 。 关于 linux-2.6.18.tar.bz2 的下载网站先前我们说过,我们要先到该官方网站上去下载一个全新的内核。 [root@Binnary ~ ]# tar –jxvf linux-2.6.18.tar.bz2 [root@Binnary ~ ]# make mrproper 如果你是新下载的内核,那这一步就不用了。但如果你用的是别人移植好的内核,那最好在编译内核之前先清除一下中间文件,因为你们用来编译内核的交叉编译工具可能不同。 第一步:修改Makefile文件 将 改为 第二步:修改分区设置信息 我们要先在BootLoader中查看相应的分区信息 vivi>help 然后修改内核源码中的分区信息。分区信息文件在 a rch/arm/mach-s3c2410/common-smdk.c 将其中的

改为如下内容:

第三步:内核通过 BootLoader把数据写入NAND Flash,而vivi的ECC效验算法和内核的不同,内核的效验码是由NAND Flash控制器产生的,所以在此必须禁用NAND Flash ECC。所以我们就要修改 drivers/mtd/nand/s3c2410.c 这个文件。将 中的 chip->ecc.mode = NAND_ECC_SOFT ,改为如下 chip->ecc.mode = NAND_ECC_NONE。

只此一处。 第四步:下面是devfs的问题,因为2.6.12内核以后取消了devfs的配置选项,缺少了它内核会找不到mtdblock设备。所以我们需要修改 fs/Kconfig 文件,或者是从2.6.12的fs/Kconfig中拷贝下面几项到2.6.18的fs/Kconfig中去,我们采用修改的方法来完成。 修改 fs/Kconfig支持devfs 。 在Pseudo filesystems 主菜单的最后添加我们所要的内容。 第五步:文件系统的支持 Yaffs 文件系统 YAFFS文件系统简介 YAFFS,Yet Another Flash File System,是一种类似于JFFS/JFFS2的专门为Flash设计 的嵌入式文件系统。与JFFS相比,它减少了一些功能,因此速度更快、占用内存更少。 YAFFS和JFFS都提供了写均衡,垃圾收集等底层操作。它们的不同之处在于: (1)、JFFS是一种日志文件系统,通过日志机制保证文件系统的稳定性。YAFFS仅仅 借鉴了日志系统的思想,不提供日志机能,所以稳定性不如JAFFS,但是资源占用少。 (2)、JFFS中使用多级链表管理需要回收的脏块,并且使用系统生成伪随机变量决定 要回收的块,通过这种方法能提供较好的写均衡,在YAFFS中是从头到尾对块搜索, 所以在垃圾收集上JFFS的速度慢,但是能延长NAND的寿命。 (3)、JFFS支持文件压缩,适合存储容量较小的系统;YAFFS不支持压缩,更适合存 储容量大的系统。 YAFFS还带有NAND芯片驱动,并为嵌入式系统提供了直接访问文件系统的API,用 户可以不使用Linux中的MTD和VFS,直接对文件进行操作。NAND Flash大多采用 MTD+YAFFS的模式。MTD( Memory Technology Devices,内存技术设备)是对Flash 操作的接口,提供了一系列的标准函数,将硬件驱动设计和系统程序设计分开。 Yaffs 文件系统内核没有集成,可以对其主页下载: https://www.wendangku.net/doc/4c2033238.html,/cgi-bin/viewcvs.cgi/#dirlist

Linux kernel内核升级全过程,教你一次成功

序言 由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。没想到这一弄就花了两天时间( 反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。 网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多 文章在转载过程中命令行都有错误。刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。 现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统 ,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享 ~~! 一、准备工作 首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。 启动Linux系统,并用根用户登录,进入终端模式下。 1、查看Linux内核版本 # uname -a 如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是 2.4.x,那恭喜你,闯关通过,赶快进行下一步。 2、下载2.6内核源码 下载地址:https://www.wendangku.net/doc/4c2033238.html,/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz2 3、下载内核升级工具 (1)下载module-init-tools-3.2.tar.bz2 https://www.wendangku.net/doc/4c2033238.html,/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2 (2)下载mkinitrd-4.1.18-2.i386.rpm https://www.wendangku.net/doc/4c2033238.html,/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm (3)下载lvm2-2.00.25-1.01.i386.rpm https://www.wendangku.net/doc/4c2033238.html,/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm (4)下载device-mapper-1.00.19-2.i386.rpm https://www.wendangku.net/doc/4c2033238.html,/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm (2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到https://www.wendangku.net/doc/4c2033238.html,/guestbook留下你的邮箱,我给你发过去)

Linux文件系统相关数据结构及相互间的关系案例分析

文件系统相关数据结构及相互间的关系 一.详细关系: 1.进程要访问文件,就要首先与文件系统中要访问的文件建立连接,在进程数据结构task_struct中,有两个指针fs和files,一个指向fs_struct数据结构,是关于文件系统的信息;另一个指向files_struct数据结构,是关于已打开文件的信息。 2.fs_struct数据结构中有dentry结构指针,dentry结构中有inode结构指针。Dentry结构所代表的是逻辑意义上的文件,记录的是其逻辑上的属性,而inode 结构所代表的是物理意义上的文件,记录的是物理上的属性。它们之间的关系是多对一的关系。Inode结构中定义union数据结构用于大致反应Linux内核目前所支持的各种文件系统。 2.1.dentry结构中有一个d_inode指针指向相应的inode结构,dentry结构代表的是逻辑意义上的文件,描述文件的逻辑属性,因此目录项在磁盘上并没有对应的映像;而inode结构代表的是物理意义上的文件,记录其物理属性,对与一个具体的文件系统,inode结构在磁盘上有对应的映像。由此可见,一个索引节点对象可能对应多个目录项对象。一个有效的dentry结构必定对应一个inode 结构,这是因为一个目录项要么代表一个文件,要么代表一个目录,而目录实际上也是文件。所以只要dentry结构是有效的,则其指针d_inode必定指向一个inode结构。反之则不成立,因为一个inode可以对应多个dentry结构,即一个文件可以有不止一个文件名或路径名。因为一个已经建立的文件可以被链接到其他文件名。所以inode结构中有一个i_dentry,凡是代表着同一个文件的所有目录项都通过其dentry结构体中的d_alias域挂入相应的inode结构体中的

Linux内核十个版本性能对比

【IT168 评论】从2008年1月底至今,Linux Kernel系统内核已经先后升级了十次,版本号也从2.6.24上升到2.6.33,并且下个版本2.6.34也已进入开发阶段。今天我们就看看过去两年内这十个版本在性能上有何差异。 测试平台是一套工作站系统,硬件配置包括AMD Opteron 2384 2.7GHz四核心处理器(“上海”)、泰安Thunder n3600B S2927主板(NVIDIA nForce 3600PRO 芯片组)、4GB DDR2 ECC Reg内存、希捷ST3300622AS 300GB硬盘、ATI FirePro V8700显卡,软件上采用Ubuntu 8.04.4 LTS 64位操作系统,组件有GNOME 2.22.3、https://www.wendangku.net/doc/4c2033238.html, Server 1.4.0.90、GCC 4.2.4、EXT3。 Linux Kernel 2.6.24-2.6.33的每个版本都从Ubuntu PPA源上获取,而且均为64位版本。除了替换内核之外,系统其他设置均保持默认。 Apache Benchmark(静态网页服务):2.6.33成绩大幅提升,但事实最早的2.6.24版反而才是好的,之后八个版本都差得很多,最新版终于基本正常了。

PostgreSQL pgbench(每秒钟TPC-B交易数):2.6.30的成绩比上个版本骤然提升了多达770%,但之后2.6.32迅速下滑,最新的2.6.33却又完全不如2.6.30之前的六个版本了。

7-Zip Compression(文件压缩速度):不同版本有所波动,最新的2.6.33成了赢家,这才是我们最希望看到的。 LZMA Compression(256MB文件压缩):十个版本几乎没什么区别。

Linux内核目录文件简介

Linux V0.11目录文件简介 ●Makefile文件:该文件是编译辅助工具软件make的参数配置文件。 ●boot目录:功能是当计算机加电时引导内核启动,将内核代码加载到内存中,并做一些进入入32位保护运行方式前的系统初始化工作。 ①Bootsect.s:磁盘引导块程序,驻留磁盘第一个扇区。0x7C00 ②Setup.s:读取机器的硬件配置参数,并把内核模块system移动到适当的内存位置处。 ③Head.s:被编译连接在system模块的最前部分,主要进行硬件设备的探测设置和内存管理页面的初始设置工作。 ●fs目录:文件系统实现程序的目录。 1、file_table.c文件中,目前仅定义了一个文件句柄(描述符)结构数组。 2、ioctl.c文件将引用kernel/chr_dev/tty.c中的函数,实现字符设备的io控制功能。 3、exec.c程序主要包含一个执行程序函数do_execve(),它是所有exec()函数簇中的主要函数。 4、fcntl.c程序用于实现文件i/o控制的系统调用函数。 5、read_write.c程序用于实现文件读/写和定位三个系统调用函数。 6、stat.c程序中实现了两个获取文件状态的系统调用函数。 7、open.c程序主要包含实现修改文件属性和创建与关闭文件的系统调用函数。 8、char_dev.c主要包含字符设备读写函数rw_char()。 9、pipe.c程序中包含管道读写函数和创建管道的系统调用。 10、file_dev.c程序中包含基于i节点和描述符结构的文件读写函数。 11、namei.c程序主要包括文件系统中目录名和文件名的操作函数和系统调用函数。 12、block_dev.c程序包含块数据读和写函数。 13、inode.c程序中包含针对文件系统i节点操作的函数。 14、truncate.c程序用于在删除文件时释放文件所占用的设备数据空间。 15、bitmap.c程序用于处理文件系统中i节点和逻辑数据块的位图。 16、super.c程序中包含对文件系统超级块的处理函数。 17、buffer.c程序主要用于对内存高速缓冲区进行处理。 ·虚框中的ll_rw_block是块设备的底层读函数,它并不在fs目录中,而是 kernel/blk_dev/ll_rw_block.c中的块设备读写驱动函数。放在这里只是让我们清楚的看到,文件系统对于块设备中数据的读写,都需要通过高速缓冲区与块设备的驱动程序 (ll_rw_block())来操作来进行,文件系统程序集本身并不直接与块设备的驱动程序打交道。

Linux的版本与内核

Linux的版本与内核 Linux有两种版本,一个是核心(kernel)版,一个是发行(distribution)版。核心版的序号由三部分数字构成,其形式为:major.minor.patchlevel,其中,majoro为主版本号,minor为次版本号,二者共同构成了当前核心版本号。patchlevel表示对当前版本的修订次数。例如,2.2.11表示对核心作用2.2 版本的第11次修订。根据约定,次版本号为奇数时,表示该版本加入新内容,但不一定稳定,相当于测试版;次版本号为偶数时,表示这是一个可以使用的稳定版本。鉴于Linux内核开发工作的连续性,内核的稳定版本与在此基础上进一步开发的不稳定版本总是同时存在的。建议采用稳定的核心版本。 Linux的内核具有两种不同的版本号,实验版本和产品化版本。要确定LINUX版本的类型,只要查看一下版本号:每一个版本号由三位数字组成,第二位数字说明版本类型。如果第二位数字是偶数则说明这种版本是产品化版本,如果是奇数说明是实验版本。如2.6.20是产品化版本,2.6.16是实验版本。LINUX的两种版本是相互关联的。实验版本最初是产品化产品的拷贝,然后产品化版本只修改错误,实验版本继续增加新功能,到实验版本测试证明稳定后拷贝成新的产品化版本,不断循环,这样一方面可以方便广大软件人员加入到LINUX的开发和测试工作中来,另一方面又可以让一些用户使用上稳定的LINUX版本。真是做到开发和实用两不误。现在LINUX的内核的最新版本是2.6.20。 Linux内核 Linux是最受欢迎的自由电脑操作系统内核。它是一个用C语言写成,符合POSIX标准的类Unix操作系统。Linux最早是由芬兰黑客 Linus Torvalds为尝试在英特尔x86架构上提供自由免费的类Unix操作系统而开发的。该计划开始于1991年,这里有一份Linus Torvalds 当时在Usenet新闻组comp.os.minix所登载的贴子,这份著名的贴子标志着Linux计划的正式开始。在计划的早期有一些Minix 黑客提供了协助,而今天全球无数程序员正在为该计划无偿提供帮助。技术上说Linux是一个内核。“内核”指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。一个内核不是一套完整的操作系统。一套基于Linux内核的完整操作系统叫作Linux操作系统,或是GNU/Linux架构。今天Linux是一个一体化内核(monolithic kernel)系统。设备驱动程序可以完全访问硬件。Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载。Linux不是微内核(microkernel)架构的事实曾经引起了Linus Torvalds与Andy Tanenbaum之间一场著名的争论。 Linux内核简史 操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件。一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。但是没有软件来操作和控制它,自身是不能工作的。完成这个控制工作的软件就称为操作系统,在Linux 的术语中被称为“内核”,也可以称为“核心”。Linux内核的主要模块(或组件)分以下几个部分:存储管理、CPU和进程管理、文件系统、设备管理和驱动、网络通信,以及系统的初始化(引导)、系统调用等。

Linux内核版本号及源代码目录树结构

Linux 内核版本号及源代码目录树结构 一、linux内核版本号的命名机制 Linux内核版本有两种:稳定版和开发版。稳定的内核具有工业级的强度,可以广泛地应用和部署。新的稳定内核相对于较旧的只是修正一些bug或加入一些新的驱动程序。而开发版内核由于要试验各种解决方案,所以变化很快。这两种版本是相互关联,相互循环的。 Linux内核的命名机制: num.num.num 其中第一个数字是主版本号,第二个数字是次版本号,第三个数字是修订版本号。如果次版本号是偶数,那么该内核就是稳定版的;若是奇数,则是开发版的。头两个数字合在一齐可以描述内核系列。如稳定版的2.6.0,它是2.6版内核系列。最新的内核源代码可以在https://www.wendangku.net/doc/4c2033238.html,以tar包或者增量补丁的形式下载.。 Linux还有各种发行版本,除了最熟悉的Redhat,Debian,Bluepoint,红旗,还有 Slackware,Mandarke,Turbo。 二、linux源代码目录树结构 Linux用来支持各种体系结构的源代码包含大约4500个C语言程序,存放在270个左右的子目录下,总共大约包含200万行代码,大概占用58MB磁盘空间。 在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下: arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。 include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。

Linux内核简介

1.Linux系统分为三层: (1)靠近硬件的底层是内核,即Linux操作系统常驻内存部分。 (2)中间层是内核之外的shell层,即操作系统的系统程序部分。 (3)最高层是应用层,即用户程序部分。 2.Linux的进程调度算法采用多级队列轮转法。 3.Linux两种管理内存的策略: (1)交换 (2)请求分页 4.Linux支持三种类型的硬件设备: (1)字符设备 (2)块设备 (3)网络设备 5.Linux 进程状态: (1)运行态 (2)可中断等待态 (3)不可中断等待态 (4)停止态 (5)僵死态 6.Linux进程的执行模式: (1)用户模式 (2)内核模式 7.如果在用户程序执行过程中出现系统调用或者发生中断事件,就要运行操作系统程序, 进程模式变成内核模式。在内核模式下运行的进程可以执行机器的特权指令,此时该进程的运行不受用户的干预,即使是root用户也不能干预内核模式下进程的运行。 8.Linux进程按功能和运行的程序分为: (1)系统进程 (2)用户进程 9.用户进程既可以在用户模式下运行,也可以在内核模式下运行。 10.Linux每个进程都有一个名为task-struct的数据结构,相当于进程控制块。 11.task-struct包含的信息: (1)进程状态

(2)调度信息 (3)标识符 (4)内部进程通信 (5)链接信息 (6)时间和计时器 (7)文件系统 (8)虚拟内存 (9)处理器信息 12.Linux每个进程都有一个系统堆栈,保存中断现场信息和进程进入内核模式后执行子程 序嵌套调用的返回现场信息。 13.系统空间堆栈大小是静态确定的,用户空间堆栈可以在运行时动态扩展。 14.系统刚刚启动时,系统运行在内核方式,内核在引导并完成基本的初始化操作以后,就 有了系统的第一个进程。除此之外,所有的其他进程和内核线程都由这个原始进程或其子孙进程创建。 15.除初始化进程外,其他进程都是用系统调用fork()和clone()创建的。调用fork()和clone() 的进程是父进程,被生成的进程是子进程。 16.后台程序按批处理方式调度运行。 17.超级块包含文件系统的大小和形式的基本信息。文件系统管理员可以利用这些信息来使 用和维护文件系统。每个块组都是一个超级块。 18.每个数据块组都有一个描述它的数据结构,即块组描述结构。 19.每个文件都有唯一一个索引节点。 20.索引节点两种形式: (1)盘索引节点 (2)内存索引节点 21.用户程序通过有关文件系统操作的系统调用界面进入系统空间,然后经由VFS才可使用 Linux系统中具体的文件系统。 22.VFS和ext2文件系统一样也使用超级块和索引节点来描述和管理系统中的文件。每个安 装的文件系统都有一个VFS超级块。 23.Linux系统进程启动时,自动打开三个文件:标准输入、标准输出和标准错误输出,文 件描述符分别是0,1,2. 24.信号处理机构包括: (1)信号的分类、产生和传送 (2)对各种信号预先规定的处理方式 (3)信号的检测和处理 25.进程接到信号后,在一定时机做相应处理,可采取四种处理方式: (1)忽略信号 (2)阻塞信号 (3)由进程处理该信号

使用proc实现内核与用户空间通信解析

使用proc实现内核与用户空间通信使用proc实现内核与用户空间通信本文档的Copyleft归yfydz所有,使用GPL发布,可以自由拷贝,转载,转载时请保持文档的完整性,严禁用于任何商业用途。 msn yfydz_no1@https://www.wendangku.net/doc/4c2033238.html, 来源:https://www.wendangku.net/doc/4c2033238.html, 1. 前言 Linux内核空间与用户空间的通信可通过proc目录的文件读写来实现,如果只是控制内核中的参数而不是传输较多数据的话,用“proc”是很合适的。另外一种内核与用户空间通信方式方式是使用内核设备的读写或IOCTL来实现,以后再介绍。 2. proc概述 proc目录是系统模拟出来的一个文件系统,本身并不存在于磁盘上,其中的文件都表示内核参数的信息,这些信息分两类,一类是可都可写的,这类参数都在“procsys”目录下,另一类是只读的,就是“procsys”目录之外的其他目录和文件,当然这只是一种惯例,实际在其他目录下建立可读写的proc文件也是可以的。操作proc目录不需要特殊工具,在用户层看来就是一普通文件,在shell中用“cat”命令进行查看,用“echo”命令来写文件信息。Linux内核在2.4以后proc目录文件的建立已经变得很容易,以前版本都还需要构造文件操作结构来实现,现在只需要调用简单函数就可以了。proc文件通过是create_proc_entry(函数来建立,使用remove_proc_entry(函数来删除,建立新目录可以通过proc_mkdir(函数调用,这些函数在fsprocgeneric.c中定义,通常我们不必直接使用create_proc_entry(函数来建立,而是通过这个函数的包裹函数来实现。 3. 只读proc文件内核编译选项要设置CONFIG_PROC_FS。 3.1 建立proc只读项只读的proc文件可以通过create_proc_read_entry(或create_proc_info_entry(函数来建立,在模块初始化时调用,: includelinuxproc_fs.h static inline struct proc_dir_entry create_proc_read_entry(const char name, mode_t mode, struct proc_dir_entry base, read_proc_t read_proc, void data { struct proc_dir_entry res=create_proc_entry(name,mode,base; if (res { res-read_proc=read_proc; res- data=data; } return res; } 该函数需要5个参数: name:要建立的文件名 mode:文件模式 base:所在的目录 read_proc:这是个函数指针,表示读取文件内容的函数data:传递给read_proc函数的用户参数指针 static inline struct proc_dir_entry create_proc_info_entry(const char name, mode_t mode, struct proc_dir_entry base, get_info_t get_info { struct proc_dir_entry res=create_proc_entry(name,mode,base; if

相关文档
相关文档 最新文档