文档库 最新最全的文档下载
当前位置:文档库 › 电压反馈型运算放大器的稳定性分析与补偿技术要点

电压反馈型运算放大器的稳定性分析与补偿技术要点

电压反馈型运算放大器的稳定性分析与补偿技术要点
电压反馈型运算放大器的稳定性分析与补偿技术要点

电压反馈型运算放大器的稳定性分析与补偿技术

整理:李柱炎turnfey@https://www.wendangku.net/doc/4c5675308.html,

本文整理自“小辉辉”的博客,感谢原作者,出处:

https://www.wendangku.net/doc/4c5675308.html,/thinki_cao/blog/#m=0&t=1&c=fks_084071080095080064087086084095092 085088071080094081070

Title: Stability Analysis of Voltage-Feedback Op Amps Including Compensation Techniques by Ron Mancini

Mixed Signal Products

摘要

本文阐述了电压反馈型运算放大器(op amp)稳定性的分析方法,这里使用电路的性能作为获得成功设计的标准。这里讨论了内部补偿以及无补偿运算放大器的几种补偿技术。

1 Introduction

电压反馈型放大器(VFA)已经面世60年左右,从第一天开始,它们就一直成为了电路设计者的一个问题。众所周知,反馈使得它们功能强大且精确,同样的也有一定的趋势使得它们不稳定。运算放大器(op amp)电路通常使用一个高增益的放大器,它的参数是由外部反馈元件决定的。放大器的增益是如此地高以至于没有这些外部反馈元件时,轻微的输入信号就有可能使得放大器的输出饱和。运算放大器是作为通用目的使用的,所以该设定已经经过详细检验,不过结果对于其他电压反馈型电路同样可用。电流反馈型放大器(CFA)与VFA比较相似,不过它们之间的差别非常重要以至于CFA必须在单独的应用笔记中讨论。

稳定性,正如常常在电子电路术语中出现的那样,常常被定义为获得一个不振荡的状态。这是对该单词比较差劲、不精确的定义。稳定性是一个相对项,并且这样的情形使得很多人迷惑因为相对性的判断是非常费力的。在振荡的电路与不振荡的电路之间画线是很容易的,所以我们可以理解为什么有些人认为振荡是稳定与不稳定之间的自然边界。

远在振荡发生之前,反馈电路会有着恶化的相位响应、过冲和振铃,并且这些影响不被电路设计者欢迎。本应用笔记并不着眼于振荡器;因此,相对稳定性在性能方面定义。通过定义,当设计者决定好要做哪些权衡之后,他们能确定电路的相对稳定性是多少。相对稳定性的度量即衰减系数,并且可以在参考1中找到关于衰减系数的相关讨论。衰减系数与相位裕量相关,因此,相位裕量是相对稳定性的另一度量。最稳定的电路有着最长的响应时间、最低的带宽,最高的精度和最小的过冲。稳定性最差的电路有着最快的响应时间、最高的带宽、最低的精度和一些过冲。

放大器是用如晶体管等的有缘元件搭建的。相关的晶体管参数,如晶体管增益等,是受

很多方面的漂移和初始不精确性的影响的。因此,由这些元件搭建出来的放大器是受漂移和非精确性影响的。通过使用负反馈,漂移和非精确性可以被最小化或者被消除。运算放大器电路用负反馈使得电路的转移方程独立于放大器参数(几乎是这样的),并且在这过程中,电路的转移函数依赖于外部的无源元件。我们可以买到外部的无源元件来满足几乎任何的漂移和精度要求;只有成本和无源元件的尺寸限制了它们的使用。

一旦反馈被使用在运算放大器上,运算放大器电路就有可能变得不稳定。有些系列的放大器称之为内部补偿的放大器;它们含有内部电容,即有时候称之为防止不稳定。虽然内部补偿的运算放大器在指定的条件下工作不会产生振荡,然而许多放大器仍然有相对稳定性问题,这些问题也说明他们自身存在恶化的相位响应、振铃和过程。唯一绝对稳定的内部补偿的运算放大器即躺在实验室而未上电的放大器!所有其他内部补偿的运算放大器在某些外部电路条件下都会振荡。

非内部补偿或者外部补偿的运算放大器在没有外部使其稳定化元件添加的情况下是不稳定的。这一情况在很多场合中是一大弊端,因为他们需要额外的元件,然而在缺失的内部补偿的情况使得最优秀的电路设计者能够从放大器中榨出最后一滴的性能。你有两个选择:运算放大器由IC 生产商内部补偿,或者运算放大器由你外部补偿。补偿,除了由运算放大器生产厂家完成之外,必须从外部对IC 进行。令人惊讶的是,内部补偿的运算放大器对于一些要求较高的应用也需要外部的补偿。

补偿是通过添加外部元件来改变电路转移函数的方式实现的,从而放大器变得无条件地稳定。这里有几种不同的补偿放大器的方法,而且正如你怀疑的那样,每种补偿方法各有利弊。本应用笔记的目的是教会你如何补偿以及如何评估补偿的结果。在运算放大器电路补偿完毕之后,我们必须分析来确定补偿的影响。补偿对于闭环转移函数的修正通常确定了哪一种补偿方案是最有利的。

2 Development of the Circuit Equations

一个广义反馈系统的框图如图1所示。这个简单的框图足够用来确定任何系统的稳定性状态。

输出方程和误差方程如下:

(1)

IN OUT E V V β=- (2)

联立方程1和2 解得方程3:

(3)

提取参数得到方程4:

(4)

重新整理参数得到反馈方程的经典形式。

(5)

注意到当方程5中的Aβ相比1非常大时,方程5化简为了方程6。方程6称之为理想反馈方程,因为它依赖于Aβ>>1的假设,并且它找到了当放大器被假设为拥有理想参数时的多方面的应用的。在Aβ>>1的条件下,系统增益由反馈因子β决定。稳定的无源电路元件是用来实现反馈因子的,因此,理想的闭环增益是可预测且稳定的,因为β是可预测且稳定的。

(6)

变量Aβ是如此重要以至于他被给予了一个特殊的名字,即环路增益。考虑图2;当电压输入接地时(电流输入开路)且环路被打破,计算得到的增益即环路增益,Aβ。现在请记住,这是有着幅度和方向的复杂数学式子。当环路增益接近-1时,或者将其用数学术语表述为1∠180°,方程5接近无穷大,因为1/0=>∞。电路输出趋近于无穷,就像直线方程那样快。如果输出没有能量限制,该电路会使得世界爆炸,但它是能量受电源限制的,所以世界仍然是完整的。

在电子电路中的有源器件会在它们的输出接近电源轨时表现出非线性,并且非线性减少了放大器的增益直到环路增益不再等于1∠180°。现在电路可以做两件事情;第一,它可以在供电电源的限制下变得稳定,或者第二,它可以反向(因为存储的电荷使得输出电压改变)且趋向于负电源轨。

第一个状态被称为锁止,即电路在供电电源的限制下变得稳定;电路将会一直保持在被锁止状态直到电源被移除。第二个状态被称为震荡,即电路在电源限制之间来回反弹。记住,

环路增益(Aβ),是唯一决定电路或者系统稳定性的因素。不管在环路增益被计算时输入接地与否,他们对于稳定性没有影响。环路增益标准将会在后面深入分析。

方程1和2被联立以及重新整理后得到方程7,它给出了度量系统或电路误差的一个参数

(7)

第一,注意到误差是正比于输入信号的。这是一个预料中的结果,因为一个更大的输入信号会导致一个更大的输出信号,并且更大的输出信号需要更多驱动电压。第二,环路增益是反比于误差的。随着环路增益增加,误差会降低,因此大的环路增益对于最小化误差来说是非常诱人的。大的环路增益也会降低稳定性,因此在误差和稳定性之间要有一个权衡。

一个同相放大器如图3所示

方程8是放大器的转移方程

(8)

方程9是输出方程:

(9)

联立方程8和9得到方程10:

(10)

整理方程10中的变量得到方程11,即描述了该电路的转移函数:

(11)

方程12以方程5的形式重复,通过方程参数的对比使得我们更容易地求解。

(12)

通过对比我们得到了方程13,即同相放大器的环路增益方程。环路增益方程决定了电路的稳定性。

(13)

方程13可以通过打破运算放大器的反馈环路来获得,即在B点计算环路增益。这一过程也会在后面使用来得到反相环路增益。同样地,通过比较,直接增益可以看到为A=a,或者说同相运算放大器的直接增益与运算放大器的增益相等。反相运算放大器电路如图4中所示。

对应的转移方程在方程14中给出:

(14)

结点电压在方程15中描述,并且方程16是通过联立方程14和15来得到的。

(15)

(16)

方程16是反相运算放大器的转移函数。通过比较法得到的直接增益是(这里尚不明白)

反馈环路被打破的反相运算放大器如图5,该电路是用来计算方程17中的环路增益的。

(17)

在该点的分析中必须注意几件事情。第一,同相和反相方程,即方程11和16,的转移函数,是不同的。对于所有的ZG和ZF值,增益的幅度和极性是不同的。第二,两个电路的环路增益,如方程13和17中给出的,是一样的。因此,两个电路的稳定性表现是一样的,尽管他们的转移方程是不同的。这样得出了很重要的结论,即稳定性是独立于电路输入的。第三,图1中显示的框A对于每个运算放大器电路来说是不一样的。通过方程5、11和16的比较,我们可以发现,A(NONINV)=a,以及A(INV)=a ZF÷(ZG + ZF)。方程7说明了误差是反比于环路增益的;因此,闭环增益相同的反相和同相放大器电路的精度是不同的。

方程17是用来补偿所有运算放大器电路的。第一我们要确定采用什么样的补偿方法。第二,我们要得到补偿方程。第三,我们要分析闭环转移函数来决定怎样通过补偿来改变它。补偿在闭环转移函数上的影响通常决定了我们要使用怎样的补偿技术。

3 Internal Compensation

运算放大器是通过内部补偿来减少外部元件并且使得它们能被不太在行的人使用的。补偿一个模拟电路通常需要一些模拟知识。内部补偿的运算放大器被使用在与应用说明相符合的场合中时,通常是稳定的。内部补偿的运算放大器也不是无条件稳定的。他们是多极点系统,然而他们被进行了内部补偿从而他们在多数频率范围内表现为一个单极点系统。内部补偿的代价是它极大地降低了运算放大器的闭环带宽。

内部补偿可以通过很多方式实现,不过最通用的方法是在电压增益晶体管的发射极基极结点处并联上一个电容器(如图6所示)。密勒效应会将该电容器的值扩大若干倍,即大约为与该级增益相同的倍数,因此,密勒效应使用了小容值电容器来进行补偿。图7显示了一个较老的运算放大器(TL03X)的增益/相位图。当增益穿过0dB坐标轴时(增益等于1),相移约为100°,因此,运算放大器必须以一个二阶系统来建模,因为相移超过90°。

这样得到了φ=180°-100°=80°的相位裕量,因此电路应该是非常稳定的(参考1解释了反馈分析方法)。参考图8,衰减系数为1并且预期的过冲是零。图7显示了约10%的过冲,这是我们并没有预料到的,但是进一步观察图7揭示了两个图中负载电容是不同的。脉冲响应的负载电容为100pF,而不是增益/相位图中所示的25pF,并且这个额外的负载电容是造

成相位裕量减少的原因。

为什么容性负载会使得运算放大器不稳定?仔细观察增益/相位响应中1M~9MHz的部分,并且注意到,在相位变化率接近120°/decade时,增益曲线的斜率极大地增加了。增益/相位斜坡的剧烈变化证明了在该区域有着多个极点。负载的容性部分与运算放大器的输出阻抗形成了另一个极点,并且新的极点会与运算放大器的内部极点互相作用。随着负载电容值的上升,它的极点在频域范围内往下迁移,导致在0dB交叉频率处产生了更多的相移。这一点的证明在TL03X数据表中给出,其中说明了振铃、振荡与负载的容性之间的关系。

图9显示了与之前相似的TL07X的图,它是运算放大器中新的系列。注意到当增益穿过0dB轴时,相移是100°。这样得到了80°的相位裕量,更接近无条件稳定。相位曲线的斜率在0dB交叉点往后约一个10倍频范围内改变至180°/decade。这样剧烈的斜率变化使得我们产生了关于90°相位裕量的怀疑。更进一步说,当相位剧烈变化时,增益曲线也必须被急剧改变。增益/相位图不可能是完全错误的,但是它肯定是过于乐观了。

TL07X脉冲响应图显示了一个20%的过冲。这里在图中没有显出处负载电容来解释为什么看似无条件稳定的运算放大器却表现出了这样大的过冲。这里出现了问题;分析方法是错误的,图是错误的,或者参数是错误的。图10显示了TL08X系列运算放大器的图,它是TL07X系列的姐妹篇。增益/相位曲线和脉冲响应实质上几乎是一样的。但是脉冲响应中列出了一个100pF的负载电容。这个小的实验列出了三个重要的事项;第一,如果数据看上去是错误的,它很可能是错误的,第二,即使工厂的工作人员也会出错,第三,负载电容使得运算放大器产生振铃、过冲或者振荡。

TLV277X系列运算放大器的频域和时域响应图如图11和12所示。第一,注意到这里的信息更难理解,因为相位响应是以相位裕量的形式给出;第二,增益/相位图都是在带有实际负载电容(600pF)的情况下测试的,所以他们有一些实际价值;第三,相位裕量是电源电压的函数。

在V=5V时,在0dB交叉点处的相位裕量为60°,然而在2.7V时为30°。该数据可以理解成在VCC= 5V时预期有18%,在VCC=2.7V时预期有28%的过冲。不幸的是,时间响应图是在100pF负载电容下作出的,因此我们不能很好地校验我们的数据。VCC=2.7V的时过冲约为2%,但我们几乎不可能知道在有600pF负载电容时会有多少过冲。小信号脉冲响应为mV级的信号,并且这是比满幅信号摆动更有实际意义的参数。

内部补偿的运算放大器是非常令人满意的,因为它们很容易使用,并且它们不需要外部补偿的元件。它们的弊端即带宽被内部补偿措施限制。运算放大器开环增益最终(当它在环路增益中出现时)决定运算放大器电路中的误差。在一个同相缓冲器配置中,TLV277X在50kHz时(VCC=2.7V)被限制在1%的误差,因为在该点运算放大器的增益是40dB。电路设计者可以玩些小把戏比如在运算放大器中放置一个旁路电容来提高高频增益,但是误差仍然为1%。请牢记方程7,因为它定义了误差。如果TLV277X并不是内部补偿的,它可以被外部补偿从而在50kHz处得到一个更低的误差,因为此时增益会高很多。

4 External Compensation,Stability,and Performance

这一部分需要依靠补偿类型的知识才可以解决。没有人会因为有补偿这项技术而去补偿运算放大器;他们都有补偿运算放大器的原因,而且原因通常是为了稳定性。他们想让运算放大器在某一电路中实现某个功能,然而这样有可能是不稳定的。内部和非内部补偿的运算放大器都要从外部补偿,这是因为特定的电路配置会导致振荡。在这里我们会分析几个潜在的不稳定电路配置,并且读者可以按需要扩展外部补偿。

其他外部补偿放大器的原因是噪声减少、平坦度响应以及从放大器中得到最高的带宽。一个运算放大器会产生噪声,并且噪声是由系统产生的。噪声包含许多频率成分,并且当一个高通滤波器并入信号路径中,它可以减少高频噪声。补偿同样也可以用来滚降运算放大器的高频、闭环响应,因此,这样使得运算放大器等效于一个噪声滤波器。内部补偿的运算放大器用一个二阶方程来建模,并且这意味着在放大器响应阶跃输入时,输出电压可能过冲。当这个过冲(或者尖峰)是我们不需要的时候,外部补偿可以增加相位裕量到90°,此时就没有尖峰。一个无补偿的运算放大器有着最高可能的带宽。外部补偿需要使得无补偿运算放大器稳定,然而补偿可以被裁剪至任何具体的电路,因此可以得到最高可能的带宽以及需要

的脉冲响应。

5 Dominant-Pole Compensation

我们可以看到容性负载会导致潜在的不稳定,因此,具有输出电容器负载的运算放大器电路必须仔细分析。该电路之所以称之为主极点补偿是因为由运算放大器输出阻抗和负载电容器组成的极点位置靠近零频率坐标,它变成了主极点。运算放大器电路如图13所示,用来计算环路增益(Aβ)的开环增益如图14所示。

分析开始时,需要看进电容器并利用戴维南等效电路。

(18)

(19)

那么输出方程即:

(20)

重新整理参数得到方程21:

(21)

当假设(ZF + ZG) >> ZO时,方程21化简至方程22:

(22)

方程23将运算放大器建模为一个二阶系统。因此,将二阶模型中的a代入方程22得到方程24,即主极点补偿电路的稳定性方程:

(23)

(24)

根据极点的位置能从方程24得出几个结论。如果方程23的波特图,即运算放大器的转移函数,看上去与图15中所示的很像,它只有25°的相位裕量,并且有48%的过冲。当由ZO和CL引入的极点向零频率轴移动时,它会越来越靠近τ2极点,并且它给系统增加了相移。增加的相移会使得尖峰更明显并降低稳定性。在真实世界中,许多负载,如电缆线,是容性的,当驱动一个容性负载时,如图15中的运算放大器将会产生振铃。当运算放大器没有足够的相位裕量允许负载引入的相移时,负载电容会导致在内部补偿的放大器内出现尖峰以及不稳定性。

首先关于补偿,无补偿运算放大器的波特图看上去如图16所示。注意到两个断点互相离得很近因此在曲线与0dB相交之前已经积聚了180°左右的相移;这样的运算放大器是不可用的且不稳定的。主极点补偿常常用来使这些运算放大器稳定。如果一个主极点,在本例ωD,被适当地放置,那么它会使得增益滚降从而τ1会使得在0dB交叉点处引入45°相移。在这极点被引入后,运算放大器在45°的相位裕量下是稳定的,然而运算放大器的增益在频

率超过ωD的频带范围内被急剧减少。这一措施能够很好地适用于对于内部补偿的运算放大器,然而很少用于外部补偿的运算放大器,因为廉价的分立电容器一应俱全。

假设ZO<

(25)

当a => ∞时,方程25化简为方程26:

(26)

只要运算放大器有足够的灵活度和电流驱动容性负载,并且ZO很小时,电路函数中的电容就好像不存在一样。当电容器变得足够大时,它的极点会与运算放大器的极点相互作用导致不稳定。当电容器是非常大的时候,它会明显恶化运算放大器的带宽,因此在维持一个较大的低频增益的同时会减小噪声。

6 Gain Compensation

当运算放大器电路的闭环增益与开环增益相关时,如在电压反馈型运算放大器中,增益可以用来使电路稳定。这种类型的补偿不能用在电流反馈型运算放大器中,因为电流反馈型运算放大器中,环路增益与理想闭环增益之间没有数学关系。环路增益方程重复如方程27所示。注意到闭环增益参数ZG和ZF包含在方程27中,因此我们可以通过操纵闭环增益的参数来控制稳定性。

(27)

原先闭环增益为1的环路增益曲线如图17所示,并且它离不稳定区域非常接近。如果闭环同相增益变为9,那么K从K/2变为K/10。环路增益曲线在波特图上的截距(如图17)向下移动了14dB,此时电路变得稳定了。

增益补偿对于反相或者同相运算放大器电路都能很好地工作,因为在这两个电路中环路增益方程都包含了闭环增益参数。当闭环增益提高时,精度和带宽会下降。只要应用方案可以容忍更高的增益,增益补偿是可以使用的最佳的补偿类型。通常内部补偿运算放大器的无补偿版本也提供出售,即运算放大器满足最小的增益限制即可稳定工作。只要你所设计电路的增益超过了规定的增益,这是非常经济的,也是一种安全的操作模式。

7 Lead Compensation

有时候超前补偿对电路设计者来说是被迫使用的,这是由于在对运算放大器进行封装和布线的过程中存在寄生电容。如图18显示了超前补偿的电路;注意到电容器并联在RF上。那个电容器通常是由寄生接线和地平面产生的,并且高频电路的设计者要不遗余力地最小化或者避免该电容。好的东西在某种意义上也是坏的,因为加入并联电容器是一种很好的方法来稳定运算放大器并且减小噪声。让我们先分析稳定性,然后我们将分析闭环性能。

超前补偿电路的环路方程由方程28给出

(28)

补偿电容器在环路方程中引入了一个极点和零点。零点总是在极点之前出现,因为RF > RF||RG。当零点被适当地放置后,它可以抵消τ2的极点以及它对应的相移。原先的转移函数如图19所示,画成一条实线。当RFC的零点被放置在ω=1/τ2时,它抵消了τ2的极点使得波特图继续以-20dB/decade的斜率前进。当频率到达ω = 1/(RF||RG)C时,该极点使得斜率又变成了-40dB/decade。当极点被适当地放置后,电容器可以促进稳定性,然而它会对闭环转移函数有什么样的影响呢?反相运算放大器的闭环增益方程重复如下。

(29)

当a接近无穷大时,方程29化简为方程30:

(30)

在方程30中用RF||C代替ZF,用RG代替ZG得到方程31,即超前补偿电路的理想闭环增益方程:

(31)

反相放大器的正向增益由方程32给出。将方程5与方程29比较来确定A。

(32)(这里最后少乘以了a)

运算放大器增益(a)、正向增益(A)和理想闭环增益画在图20中。运算放大器的增益画出来仅供参考。反相运算放大器的正向增益并不是运算放大器的增益。注意到反相放大器的正向增益与同相放大器的相比被因子RF/(RG+RF)减少,并且它包含了一个高频极点。理想闭环增益遵循理想曲线直到1/RFC断点为止(也即与1/τ2断点相同的位置),并且它以-20dB/decade的斜率下降。超前补偿牺牲了1/RFC断点与正向增益曲线之间的带宽。1/RFC 极点的位置决定了牺牲的带宽,并且它可能比这里显示地要大得多。由RF、RG和C产生的极点直到运算放大器的增益穿过0dB轴才会表现出来,因此,它不会影响理想闭环转移函数。

同相运算放大器的正向增益是a;将方程5与方程11作比较。理想闭环增益由方程33给出:

(33)

带有超前补偿的同相运算放大器的图如图21所示。这里只有一张图,即使运算放大器增益(a)也是正向增益(A),因为他们在同相电路配置上是一样的。理想的曲线从一条直线开始,但是它会递减,因为它的闭环增益包含一个极点和一个零点。极点总是出现在靠近低频轴的地方,因为RF>RF||RG。零点使得理想闭环增益曲线变得平坦,然而它没有任何好处,因为它不能在出现极点的地方下坠。极点会导致闭环带宽的损失,损失是主要是根据闭环曲线和正向增益曲线之间的距离来决定。

虽然在反相与同相电路中的正向增益是不一样的,但是闭环转移函数有着相似的样子。这一结论尤其在当闭环增益增加的时候会更加适用,因为同相正向增益正在靠近运算放大器增益。这样的关系不能在每一个场合适用,每一个电路必须被检验来确定补偿方案对闭环造成的影响。

8 Compensated Attenuator Applied to Op Amp

运算放大器输入端的杂散电容是电路设计者总想解决的问题,因为它降低了闭环频率响应或者导致了尖峰。如图22所示的电路有一些杂散电容(CG)连接在反相输入端与地之间。方程34是带有输入电容的电路的环路增益方程。

(34)

有着高阻值输入电阻和反馈电阻的运算放大器会受到不稳定性的影响,即在反相输入端杂散电容产生的不稳定。参考方程34,当1/(RF||RGCG)极点向τ2靠近时,该级会不稳定。一个CMOS运算放大器较合理的元件值为RF=1MΩ,RG=1MΩ和CG=10pF。由此产生的极点发生在318kHz,并且该频率对于许多放大器来说,是低于断点τ2的。现在,τ1产生了90°的相移,1/(RF||RGC)极点在318kHz时又增加了45°相移,而且τ2在大约600kHz时又增加了45°相移。由于杂散输入电容的影响,该电路是不稳定的。电路可以通过增加一个反馈电容来补偿,如图23所示。

在添加完CF后的环路增益在方程35中给出:

(35)

如果RG*CG=RF*CF,方程35化简至方程36:

(36)

补偿后的衰减器波特图如图24所示。加入正确的1/RFCF断点能抵消1/RGCG断点,环路增益就会独立于电容。现在轮到我们利用杂散电容的时候了。CF可以通过从运算放大器

的输出铺一条宽铜皮来形成,并且铜皮要在地平面的上面RF的下面;请不要连接该铜皮的另一端。电路是通过去掉一些铜皮(可以用剃刀完成)来调整的,调整直到所有的尖峰被去除为止。然后测量铜皮,并且在印刷电路板上放置同样的轨迹线。

反相和同相的闭环增益方程是频率的函数。方程37是反相运算放大器的闭环增益方程。当RF*CF=RG*CG时,方程37化简为方程38,即独立于断点。这对于同相运算放大器电路同样适用。这是少数几个补偿不影响闭环增益频率响应的情况之一。

(37)

(38)

9 Lead-Lag Compensation

超前滞后补偿可以在不牺牲闭环增益性能的情况下使电路稳定。这种补偿类型可以获得非常优越的高频性能。电路原理图如图25所示,环路增益在方程39中给出。

(39)

参考图26,极点在ω=1/RC处引入,该极点在断点处减少了3dB增益。当零点比第一个运算放大器的极点先发生时,它抵消了由ω=1/RC极点产生的相移。相移在第二个运算放

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

基本放大电路-多级放大-负反馈习题

基本放大电路-多级放大-负反馈习题

————————————————————————————————作者:————————————————————————————————日期:

13.5习题详解 13-1固定偏置放大电路如图13-14(a)所示,图13-14(b)为三极管的输出特性曲线。试求:(1)用估算法求静态值(2)用作图法求静态值。 图13-14 习题13-1的图 解:用估算法可以求出基极电流I B BE B B 1212V 0.04mA40μA 300K V U I R - =≈== Ω 根据方程 CE C C U R I V+ = 12可以得出在输出特性曲线上横轴、纵轴上两点的坐标 为:(12V,0mA),(0V, 2.35mA),可画出如图13-15所示的直流负载线,与 B 40μA I= 的特性曲线相交的点为Q点。由Q点分别向横轴承和纵轴做垂线,可得到 1.2mA C I=, CE 6.2V U=。 13-2 基本共发射极放大电路的静态工作点如图13-16所示,由于电路中的什么参数发生了改变导致静态工作点从Q0分别移动到Q1、Q2、Q3?(提示:电源电压、集电极电阻、

基极偏置电阻的变化都会导致静态工作点的改变)。 解:原有静态工作点为Q0点,Q0点移动到Q1点,说明基极电流增大,主要原因是基极偏置电阻减小;Q0点移动到Q2点,U CE减小,则主要原因是集电极电阻增大;Q0点移动到Q3点,I B减小,且U CE减小,主要原因是基极偏置电阻增大或电源电压减小或集电极电阻增大。 图13-16 习题13-2的图 13-3 试判断习题13-17图中的各个电路有无放大作用,简单说明理由。 图13-17 习题13-3的图 解:三极管电路处于放大状态的条件是:发射结正偏、集电结反偏,交流信号能加进电路。 a有放大作用,满足放大条件; b没有放大作用,不满足发射结正偏、集电结反偏; c没有放大作用,集电结正偏,且交流输入信号被短路; d没有放大作用,电容C1作用是隔直通交,不满足发射结正偏、集电结反偏;

关于电力系统电压稳定的探讨

关于电力系统电压稳定的探讨 现如今,社会经济的发展越来越快,人们对电力的需求量也越来越多,电力系统的电压稳定性不仅与整个电力系统运行的稳定、安全密切相关,还会影响到人们的生产和生活,因而变得越来越重要。本文首先对电力系统电压稳定性问题进行了分析,然后阐述了电力系统的电压稳定分析方法及其控制措施。 【关键词】电力系统电压稳定 电力系统是一个庞大复杂的多变量非线性动态系统,确保电力系统正常运行的基本条件是安全以及稳定。随着电力市场化改革的不断深入,电网规模越来越大,远距离重负荷输电的局面会越来越明显,使得电力系统越来越频繁地在接近网络极限输送能力的状态下运行。所以,加强电压稳定性的研究具有非常重要的理论意义与现实意义。 1 电压稳定性问题的分析 电压稳定性问题是电力研究工作中发展比较晚的分支,电压的稳定性开发研究工作是发电机在所有情况下同步运行的分析,但是在电力系统产生电压的时候无法满足于负荷无功需求时的稳定情况,所以电压的稳定与否主要是由电力系统的无功不足引起的。电力系统属于动态系统,对于电压稳定性可以从以下几个方面进行研究:

(1)电压小干扰时候电力系统的稳定性; (2)电压大干扰时候电力系统稳定性以及系统电压失稳过程; (3)电力系统中稳态平衡点能够存在的可能性; (4)分析系统中电压稳定性的概率,因此对系统中电压是否稳定的分析方法也有很多种。 2 电力系统电压稳定分析方法 对电力系统电压稳定性进行预防与控制的基础条件就是分析电力系统的电压稳定性,电力系统电压稳定性的分析方法包括动态电压法以及静态电压法两类。 2.1 静态电压稳定分析 在静态电压稳定分析方法中比较常用的方法主要有奇异值分解(特征值分析)法、潮流多解法、灵敏度分析法、最大功率法、崩溃点法这几种,它们都是在潮流方程或者是经过修改的潮流方程的基础上的,静态电压稳定的临界点在本质上都由电力网络的潮流极限来做,在线性化当前运行点处后再进行分析和计算;不同的地方是使用极限运行状态下不同特征的电压崩溃的判据与采用的求取临界点的方法。静态电压稳定分析法的好处是用一个简单的非线性代数方程实数解的存在性研究代替复杂的微分方程解的性态研究,它的坏处是把小干扰电压稳定的极限点用电力系统的潮流极限来做,并且静态电压分析法无法反映各元件的动态特性。

稳定性分析答案

稳定性分析 2009-10-14 14:18 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ 是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ 能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=S2 δ=δ0+δ/dt2 所以PI=*2PI*f/10t方 t=更号10/50=

详解负反馈放大器电路

难点电路详解之负反馈放大器电路 1 负反馈放大器 在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。 1.1 正反馈和负反馈概念 放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。 ①反馈方框图 如图1所示是反馈方框图。从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。 图1 反馈方框图 ②反馈种类 反馈电路有两种:正反馈电路和负反馈电路。这两种反馈的结果(指对输出信号的影响)完全相反。 ③正反馈概念 正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。 如图2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,?这两个信号混合后是相加的关系,所以净输入放大器的信号UI?比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。

图2 正反馈方框图 在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。正反馈电路在放大器电路中通常不用,它只是用于振荡器中。 ④负反馈概念 负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。 如图3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,?使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。 图3 负反馈方框图 ⑤反馈量 负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的增益在加入负反馈电路之后减小了。当负反馈电路造成的净输入信号愈小,即负反馈量愈大,负反馈放大器的增益愈小,反之负反馈量愈小,负反馈放大器的增益愈大。 正反馈也有同样的正反馈量问题。 1.2 全面了解负反馈电路种类 ①负反馈种类

电力系统暂态稳定实验

电力系统暂态稳定实验 一、实验目的 1 ?通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。 2?学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 3?用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。 二、原理与说明 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ; 短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ; 故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件 是切除故障角S c小于S max S max可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重 合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。 三、实验项目与方法 (一)短路对电力系统暂态稳定的影响 1 ?短路类型对暂态稳定的影响 本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接 地短路和三相短路试验。 固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。 在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。P max为系统可以稳定输出的极限,注意观察有功表 的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护 装置读出,具体显示为: GL- 三相过流值 GA- A相过流值

负反馈放大电路试题及答案

第三章负反馈放大电路 一、填空题 1、两级放大电路第一级电压放大倍数为100,第二极电压放大倍数为60,则总的电压放大 倍数为 6000 。 2、多级放大电路常用的耦和方式有容抗、直接和变压器三种形式。 3、阻容耦合的缺点是不适合传送频率很的或变换缓慢的信号。 4、在多级放大电路里,前级是后级的输出端后级是前级的负载。 5、反馈放大电路是由放大电路和反馈电路两部分组成。反馈电路是跨接在 输入端和输出端之间。 6、负反馈对放大电路有下列几方面的影响:使放大倍数降低,放大倍数的稳定性___提高_______,输出波形的非线性失真改善,通频带宽度加宽,并且改变了输入电阻和输出电阻。 7、对共射极电路来说,反馈信号引入到输入端三极管发射极上,与输入信号串联起来,称为串联反馈;若反馈信号引入到输入端三极管的集极上,与输入信号并联起来,称为并联反馈。 8、射极输出器的特性归纳为:电压放大倍数约1 ,电压跟随性好,输入阻 抗___大________,输出阻抗小,而且具有一定的电流放大能力和功率放大能力。 9、设三级放大电路,各级电压增益分别:20dB,20dB,20dB。输入信号电压 为u i=3mV,求输出电压u O= 。 10、使放大电路净输入信号减小的反馈称为负反馈;使净输入信号增加的反馈称为正反馈。 11、判别反馈极性的方法是瞬时极性法。 12、放大电路中,引入直流负反馈,可以稳定静态工作点;引入交流负反馈,可以稳定电压放大倍数。 13、为了提高电路的输入电阻,可以引入串联负反馈;为了在负载变化时,稳定 输出电流,可以引入电流负反馈;为了在负载变化时,稳定输出电压,可以引入电压负反馈。 14、射极输出器的集电极为输入回路和输出回路的公共端,所以它是一种共集 放大电路。 15、射极输出器无电压放大作用,但有电流放大和功率放大作用。 16、为了放大缓慢变化的非周期信号或直流信号,放大器之间应采用( C ) A.阻容耦合电路 B.变压器耦合电路 C.直接耦合电路 D.二极管耦合电路 17、两级放大器中各级的电压增益分别是20dB和40dB时,总的电压增益应为( A )。 18、如果输入信号的频率很低,最好采用( B )放大器。 A.变压器耦合 B.直接耦合 C.阻容耦合 D.电感耦合 19、在阻容耦合放大器中,耦合电容的作用是( A )。 A.隔断直流,传送交流 B.隔断交流,传送直流 C.传送交流和直流 D.隔断交流和直流

电力系统电压稳定的研究

毕业设计 学生姓名学号 系(部) 机电工程系 专业电气自动化技术 题目电力系统电压稳定的研究指导教师

摘要:电力系统是一个具有高度非线性的复杂系统,随着电力工业发展和商业化运营,电网规模不断扩大,对电力系统稳定性要求也越来越高。在现代大型电力系统中,电压不稳定/电压崩溃事故已成为电力系统丧失稳定性的一个重要方面。因此,对电压稳定性问题进行深入研究,仍然是电力系统工作者面临的一项重要任务。 从国内外一些大的电力系统事故的分析来看,发生电压崩溃的一个主要原因就是无法预计负荷增长或事故发生后可能导致的电压失稳的程度和范围,难以拟定预防和校正的具体措施。所以,我们有必要在负荷模型基础上考虑采用更好的方法来进行电压稳定性评的研究。矚慫润厲钐瘗睞枥庑赖。 关键词:电力系统,电压崩溃,电压失稳,稳定性 Abstract:Power system is a highly complex systems, nonlinear with the power industry and commercial operation scale constantly expanding, network, the power system stability requirements is also high. in large power system, voltage instability of the voltage of power system of stability has become an important aspect. therefore, the voltage stability problems and in-depth study is still the power systems are faced with an important task.聞創沟燴鐺險爱氇谴净。From home and abroad some big power systems analysis of the accident, there is a major cause of the voltage is not expected to load up or after the accident may lead to the loss of degree and scope, to work out specific measures to prevent and correct. Therefore, we have to consider adopting the model on the basis of better ways to make a stability assessment study.残骛楼諍锩瀨濟溆塹籟。 Keywords:Power systems,V oltage collapse,In a voltage,Stability酽锕极額閉镇桧猪訣锥。

电压反馈型运算放大器的稳定性分析与补偿技术要点

电压反馈型运算放大器的稳定性分析与补偿技术 整理:李柱炎turnfey@https://www.wendangku.net/doc/4c5675308.html, 本文整理自“小辉辉”的博客,感谢原作者,出处: https://www.wendangku.net/doc/4c5675308.html,/thinki_cao/blog/#m=0&t=1&c=fks_084071080095080064087086084095092 085088071080094081070 Title: Stability Analysis of Voltage-Feedback Op Amps Including Compensation Techniques by Ron Mancini Mixed Signal Products 摘要 本文阐述了电压反馈型运算放大器(op amp)稳定性的分析方法,这里使用电路的性能作为获得成功设计的标准。这里讨论了内部补偿以及无补偿运算放大器的几种补偿技术。 1 Introduction 电压反馈型放大器(VFA)已经面世60年左右,从第一天开始,它们就一直成为了电路设计者的一个问题。众所周知,反馈使得它们功能强大且精确,同样的也有一定的趋势使得它们不稳定。运算放大器(op amp)电路通常使用一个高增益的放大器,它的参数是由外部反馈元件决定的。放大器的增益是如此地高以至于没有这些外部反馈元件时,轻微的输入信号就有可能使得放大器的输出饱和。运算放大器是作为通用目的使用的,所以该设定已经经过详细检验,不过结果对于其他电压反馈型电路同样可用。电流反馈型放大器(CFA)与VFA比较相似,不过它们之间的差别非常重要以至于CFA必须在单独的应用笔记中讨论。 稳定性,正如常常在电子电路术语中出现的那样,常常被定义为获得一个不振荡的状态。这是对该单词比较差劲、不精确的定义。稳定性是一个相对项,并且这样的情形使得很多人迷惑因为相对性的判断是非常费力的。在振荡的电路与不振荡的电路之间画线是很容易的,所以我们可以理解为什么有些人认为振荡是稳定与不稳定之间的自然边界。 远在振荡发生之前,反馈电路会有着恶化的相位响应、过冲和振铃,并且这些影响不被电路设计者欢迎。本应用笔记并不着眼于振荡器;因此,相对稳定性在性能方面定义。通过定义,当设计者决定好要做哪些权衡之后,他们能确定电路的相对稳定性是多少。相对稳定性的度量即衰减系数,并且可以在参考1中找到关于衰减系数的相关讨论。衰减系数与相位裕量相关,因此,相位裕量是相对稳定性的另一度量。最稳定的电路有着最长的响应时间、最低的带宽,最高的精度和最小的过冲。稳定性最差的电路有着最快的响应时间、最高的带宽、最低的精度和一些过冲。 放大器是用如晶体管等的有缘元件搭建的。相关的晶体管参数,如晶体管增益等,是受

负反馈放大电路分析要点

课程设计报告

课程设计题目:负反馈放大电路的设计 要求完成的内容:设计一个负反馈放大电路,保证输出电压稳定。指标条件如下:电压放大增益|Av|≥10,反馈深度≥10,输入电阻R i≥1KΩ,输出电阻R o≤100Ω, f L≤10HZ,f H≥1KHZ。所使用的元器件要求为:晶体管(9013或9014),电容(瓷片电容)、电阻(0.25瓦)等。 要求:(1)根据设计要求,确定电路的设计方案,估算并初步选取电路的元件参数。(2)选用熟悉的电路仿真软件,搭建电路模型进行仿真分析,由仿真结果进行参数调试、修改,直至满足设计要求。 (3)由选取的元件参数,精确计算和复核技术指标要求。 (4)满足设计要求后,认真按格式完成课程设计报告。

指导教师评语: 评定成绩为: 指导教师签名:年月日

负反馈放大电路的设计 一、 课程设计的目的 (1)初步了解和掌握负反馈放大器的设计、调试的过程。 (2)能进一步巩固课堂上学到的理论知识。 (3)了解负反馈放大器的工作原理。 (4)了解并掌握负反馈放大电路各项性能指标的测试方法。 (5)加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、 设计方案论证 2.1框图及基本公式 图1 负反馈放大电路原理框图 图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号 与反馈信号是相减关系(负反馈),即放大电路的净输入信号为: id i f X X X =- 基本放大电路的增益(开环增益)为: /o id A X X = 反馈系数为: /f o F X X = 负反馈放大电路的增益(闭环增益)为: /f o i A X X = 2.2负反馈对放大器各项性能指标的影响 负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。一个放大器,加入了负反馈环节后,虽

电力系统暂态稳定性

10 电力系统暂态稳定性 10. 1习题 1) 什么是电力系统暂态稳定性? 2)电力系统大扰动产生的原因是什么? 3)为什么正常、短路、短路切除三种状态各自的总电抗不同?对单机无限大供电系统为什么Ⅰ<Ⅲ<Ⅱ?PⅠ·max>PⅢ·max>PⅡ·max? 4)短路情况下Ⅱ如何计算? 5)什么是加速面积?什么是减速面积?什么是等面积定则? 6)单机无限大供电系统,设系统侧发生三相短路,试问短路时功率极限是多少? 7)什么是极限切除角? 8)若系统发生不对称短路,短路切除后最大可能减速面积大于短路切除前的加速面积,系统能否暂态稳定?若最大可能减速面积小于加速面积发生什么不稳定? 9)分段法中t=0时和故障切除时过剩功率如何确定? 10)写出分段法的计算步骤。 11)为什么说欧拉法是折线法?每段折线如何确定? 12)改进欧拉法在何处做了改进? 13)写出改进欧拉法的计算步骤。 14)用图解说明单相自动重合闸为什么可以提高暂态稳定性? 15)试说明快关汽轮机汽门、连锁切机有何相同与不同? 16)提高电力系统暂态稳定的具体措施有哪些种?原理是什么? 17)提高电力系统暂态稳定的措施在正常运行时是否投入运行? 18)解列点的选择应满足什么要求? 19)异步运行时为什么系统需要有充足的无功功率?什么是振荡中心? 设已知系统短路前、短路时、短路切除后三种情况的以标幺值表示的功角特性曲线:=2、=0.5、=1.5及输入发电机的机械功率=1。 求极限切除角。 20)供电系统如图10- 1所示,各元件参数: 发电机G:P N=240MW,U N=10.5kV,,,X2=0.44,T J =6S,发 电机G电势以E‘表示;变器T1的S N为300MVA,U N为10.5/242kV,X T1=0.14 T2的S N为 280MVA,U N为220/121kV,X T2=0.14电力线路长l=230km每回单位长度的正序电抗X1= 0.42Ω/km,零序电抗X0=4X1。 P=220MW

关于电力系统电压稳定性的研究

龙源期刊网 https://www.wendangku.net/doc/4c5675308.html, 关于电力系统电压稳定性的研究 作者:赵崇宇阎惊奇 来源:《中国科技博览》2015年第35期 [摘要]随着我国经济的飞速发展,电力作为经济发展的强劲推动力,对于其的研究已经比较深入。由于人们物质生活水平的不断提高,对于电力的需求更加的严格,而电力系统的电压稳定性更是我们现如今研究的重点,而如何有效的解决实际运营过程中电压不稳定的现象,是我们需要积极研究的课题。文章首先系统的分析了电力系统电压稳定性的基本理论与方法,以及一些电力系统运营的现状,然后对如何提高电力系统的稳定性作了一定的分析和探讨,最后分析得到一些提高电压稳定性的对策。 [关键词]电力系统电压稳定性电力需求 中图分类号:TM421.1 文献标识码:A 文章编号:1009-914X(2015)35-0328-01 伴随着人们对于电力的极大需求,使得现代化的电网产生了巨大的经济效益,也给电力系统的发展提供了契机。但是由于现在的电网规模的日益巨大,结构越来越复杂,使得其电力系统的不稳定性问题逐渐显现出来。由于电力系统在人们的日常的生产生活过程中已经占据了举足轻重的地位,一旦电力系统出现稳定性的破坏,一定会给正常的生产生活产生巨大的影响,导致严重的经济损失。电压稳定性作为电力系统稳定问题中最为重要的研究课题,目前在电力工业的飞速发展过程中,由于电压稳定问题导致的财产损失已经不胜枚举,使得电力系统所面临其稳定性的强大挑战,如何解决这一问题已经日益迫切了。 1 电力系统的电压稳定性 本节主要对电力系统的电压稳定性做了比较准确的定义和分析。考虑到部分的工程技术人员对于电压稳定问题相对比较不了解,本节会首先对其做一定的描述和分析。 1.1 电压稳定性的基本定义 电力系统维持其自身电压的能力即电压稳定性。电压的安全性主要是指在一些可控的运行问题中,还能够保证系统的稳定运行的能力。 1.2 电压崩溃的过程 由于系统在实际的运营过程中,其所负荷的电压会不断地变化和传递引起的衰落,当保证系统运营的工作人员无法控制这些电压变化时,就会使得系统电压进入一个极不稳定的工作状态,甚至导致电力系统的崩溃,即我们常说的电压崩溃。电压崩溃的主要特征是失去电力负载能力,无法自身恢复系统的正常电压以及其导致的区域化的停电情况。只有将用户工作点的电压保持在一个相对稳定的水平,才能保证系统的稳定性需求。

负反馈放大器原理分析

负反馈放大器原理分析及设计 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 1、框图、基本反馈方程式 负反馈电路类型很多,但根据反馈网络从基本放大电路输出取样方式(电压或电流)的不同可分为电压反馈和电流反馈:而根据反馈信号引回到输入端求和方式的不同,又分为串联反馈和关联反馈。综上所述,负反馈放大器分为四种类型,如图5.2-8所示,表5.2-8 示出它们的基本反馈方程式。 图5.2-8 四种类型负反馈放大方框图 A 电压并联负反馈 B电流串联负反馈 C 电压串联负反馈 D 电流关联负反馈

负反馈放大器的闭环增益A1,并环增益A和反馈系数B的基本关系式称基本关系式称基本反馈方程。 反馈深度是反映反馈强弱的重要物理量,其值越大负反馈越强。当反馈很深,即|AB|》1时,称为深度负反馈,则闭环增益 2、负反馈对放大器性能的影响 负反馈放大电路,以降低增益为代价,可改善许多性能。表5.2-9给出负反馈对输入电阻、输出电阻的影响;表5.2-10给出负反馈对放大器其他几项主要性能的影响;表5.2-10给出负反馈对放大器其他几项主要性能的影响。

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

电力系统电压稳定问题的初步研究

绪论 电力系统是由电能生产、传输、使用的能量变换、传输系统和信息采集、加工、传输、使用的信息系统组成的。电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。电压稳定性问题与发电系统,传输系统和负荷系统都有关系。电压稳定性是指电力系统在正常运行或经受扰动后维持所有节点,电压为可接受值的能力 引起电压不稳定的主要因素是电力系统没有能力维持无功功率的动态平衡和系统中缺乏合适的电压支持;电压不稳定性受负荷特性影响很大。电压崩溃通常是由以下几种情况引发的:①负荷的快速持续增长;②局部无功不足;③传输线发生故障或保护误动; ④不利的OLTC的动态调节;⑤电压控制设备限制器(如发电机励磁限制)动作。这些情况往往是互相关联的,持续恶化的相互作用将最终导致电压崩溃的发生。 电压安全是指电力系统的一种能力,即不仅在当前运行条件下电压稳定,而且在可能发生的预想事故或负荷增加情况下仍能保持电压稳定。它意味着相对可信的预想事故集合,电力系统当前运行点距离电压失稳点具有足够的安全裕度。 为了防止电压失稳/崩溃事故,最为关心的问题是,当前电力系统运行状态是不是电压 稳定的,系统离电压崩溃点还有多远或稳定裕度有多大。因此必须制定一个确定电压稳定程度的指标,以便运行人员做出正确的判断和相应的对策 电压稳定性研究的方法:非线性动力学方法、概率分析方法、静态分析方法和动态分析方法。 电力系统是非线性动力系统,稳定本身属于动态范畴,电压失稳或电压崩溃本质是一个动态过程。当我们深入研究电压不稳定发生的原因、机理及其变化过程时,特别是要研究因电压过低而导致系统的动态稳定破坏时,静态分析方法难以完整计及系统动态元件的影响,因此无法深入研究电压失稳的机理及其演变过程。必须在计及元件动态作用的前提下,建立恰当的数学模型,采用合适的动态方法进行研究才能真正揭示电压失稳的发展机制。 负荷特性在电压稳定研究中起着重要作用,它直接影响分析的结果,但由于负荷的随机性、分散性及多样性,严格统一负荷特性尚无法确立,这使得负荷特性成为电压稳定研 页脚内容1

负反馈放大电路分析教案

教学设计 授课课题负反馈放大电路分析 授课时间第14周星期三第1节授课班级15机电授课教师 教学目标知识目标 1.了解反馈及反馈电路 2. 掌握如何判断是否存在反馈 3.掌握判别反馈类型的方法 情感目标 1、通过学生对电路的综合分析培养学生自信心和成就感 2、培养学 生实事求是精神和严谨的作风。 技能目标 1、培养学生独立分析电子电路的综合能力 2、培养学生发现问题和解 决问题的能力。 学情分析学生已掌握了反馈及反馈电路的基础上,本节内容进一步学习如何判断是否存在反馈、掌握判别反馈类型的方法,为后面技能实训奠定了基础 教学重点反馈类型及判别 教学难点正负反馈的判别 教学方法讲授、提问、归纳、练习等教学准备多媒体课件 教学过程教学内容 复习提问(教师讲解反馈放大器框图,提问学生反馈的定义,为本节内容学习做好铺垫)一.反馈及反馈电路的意义 反馈:从放大器的输出端把输出信号的一部份或全部通过一定的方式送回放大器输入端的过程,称为反馈。 反馈电路:由电阻或电容等元件组成的反馈信号传送电路,称为反馈电路。 图中vi 为输入信号, vo 为输出信号, vf 为反馈信号。 反馈放大器 框图

导入新课(用生活中的例子让同学们判断是否存在反馈?问题探索,引出本次教学内容)二、负反馈放大电路分析 1. 判别电路是否存在反馈 找出电路的反馈元件,一般来说,任何连接输出回路与输入回路之间的元件,都是反馈元件。 有反馈元件,电路就存在反馈。

讲授新课 一、引出本节课的重点(正反馈与负反馈) 二、讲解正负反馈的意义,为后面判断正负反馈奠定基础 三、详细讲解判别是正反馈还是负反馈(举一例子来分析正负反二.反馈的分类及判别方法 反馈一般有三种分类: 1.正反馈与负反馈 2.电压反馈与电流反馈 3.串联反馈与并联反馈 1.正反馈与负反馈 a.正负反馈的意义 正反馈:反馈信号起到增强输入信号的作用。 负反馈:反馈信号起到削弱输入信号的作用。 b.正负反馈判别方法: 若反馈信号与输入信号同相,则为正反馈。 若反馈信号与输入信号反相,则为负反馈。 2.判别是正反馈还是负反馈 采用瞬时极性法。先假定输入信号在某一瞬时的极性为正,分析放大电路各点相位的变化,最后看反馈到输入端的反馈信号的极性:如果反馈信号极性与输入信号极性相反,则为负反馈;如果反馈信号极性与输入信号极性相同,则为正反馈。 反馈放大器框图 假设输入信号在某一时刻的极 性为“+”,由于信号从集成运放的 反相输入端输入,则集成运放输出

电力系统电压稳定性的基本概念

电压稳定基本概念 从80年代以来,电网运行越来越接近于极限状态。主要有几个原因: ?环保对电源建设和线路扩建的压力 ?重负荷区域的用电消费增加 ?电力市场下的新的系统负荷方式(潮流方式) ?。。。 无论发达国家还是发展中国家,都存在负荷、线路和电源间的矛盾 用户负荷在增加<——> 电网扩建却面临着更大的问题 由于网络运行在重载情况下,出现了慢速或快速的电压跌落现象,有时甚至产生电压崩溃,电压稳定已成为电力系统规划和运行的主要问题之一。 (介绍电压稳定的三本国际性的书籍:) 那么什么是电压失稳?(在国际上,有多种公认的定义。)在这里,我们观察文献[TVCUTSEM]的定义: 电压失稳产生于动态的负荷功率的恢复在传输网和发电系统的能力之外。作者进一步解释道: ?电压:许多母线的电压发生明显的、不可控的下跌。 ?失稳:超越了最大的传输功率极限,负荷功率的恢复变得不稳,反面降 低了功率的消耗,这是电压失稳的关键。 ?动态:任何稳定问题与动态有关,可以用微分方程(连续变化)或用差 分方程(离散变化)模拟。 ?负荷:是电压失稳的原动力,因此这一现象也被称为负荷失稳,但负荷 不是仅有的角色。 ?传输网:有传输极限,从基本电工理论就可是到这个结论,这一极限是 电压失稳的开始。 ?发电系统:发电机不是理想的电压源,其模型的准确性对正确的电压稳 定十分重要。 与电压稳定相关的另一术语是电压崩溃。电压崩溃可能不是电压失稳的最终结果。

无功功率的角色 可以注意到上述定义中没有引入无功功率。众所周知,在交流网中,电抗线路占主导,电压控制和无功功率有密切的关系。这里作者的目的是不想过于强调无功功率在电压稳定中的作用。的确,有功功率和无功功率二者同时对电压稳定有重要的作用。作者引用了一个例子,表明电压失稳与无功功率没有因果关系。 假设电源电压E 恒定,控制R L ,使功率消耗达到予定值P o : o L L P R I R -=2& 同时,我们知道最大的传输功率发生在R L = R : R E P 42max = 如果需求的P o 大于P max , 负荷电阻会下降比R 更小,电压失稳就会产生了。 这个范例虽然没有无功功率,没有功角稳定问题,但具有电压失稳的主要特征。在交流电力系统中,无功功率使得问题变得更复杂,但不是问题的唯一根源。传输有功功率仍然是电力系统的主要功能,而无功功率的传输和消耗也是的电力系统的不可缺少的一部分。 电压稳定VS 电力系统稳定 可以把电压稳定归到一般的电力系统稳定问题,下表显示根据时间域和失稳原因方式进行的分类。我们应该知道,可以用不同的方法对稳定问题进行分类。这里的分类可有效地分别电压稳定与功角稳定的差异。 快速稳定问题:

电压稳定性浅析

电压稳定性浅析 摘要:对电压稳定性进行了详细的分析,提出了缓解电压稳定性问题的一些措施。 关键词:电力系统电压稳定性 1.电压稳定性概述 电压稳定性是指电力系统维持电压的能力。电力系统各母线电压在正常和受扰动后的动态过程中被控制在额定电压的允许偏差范围内的能力。电压稳定性又分为幅值稳定性与波形稳定性两方面。通常以电压偏差、电压波动与闪变、电压正弦波畸变率、频率偏差等项指标来衡量。 本地区随着农业电机井灌溉等农村用电的迅猛增长,致使用电高峰期时而出现配电网的电压低于额定值的这一电压不稳定现象,使电气设备无法正常运行,不能充分发挥其设备效益。所以,电压稳定性有待于我们进一步探讨,以便于更加行之有效的解决电压不稳定现象。 2. 电压稳定性的分析 电压稳定性问题是负荷稳定性的一个重要方面。尽管电压失稳和电压崩溃是一个复杂的过程,但是可以通过一个简单的长线路终端接负荷的典型系统说明其发生和发展的机理,如图1:

图1所示为典型的电压稳定性研究回路,其中Us为无穷大母线电压,Ur为受端负荷母线电压,P,Q分别为负荷吸收的有功和无功功率。实际发生电压崩溃的可能性取决于负荷特性,如果为刚性的恒定功率负荷,如电动机负荷,电压崩溃会加剧;而电阻负荷具有软特性,即电压下降时其功率下降很快,所以减缓了电压崩溃的出现。 电压崩溃还可能在多回路并联输电的系统结构中发生,由于故障切除了三回并联线路中的一回路,使等值电抗增大,线路充电电容降低。从而使输电功率因数发生变化,线损增加。因此,系统可能发生电压不稳定。如果受端有发电机接入,且其与负荷中心的电气距离较近,联络阻抗小。当受端电压降低时,发电机无功出力会自动增大,起到支撑电压的作用。因此,可以允许输电线路送很少的无功功率。但是,通常受端发电机离负荷中心的电气距离仍较远,联络阻抗大。所以电压降低时,发电机的无功出力增加很小,这就要求在末端增加无功补偿。 3.电压稳定性衡量指标

相关文档
相关文档 最新文档