文档库 最新最全的文档下载
当前位置:文档库 › 材料分析实验报告合辑 --浙江师范大学 材料物理系

材料分析实验报告合辑 --浙江师范大学 材料物理系

材料分析实验报告合辑 --浙江师范大学 材料物理系
材料分析实验报告合辑 --浙江师范大学 材料物理系

浙江师范大学Zhejiang normal university

论文

作者:

专业:

完成日期:2013年12月21日

第一元素 实验

实验一 XRD 衍射

一、实验目的

1. 了解X 射线衍射仪的结构及工作原理

2. 熟悉X 射线衍射仪的操作

3. 掌握运用X 射线衍射分析软件进行物相分析的方法

二.X 衍射原理:

X 射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。

晶体所产生的衍射花样都反映出晶体内部的原子分布规律。概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成:

一方面是衍射线在空间的分布规律,(称之为衍射几何),衍射线的分布规律是晶胞的大小、形状和位向决定

另一方面是衍射线束的强度,衍射线的强度则取决于原子的品种和它们在晶胞中的位置。

X 射线衍射理论所要解决的中心问题: 在衍射现象与晶体结构之间建立起定性和定量的关系。

布拉格方程:

λθn dSin =2

根据布拉格方程,Sin θ不能大于1, 因此:对衍射而言,n 的最小值为1,所以在任何可观测的衍射角下,产生衍射的条件为λ<2d ,这也就是说,能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍,否则不能产生衍射现象。

若将布拉格方程中的n 隐含在d 中得到简化的布拉格方程:

λθλθ===Sin d n

d d Sin n d HKL hkl

HKL hkl 2,2

则有:令 把(hkl )晶面的n 级反射看成为与(hkl )晶面平行、面间距为(nh,nk,nl) 的晶面的一级反射。面间距为dHKL 的晶面并不一定是晶体中的原子面,而是为了简化布拉格方程所引入的反射面,我们把这样的反射面称为干涉面。干涉面的面指数称为干涉指数。

三、使用仪器、材料

XRD ,带测试的未知材料

四、实验步骤

1.样品制备

本次采用的是老师现场发的制成样品。

第一步:开机

(1)打开墙体及主机电源,并按下主机启动按钮。

(2)打开冷却循环水系统开关,使冷却水电导率在3以内,水温在20-24度范围

内。

(3)按下控制面板上的开真空按钮,使真空度降至150mV以下。(4)打开控制柜

开关

(5)打开电脑,在软件控制程序中开启X射线后执行预热至需要功率,预热时间

为1-1.5小时。

第二步:装样

将制成样品放在玻片上然后又用口型玻片放在前玻片上,使已经制成的样品在口型内,最后用橡胶泥堵在后面,此点注意的是要把比较亮的一层背靠橡胶泥。将样品放在在测角仪中心的样品架上。

第三步:测量

在电脑软件控制中,打开测量控制程序,设定实验参数如下表:

测量结束后,保存数据以待分析。

第四步:关机

(1)利用软件控制程序,将管电压和管电流调至20kV、10mA后,关闭X射线。

关闭电脑。

(2)关闭控制柜开关。(3)关闭真空系统

(4)关闭X射线30min之后关闭冷却循环水系统的开关。(5)关闭电源,实验结

束。

五、数据处理及分析

找出衍射图各峰的衍射角(2θ)、晶面间距(d),运用分析软件(jade5.0与pcpdfwin),与数据库中的标准衍射图对照,确定样品的物相。

图像中出现的波峰

该样品为较纯净的氟化钡晶体的XRD图谱

在2θ=24.831,45.776,48.713,50.983处出现了氟化钡晶体的特征峰。

BaF,晶体晶向【111】。经软件多步操作可以确定以下峰值:峰1,2θ=24.831,该晶体为2

经软件多步操作可以确定以下峰值:峰2,2θ=45.776,该晶体为Te,晶体晶向【003】。

经软件多步操作可以确定以下峰值:峰3,2θ=48.713,该晶体为其他杂质,晶体晶向【222】。经软件多步操作可以确定以下峰值:峰4,2θ=50.983,该晶体为PbTe,晶体晶向【222】。

六、实验问题分析

1,在实验过程中出现了峰3,出现此情况,很有可能是因为样品没有放平。

2,在实验过程中出现了峰3,出现此情况,很有可能是因为样品含有不明杂质。

实验二扫描电子显微镜实验

一、实验目的

1. 了解扫描电子显微镜的原理、结构;

2. 运用扫描电子显微镜进行样品微观形貌观察。

二、实验原理

扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。扫描电镜由下列五部分组成,如图1(a)所示。各部分主要作用简介如下:

1.电子光学系统

它由电子枪、电磁透镜、光阑、样品室等部件组成,如图1(b)所示。为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪,其

性能如表2所示。前两种属于热发射电子枪,后一种则属于冷发射电子枪,也叫场发射电子枪。由表可以看出场发射电子枪的亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。

电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。

表1 几种类型电子枪性能

亮度(A/cm2.sr)电子源直

径(μm)

寿命

(h)

真空度

(Pa)

普通热阴极三极电子枪104~105 20~50 ≈50 10-2六硼化镧阴极电子枪105~1061~10 ≈500 10-4

场发射电子枪107~108 0.01~

0.1

≈5000 10-7~10-8

样品室中有样品台和信号探测器,样品台还能使样品做平移运动。

2.扫描系统

扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。

3.信号检测、放大系统

样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。不同的物理信号要用不同类型的检测系统。它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。

(a)(b)

图1 扫描电子显微镜构造示意图

4.真空系统

镜筒和样品室处于高真空下,一般不得高于1×10-2 Pa,它由机械泵和分子涡轮泵来实现。开机后先由机械泵抽低真空,约20分钟后由分子涡轮泵抽真空,约几分钟后就能达到高真空度。此时才能放试样进行测试,在放试样或更换灯丝时,阀门会将镜筒部分、电子枪室和样品室分别分隔开,这样保持镜筒部分真空不被破坏。

5.电源系统

由稳压、稳流及相应的安全保护电路所组成,提供扫描电镜各部分所需要的电源。

三、使用仪器、材料

制片靶材,扫描电子显微镜

四、实验步骤

1. 样品的制备

2. 仪器的基本操作

1)开启稳压器及水循环系统;

2)开启扫描电镜及能谱仪控制系统;

3)样品室放气,将已处理好的待测样品放入样品支架上;

4)当真空度达到要求后,在一定的加速电压下进行微观形貌的观察。

五、观察结果

六、实验结论分析

实验三(四)原子力显微镜实验及分析

一、实验目的

1了解原子力显微镜的工作原理

2掌握用原子力显微镜进行表面观测的方法

二、实验原理

(1)AFM的工作原理

在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。主要工作原理如下图:

在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针。当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力) ,引起微悬臂偏转。扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动, 因而会使反射光的位置改变而造成偏移量,通过光电检测系统(通常利用光学、电容或隧道电流方法) 对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化, 此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整。将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。

AFM 的核心部件是力的传感器件, 包括微悬臂(Cantilever) 和固定于其一端的针尖。根据物理学原理,施加到Cantilever 末端力的表达式为:

F = KΔZ。

ΔZ 表示针尖相对于试样间的距离, K 为Can2tilever 的弹性系数,力的变化均可以通过Cantilever 被检测。

(2)AFM关键部位:

AFM关键部份是力敏感元件和力敏感检测装置。所以微悬臂和针尖是决定AFM 灵敏度的核心。为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM 的灵敏度,微悬臂的设计通常要求满足下述条件: ①较低的力学弹性系数,使很小的力就可以产生可观测的位移; ②较高的力学共振频率; ③高的横向刚性,针尖与样品表面的摩擦不会使它发生弯曲; ④微悬臂长度尽可能短;⑤微悬臂带有能够通过光学、电容或隧道电流方法检测其动态位移的镜子或电极; ⑥针尖尽可能尖锐。

(3) AFM的针尖技术

探针是AFM的核心部件。如

右图。目前,一般的探针式表面

形貌测量仪垂直分辨率已达到

0.1 nm ,因此足以检测出物质表

面的微观形貌。但是,探针针尖

曲率半径的大小将直接影响到

测量的水平分辨率。当样品的尺寸大小与探针针尖的曲率半径相当或更小时,会出现“扩宽效应”,即实际观测到的样品宽度偏大。这种误差来源于针尖边壁同样品的相互作用以及微悬臂受力变形。某些AFM 图像的失真在于针尖受到污染。一般的机械触针为金刚石材料,其最小曲率半径约20 nm。普通的AFM 探针材料是硅、氧化硅或氮化硅(Si3N4 ) ,其最小曲率半径可达10 nm。由于可能存在“扩宽效应”,针尖技术的发展在AFM 中非常重要。其一是发展制得更尖锐的探针,如用电子沉积法制得的探针,其针尖曲率半径在5~10 nm 之间。其二是对探针进行修饰,从而发展起针尖修饰技术。

探针针尖的几何物理特性制约着针尖的敏感性及样品图像的空间分辨率。因此针尖技术的发展有赖于对针尖进行能动的、功能化的分子水平的设计。只有设计出更尖锐、更功能化的探针, 改善AFM 的力调制成像(force modulation imaging) 技术和相位成像(phase imaging)技术的成像环境,同时改进被测样品的制备方法,才能真正地提高样品表面形貌图像的质量。

(4) AFM的工作模式

AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。

①接触模式

接触模式包括恒力模式(constant2force mode) 和恒高模式(constant2height mode) 。在恒力模式中过反馈线圈调节微悬臂的偏转程度不变,从而保证样品与针尖之间的作用力恒定,当沿x 、y 方向扫描时,记录Z 方向上扫描器的移动情况来得到样品的表面轮廓形貌图像。这种模式由于可以通过改变样品的上下高度来调节针尖与样品表面之间的距离,这样样品的高度值较准确,适用于物质的表面分析。在恒高模式中,保持样品与针尖的相对高度不变,

直接测量出微悬臂的偏转情况,即扫描器在z 方向上的移动情况来获得图像。这种模式对样品高度的变化较为敏感,可实现样品的快速扫描,适用于分子、原子的图像的观察。接触模式的特点是探针与样品表面紧密接触并在表面上滑动。针尖与样品之间的相互作用力是两者相接触原子间的排斥力,约为10 - 8 ~10 - 11N。接触模式通常就是靠这种排斥力来获得稳定、高分辨样品表面形貌图像。但由于针尖在样品表面上滑动及样品表面与针尖的粘附力,可能使得针尖受到损害,样品产生变形, 故对不易变形的低弹性样品存在缺点。

②非接触模式

非接触模式是探针针尖始终不与样品表面接触,在样品表面上方5~20 nm 距离内扫描。针尖与样品之间的距离是通过保持微悬臂共振频率或振幅恒定来控制的。在这种模式中,样品与针尖之间的相互作用力是吸引力———范德华力。由于吸引力小于排斥力,故灵敏度比接触模式高,但分辨率比接触式低。非接触模式不适用于在液体中成像。

③轻敲模式

在轻敲模式中,通过调制压电陶瓷驱动器使带针尖的微悬臂以某一高频的共振频率和0。 01~1 nm 的振幅在Z 方向上共振,而微悬臂的共振频率可通过氟化橡胶减振器来改变。同时反馈系统通过调整样品与针尖间距来控制微悬臂振幅与相位,记录样品的上下移动情况,即在Z 方向上扫描器的移动情况来获得图像。由于微悬臂的高频振动,使得针尖与样品之间频繁接触的时间相当短,针尖与样品可以接触,也可以不接触,且有足够的振幅来克服样品与针尖之间的粘附力。因此适用于柔软、易脆和粘附性较强的样品,且不对它们产生破坏。这种模式在高分子聚合物的结构研究和生物大分子的结构研究中应用广泛。

(5) AFM中针尖与样品之间的作用力

AFM检测的是微悬臂的偏移量,而此偏移量取决于样品与探针之间的相互作用力。其相互作用力主要是针尖最后一个原子和样品表面附近最后一个原子之间的作用力。

当探针与样品之间的距离d 较大(大于5 nm) 时,它们之间的相互作用力表现为范德华力(Van der Waals forces) 。可假设针尖是球状的,样品表面是平面的,则范德华力随1Pd2 变化。如果探针与样品表面相接触或它们之间的间距d 小于0。 3 nm ,则探针与样品之间的力表现为排斥力(Pauli exclusion forces) 。这种排斥力与d13 成反比变化,比范德华力随d 的变化大得多。探针与样品之间的相互作用力约为10 - 6 ~10 - 9N ,在如此小的力作用下,探针可以探测原子,而不损坏样品表面的结构细节。品与探针的作用力还有其他形式,如当样品与探针在液体介质中相接触时,往往在它们的表面有电荷,从而产生静电力;样品与针尖都有可能发生变形,这样样品与针尖之间有形变力;特定磁性材料的样品和探针可产生磁力作用;对另一些特定样品和探针,可能样品原子与探针原子之间存在相互的化学作用,而产生化学作用力。但在研究样品与探针之间的作用力的大小时,往往假设样品与探针特定的形状(如平面样品、球状探针) ,可对样品和探针精心设计与预处理,避免或忽略静电力、形变力、磁力、化学作力等的影响,而只考虑范德华力和排斥力。

仪器特点:

(1)扫描时间比较短,如果扫描一幅图像需要十多分钟,那么周围的电干扰,光干扰以及震动,温度的变化等因素将直接影响到图像的准确性和完整性。

(2)卧式设计:主要是消除微悬臂自身的重力对纵原子力的干扰,卧式AFM 中的重力方向与用于成像的原子力互相垂直,从而提高了仪器的灵敏度。

三、使用仪器、材料

原子力显微镜,带测试的未知材料

四、实验步骤

本实验采用接触模式中的恒力模式:样品扫描时,针尖始终同样品“接触”,即针尖-样品距离在小于零点几个纳米的斥力区域。此模式通常产生稳定、高分辨图像。当沿着样品扫描时,由于表面的高低起伏使得针尖-样品距离发生变化,引起它们之间作用力的变化,从而使悬臂形变发生改变。当激光束照射到微悬臂的背面,再反射到位置灵敏的光电检测器时,检测器不同象限会接收到同悬臂形变量成一定的比例关系的激光强度差值。反馈回路根据检测器的信号与预置值的差值,不断调整针尖一样品距离,并且保持针尖一样品作用力不变,就可以得到表面形貌像。

依次按下面步骤开启实验仪器:

(1)依次开启:电脑-控制机箱-高压电源-激光器。

(2)用粗调旋钮将样品逼近微探针至两者间距<1 mm。

(3)再用细调旋钮使样品逼近微探针:顺时针旋细调旋钮,直至光斑突然向PSD移动。

(4)缓慢地逆时针调节细调旋钮并观察机箱上反馈读数:Z反馈信号约稳定在-150至-250之间(不单调增减即可),就可以开始扫描样品。

(5)读数基本稳定后,打开扫描软件,开始扫描。

(6)扫描完毕后,逆时针转动细调旋钮退样品,细调要退到底。再逆时针转动粗调旋钮退样品,直至下方平台伸出1厘米左右。

(7)实验完毕,依次关闭:激光器-高压电源-控制机箱

(8)处理图像,得到粗糙度

五、数据处理及分析

(1)A4纸样品的表面形貌

上图为二维表面形貌:A4纸的测量结果如下:Ra: 20 nm ; Ry:100 nm ; Rz: 100nm

扫描范围 X:20 nm ; Y:20 nm

三维表面形貌:

从扫描图可以看出,A4纸在右上角部位图像变化比较大,改变扫描范围,只扫描右上角部位,观察图像的变化。

改变扫描范围扫描A4纸的结果如下:

粗糙度Ra:10 nm ;Ry:400 nm ;Rz:400nm、

扫描范围:X:5nm ;Y:5 nm

三维图形貌如下:

从图中及数据结果不难看出:Ra变化很小,即轮廓算术平均偏差变化小,而Ry和Rz变化比较大,Ry表示微观不平度,Rz表示轮廓最大高度。

由于扫描范围变小,可以看出图像相比于之前更清晰,所以在实验中若想得

到比较清晰的图,可减小扫描范围

从三个实验结果所测量的图貌不难看出,AFM扫描出的图形能直接看出样品的表面结构。从三维图像中物体的起伏情况可以看出样品表面各区域的粗糙度。

实验分析:

防止针尖损坏: AFM 的针尖是整个仪器最脆弱的部分,一碰即断,所以应该防止一切物体与针尖直接接触。实验过程中针尖容易损坏的环节主要有两个,一是安装针尖的时候,二是进针的时候。本实验实验时针尖已安装好,所以在装样品和粗调是不要碰到尖针。

在装样品时维持样品表面的清洁,否则测量的图不清晰。

在实验过程中,桌面的震动会是扫描的图形出现一条缝。由于实验采用的是接触模式,周围环境的震动会影响图形的的测量结果,因而开始扫描后尽量保持实验桌的稳定,否则会过大的震动会破坏图形。

从三维图像可知区域峰度分布。

数据分析

Amount of sampling 65536

Max 412.09 nm

Min 0 nm

Peak-to-peak, Sy 412.09 nm

Ten point height, Sz 206.094 nm

Average 135.944 nm

Average Roughness, Sa 27.1344 nm

Second moment 142.679

Root Mean Square, Sq 43.3189 nm

Surface skewness, Ssk 1.55233

Coefficient of kurtosis, Ska 5.81713

Entropy 10.747

Redundance -0.237664

采集总量:65536

峰度系数Coefficient of kurtosis:表示该区域峰度分布密集程度。

实验五傅里叶红外光谱

一实验目的

1,分析样品及其性质

二、实验原理

红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行物质测试的方法。

利用物质分子对红外辐射的吸收,并由其振动及转动运动引起偶极矩的净变化,使得分子由基态振动和转动能级跃迁到激发态,获得分子的振动-转动光谱,即红外吸收光谱。它反映了分子中各基团的振动特征。

由于不同分子的振动能级和转动能级不同,能级间的能量差值不同,不同物质对红外光的吸收波长必然不同。所以根据物质的红外吸收波长就可对物质进行定性分析。同时,物质对红外辐射的吸收符合朗伯-比尔定律,故可用于定量分析。

1、红外吸收的条件

1)某红外光刚好能满足物质振动能级跃迁时所需要的能量。

2)红外光与物质之间有耦合作用。即分子的振动必须是能引起偶极矩变化的红外活性振动。

在常温下,绝大多数分子处

于基态,由基态跃迁到第一激

发态所产生的吸收谱带称为

基频谱带。即基频谱带的频率

与分子振动频率相等。

2、红外吸收光谱

当物质受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比(吸光度)与波数或波长的关系曲线,就得到红外吸收光谱。

3、影响基团频率发生位移的因素:

内部因素:

电子效应包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。

氢键效应氢键对红外光谱的主要作用是使峰变宽,使基团频率发生位移。

振动的耦合效应两个化学键或基团的振动频率相近(或相等),位置上直接相连或接近时,它们之间的相互作用使原来的谱带分裂成两个峰,一个频率比原来的谱带高,一个频率低于原来谱带,这就称为振动耦合。

外部因素:

物态的影响(包括试样的状态、粒度、温度)和溶剂(溶剂和溶质的相互作用不同,因此测得光谱吸收带的频率也不同)的影响;样品的制样方法也会引起红外光谱吸收频率的改变。

红外光谱吸收区域的划分:

1)3750-2500cm-1区,此区为各类A-H单键的伸缩振动区(包括C-H、O-H、X-H 的吸收带)。3000cm-1以上为不饱和碳的C-H键伸缩振动区,而3000cm-1以下为饱和碳的C-H键伸缩振动区。

2)2500-2000cm-1区,是三键和累积双键的伸缩振动区,包括碳碳叁键,碳氮三键,C=C=O等基团以及X-H基团化合物的伸缩振动。

3)2000-1300cm-1区,是双键伸缩振动区,C=O键在此区有一强吸收峰,其位置按酸酐、酯、醛酮、酰胺等不同而异。在1650-1550cm-1处还有N-H键的弯曲振动吸收峰。

4)1300-667cm-1区,包括C-H键的弯曲振动。此曲在鉴别链的长短、烯烃双键取代强度、构型基本换取待机位置等方面可提供有用的信息。

三、实验仪器及用品

IRPrestige-21型傅立叶变换红外光谱仪,待测样品。

四、实验步骤

1)打开红外光谱仪的电源开关。

2)点击电脑屏幕打开IRsolution工作站软件。

3)点击测定,使屏幕转到测定界面。之后初始化仪器。

4)制备溴化钾空白片和样品压片。

5)将压制好的溴化钾空白片(不含样品的溴化钾空片)放入光谱仪样品仓内的样品架上。

6)点击测定按钮下的背景按钮,输入光谱名称,确认采集参比背景光谱。

7)背景谱图采集完毕后,将待测样品片放入光谱仪内,关上仓盖。

8)软件可按要求对谱图进行各种分析处理,从文件菜单中选择打印,将谱图以不同形式打印出报告。

9)退出系统。

五、实验结论及其分析

总共有两个大的波峰,经过分析,第一个波峰为物质BaF2

第二个吸收波峰为PbTe

实验六红外光谱

一、实验目的

1,分析四氯化碳的相关性质

二、实验原理

1、红外光谱法特点:

由于许多化合物在红外区域产生特征光谱,因此红外光谱法广泛应用于这些物质的定性和定量分析,特别是对聚合物的定性分析,用其他化学和物理方法较为困难,而红外光谱法简便易行,特别适用于聚合物分析。

2、红外光谱的产生和表示

红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃迁而产生的吸收信号。

三、实验步骤

与傅里叶大致相似

四、实验杰伦及其分析

材料分析方法实验报告

篇一:材料分析方法实验报告 篇二:材料分析方法课程设计报告 材料分析测试方法 课程设计(论文) 题目:磁控溅射c/w多层膜成分及微观分析 学院材料科学与工程 专业材料化学 班级材化082 学生王维娜 学号 3080101296 指导教师陈迪春 起止时间 2010.12.27-2011.1.1 年 材料分析测试方法课程设计任务书 课程设计内容要求: 掌握高分辨透射电子显微镜样品制备方法,学习并了解真空镀膜 技术-磁控溅射技术,多层膜制备过程,以及其微观结构分析,成分 分析所用仪器和原理。 学生(签名) 月日 材料分析测试方法课程设计评语 指导教师(签名) 年日 目录 材料分析测试方法 ............................................................................. .. (1) 1.1 磁控溅射 ............................................................................. (5) 1.2 x射线衍射仪 ............................................................................. . (5) 1.3 透射电子显微镜 ............................................................................. (6) 1.4 x射线光电子能谱仪(xps) ........................................................................ (7) 第二章实验方法 ............................................................................. .. (9) 2.1 tem样品的制备方法 .............................................................................

热重分析实验报告

热重分析实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

材料与建筑工程学院实验报告 课程名称: 材料物理性能 专业:材料科学与工程 班级: 2013级本科 姓名:张学书 学号: 3

指导老师:谢礼兰老师 贵州师范大学学生实验报告 成绩 实验一:STA449F3同步热分析仪的结构原理及操作方法 一、实验目的 1、熟悉同步热分析仪的基本原理。 2、了解STA449 F3型同步热分析仪的构造原理及性能。 3、学习STA449 F3型同步热分析仪的操作方法。 二、实验原理 差示扫描量热法(DSC)是指在加热的过程中,测量被测物质与参比物之间的能量差与温度之间的关系的一种方法技术。图1-1为功率补偿式DSC仪器示意图:

图1-1 功率补偿式D SC 示意图 1.温度程序控制器; 2.气氛控制;3.差热放大器;4.功率补偿放大器;5.记录仪 当试样发生热效应时,譬如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势U ΔT ,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使试样下面的电流Is减小,参比物下面的电流IR 增大,而Is +IR 保持恒定。降低试样的温度,增高参比物的温度,使试样和参比物之间的温差ΔT 趋于零。上述热量补偿能及时,迅速完成,使试样和参比物的温度始终维持相同。 设两边的补偿加热丝的电阻值相同,即RS =RR=R,补偿电热丝上的电功率为PS=IR 和P R=IR 。当样品没有热效应时,PS=P R;当样品存在热效应时,PS 和PR 的差ΔP能反映样品放(吸)热的功率: ΔP= PS-PR= IR -IR=(I S+IR)( I S-IR)R =(IS+IR ) ΔV =I ΔV? (1) 由于总电流IS+IR 为恒定,所以样品的放(吸)热的功率ΔP只和ΔV 成正比, 3 1 2 4 5

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

工程材料实验报告模板

工程材料实验报告 专业: 姓名:,学号: 姓名:,学号: 姓名:,学号: 青海大学机械工程学院 年月日

工程材料综合实验 ●金相显微镜的构造及使用 ●铁碳合金平衡组织分析 ●碳钢的热处理 ●金相试样的制备 ●碳钢热处理后的显微组织分析 ●硬度计的原理及应用 ●碳钢热处理后的硬度测试 ●常用工程材料的显微组织观察 实验一金相显微镜的构造和使用 一、实验目的 熟悉金相显微镜的基本原理、构造;了解金相显微镜的使用注意事项,掌握金相显微镜的使用方法。 二、实验设备及材料 三、实验内容 1)金相显微镜的基本原理2)金相显微镜的构造3)显微镜使用注意事项 四、实验步骤 五、实验报告 实验二铁碳合金平衡组织分析 一、实验目的 (1)熟悉铁碳合金在平衡状态下的显微组织。 (2)了解铁碳合金中的相与组织组成物的本质、形态及分布特征。

(3)分析并掌握平衡状态下铁碳合金的组织和性能之间的关系 二、实验设备及材料 三、实验内容 1)铁碳合金的平衡组织 2)各种组成相或组织组成物的特征 3)铁素体与渗碳体的区别 四、实验步骤 五、实验报告 实验三碳钢的热处理 一、实验目的 1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火 2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能的影响。 二、实验设备及材料 三、实验内容 1)加热温度的选择 2)保温时间的确定 3)冷却方法 四、实验步骤 五、实验报告 实验四金相试样的制备 一、实验目的 1)了解金相试样的制备过程。 2)学会金相试样的制备技术。

二、实验设备及材料 三、实验内容 1)取样 2)镶样 3)磨制 4)抛光 四、实验步骤 五、实验报告 实验五碳钢热处理后的显微组织分析 一、实验目的 观察碳钢热处理后的显微组织 二、实验设备及材料 三、实验内容 1)钢冷却时所得到的各种组织组成物的形态 2)钢淬火回火后的组织 四、实验步骤 五、实验报告 实验六硬度计的原理及应用 一、实验目的 1)熟悉洛氏硬度计、布氏硬度计、显微硬度计的原理、构造。 2)学会三种硬度计的使用 二、实验设备及材料 三、实验内容 1)洛氏硬度实验原理 2)布氏硬度试验原理 3)显微硬度计的原理 四、实验步骤 五、实验报告 实验七碳钢热处理后的硬度测试

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

材料分析(SEM)实验报告

材料专业实验报告 题目:扫描电镜(SEM)物相分析实验学院:先进材料与纳米科技学院专业:材料物理与化学 姓名: 学号:1514122986 2016年6月30日

扫描电镜(SEM)物相分析实验 一.实验目的 1.了解扫描电镜的基本结构与原理 2.掌握扫描电镜样品的准备与制备方法 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4.了解扫描电镜图片的分析与描述方法 二.实验原理 1.扫描电镜的工作原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。 本次实验中主要通过观察背散射电子像及二次电子像对样品进行分析表征。 1)背散射电子 背散射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。弹性背反射电子是指被样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。背反射电子的产生范围在100nm-1mm深度。背反射电子产额和二次电子产额与原子序数的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。背反射电子的产额随原子序数的增加而增加,所以,利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬

最新差热分析DTA实验报告

差热分析DTA 一、实验目的 掌握热分析方法─差热分析法基本原理和分析方法。 了解差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析基本原理 差热分析法(Differential Thermal Analysis,DTA)是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。 物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差DT=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差DT<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差DT>0。上述温差DT(称为DTA 信号)经检测和放大

以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差DT=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差DT10,差热电偶的电势信号经放大和A/D换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。差热曲线直接提供的信息主要有峰的位置、峰的面积、峰的形状和个数,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA 曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与

编译原理实验报告材料(预测分析报告表方法)

预测分析表方法 一、实验目的 理解预测分析表方法的实现原理。 二、实验内容: 编写一通用的预测法分析程序,要求有一定的错误处理能力,出错后能够使程序继续运行下去,直到分析过程结束。可通过不同的文法(通过数据表现)进行测试。 三、实验步骤 1.算法数据构造: 构造终结符数组:char Vt[10][5]={“id”,”+”……}; 构造非终结符数组:char Vn[10]={ }; 构造follow集数组:char *follow[10][10]={ } (可将follow集与预测分析表合并存放) 数据构造示例(使用的预测分析表构造方法1): /*data1.h简单算术表达式数据*/ char VN[10][5]={"E","E'","T","T'","F"}; //非终结符表 int length_vn=5; //非终结符的个数 char VT[15][5]={"id","+","*","(",")","#"}; //终结符表 int length_vt=6; //终结符的个数 char Fa[15][10]={"TE'","+TE'","","FT'","*FT'","","(E)","id"}; //产生式表:0:E->TE' 1:E'->+TE' 2:E'->空 // 3:T->FT' 4:T'->*FT' 5:T'->空 6:F->(E) 7:F->id int analysis_table[10][11]={0,-1,-1,0,-2,-2,0,0,0,0,0, -1,1,-1,-1,2,2,0,0,0,0,0, 3,-2,-1,3,-2,-2,0,0,0,0,0, -1,5, 4,-1,5, 5,0,0,0,0,0, 7,-2,-2,6,-2,-2,0,0,0,0,0}; //预测分析表,-1表示出错,-2表示该行终结符的follow集合,用于错误处理,正数表示产生式在数组Fa 中的编号,0表示多余的列。 (1)预测分析表的构造方法1 给文法的正规式编号:存放在字符数组中,从0开始编号,正规式的编号即为该正规式在数组中对应的下标。如上述Fa数组表示存储产生式。 构造正规式数组:char P[10][10]={“E->TE’”,”E’->+TE’”,……..}; (正规式可只存储右半部分,如E->TE’可存储为TE’,正规式中的符号可替换,如可将E’改为M ) 构造预测分析表:int analyze_table[10][10]={ } //数组元素值存放正规式的编号,-1表示出错 (2)预测分析表的构造方法2 可使用三维数组 Char analyze_table[10][10][10]={ }

实验六 差热分析草酸钙的热分解过程

实验六差热分析草酸钙的热分解过程 一、实验目的 1. 掌握差热分析法的基本原理。 2. 了解热分析仪的结构,掌握仪器的基本操作。 3. 利用差热分析技术研究草酸钙的热分解过程。 二、实验原理 热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。程序控制温度一般是指线性升温或线性降温,也包括恒温、循环或非线性升温、降温。物质性质包括质量、温度、热焓变化、尺寸、机械特性、声学特性、电学和磁学特性等等。 在热分析技术中,热重法是指在程序控制温度下,测量物质质量与温度关系的一种技术,被测参数为质量(通常为重量),检测装置为“热天平”,热重法测试得到的曲线称为热重曲线(TG)。热重曲线以质量作为纵坐标,可以用重量、总重量减少的百分数、重量剩余百分数或分解分数表示。曲线从上往下表示质量减少,以温度(或时间)作横坐标,从左向右表示温度(或时间)增加,所得到的重量变化对温度的关系曲线则称之为热重曲线。 热重法的主要特点是定量性强,能准确地测量物质质量变化及变化的速率。在正常的情况下,热重曲线的水平部分看作是恒定重量的特征,变化最陡峭的部分,可以给出重量变化的斜率,曲线的形状和解析取决于试验条件的稳定性。热重曲线开始偏离水平部分的温度为反应的起始温度,测量物质的质量是在加热情况下测量试样随温度的变化,如含水和化合物的脱水,无机和有机化合物的热分解。物质在加热过程中与周围气氛的作用,固体或液体物质的升华和蒸发等,都是在加热过程中伴随有重量的变化。 从热重法派生出微商热重法(DTG)和二阶微商法(DDTG),前者是TG 曲线对温度(或时间)的一阶导数,后者是TG 曲线的二阶导数。 差热分析(DTA)是在程序控制温度下,测量物质与参比物之间的温度差与温度函数关系的一种技术,只要被测物质在所用的温度范围内具有热活性,则热效应联系着物理或化学变化,在所记录的差热曲线上呈现一系列的热效应峰,峰

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min)0.1-100℃/min 天平灵敏度(μg)0.1μg 温度范围(°C)室温-1000℃ 五、操作条件

第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG 曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

草酸钙的热重-差热分析

综合热分析法测定草酸钙 【实验目的】 (1)掌握热重-差热分析原理和ZCT-A型综合热分析仪的操作方法,了解其应用范围。 (2)对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度。 (3)测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。 【实验原理】 热分析是物理化学分析的基本方法之一。综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。 (1)热重分析 热重分析是在程序控制温度下,测量物质质量与温度关系的一种技术。热重法实验得到的曲线称为热重(TG)曲线。TG曲线以温度作横坐标,以试样的失重作纵坐标,显示试样的绝对质量随温度的恒定升高而发生的一系列变化。这些变化表征了试样在不同温度范围内发生的挥发组分的挥发,以及在不同温度范围内发生的分解产物的挥发。如图1、图2 CaC2O4·H2O的热重曲线,有三个非常明显的失重阶段。第一个阶段表示水分子的失去,第二个阶段表示CaC2O4分解为CaCO3,第三个阶段表示CaCO3分解为CaO。当然,CaC2O4·H2O的热失重比较典型,在实际上许多物质的热重曲线很可能是无法如次明了地区分为各个阶段的,甚至会成为一条连续变化地曲线。这时,测定曲线在各个温度范围内的变化速率就显得格外重要,它是热重曲线的一阶导数,称为微分热重曲线[图1也现示出了CaC2O4·H2O的微分热重曲线(DTG)]。微分热重曲线能很好地显示这些速率地变化。

材料研究方法与分析测试实验

本科生实验报告 实验课程材料研究方法与分析测试实验 学院名称材料与化学化工学院 专业名称材料科学与工程(无机非金属方向) 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一四年12月15日——二〇一五年12月19日

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水 笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形 式(上下2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一扫描电镜实验(SEM) 一、实验目的 1、了解扫描电子显微镜的原理、结构; 2、运用扫描电子显微镜进行样品微观形貌观察。 二、实验原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。扫描电镜由下列五部分组成,如图1(a)所示。各部分主要作用简介如下:

热分析仪实验报告

差热分析实验报告 一、实验目的 1、掌握差热分析的基本原理及测量方法 2、学会差热分析仪的操作,并绘制玻璃样品的差热图。 3、掌握差热曲线的处理方法,对实验结果进行分析。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析(Differentiai Thermal Analysis,简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图1)。两支笔记录的时间—温度(温差)图就称为差热图(见图2),或称为热谱图。 图1 差热分析原理图 图2 典型的差热图 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件

下,峰面积大的表示热效应也大。在相同的测定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 三、仪器与试剂 试剂:玻璃粉末,参比物:α-Al2O3,仪器:差热分析仪(HCT-1/2)一台,计算机一台。 四、实验步骤 1、开启仪器电源,预热20分钟 2、装入实验样品 升起加热炉,露出支撑杆(热电偶组件)。将参比物样品与实验样品分别装入陶瓷坩埚中(Al2O3),平稳放置在热电偶板上,双手降下加热炉体。 3、检查冷却循环水 4、检查仪器主机与计算机数据传输线连接情况 5、检查仪器注意气氛控制单元与外接气源连接情况 注意:在使用流动气氛进行实验时应先做一次或二次流动气氛的热重基线漂移实验,通过改变各路进气流量的方法,使热重基线稳定,漂移最小,为正式试验提供最佳的试验条件。同时,还应注意输入气体管路的欲通气体纯净,在正式试验前,让欲通气体流通约25分钟。 6、运行工作站软件,进入新采集设置界面进行参数设定,输入初始温度(25℃)、终止温度(1000℃)、升温速率(10℃/min)等参数。 7、点“采集”按钮后,系统自动执行实验数据采集命令。 8、到达终止温度后,仪器自动停止采集,将数据存盘。 7、利用Origin画出DTA图,并标出热效应的起始和终止温度以及峰顶温度。 五、数据记录和处理

PS实验报告分析

8.《计算机辅助包装装潢设计与表现》课程实验 实验一设计元素的准备 一、实验目的 熟悉相关软件工具的基本操作,掌握运用适当工具实现图、文、色三元素的创建与编辑,学会对象分析的一般方式。 二、实验内容 创建编辑出合适的设计素材,包括矢量和点阵的图形素材。建议结合实验二的内容展开素材的制作。 三、实验(设计)仪器设备和材料清单 具备图形设计与制作能力的计算机,每人一台。 四、实验要求 要求所制作的对象准确、精细,便于后期综合设计的需求。要求独立完成,禁止拷贝或网络直接下载,但可以参考这些资料作必要的修改或创新。 五、考核形式 标志、盒形结构图及图像合成各一个,提交电子版文件,实验报告一份。 六、实验报告要求 在实验报告中主要完成分析思路描述和表现制作的关键步骤记录(另附模板)。 七、思考题 1.不同图元素的编辑创建方式 2.色彩模型及准确快速的调色方法 3.标志的设计与制作 4.图像分辨率大小的设定 5.三元素的印刷问题 6.表现技法与设计工具7.通道、蒙版、容器等概念的内涵 实验二设计表现 一、实验目的 熟悉计算机辅助包装装潢设计与表现的一般性程序,学会对给定题目的盒型包装装潢设计进行一定的构思,能够绘制出设计原稿并能够制作出折叠后的立体效果展示图。 二、预习与参考 预先了解一些有关纸盒设计的内容,例如纸盒的结构造型设计、纸盒材料的承印特性等,了解一些包装装潢设计的理论知识和设计原则,参阅一些和题目相关的包装装潢作品,准备一些设计素材。 三、实验指标与要求 完成规定题目的设计原稿和用于网络展示用的效果图。原稿要求符合一般的印刷技术需求,具备一定的实用价值和艺术性。 题目的范围为盒型或袋包装装潢为主,可以在此范围自拟一个题目,须经教师审核认定。 四、实验(设计)仪器设备和材料清单 具备图形设计与制作能力的计算机,每人一台。 五、考核形式 电子版设计原稿一份、效果展示图(多角度展示效果)一份、实验报告一份。 六、实验报告要求 在实验报告中主要的是完成分析思路描述和表现制作的关键步骤记录(另附模板)。 七、思考题 1.主题纸袋的设计 2.药品包装设计 3.茶包装设计 4.化妆品包装设计 5.拼版系列问题 6.纸等承印材料的印刷 7.软件工具综合运用 中北大学机械与动力工程学院 实验报告 课程名称:

相关文档