文档库 最新最全的文档下载
当前位置:文档库 › 理解离散傅立叶变换

理解离散傅立叶变换

理解离散傅立叶变换
理解离散傅立叶变换

理解离散傅立叶变换(一)

------傅立叶变换的由来

关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:

https://www.wendangku.net/doc/4d14441640.html,/pdfbook.htm

要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

一、傅立叶变换的提出

让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,否定了傅立叶的工作成果,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因怕会被推上断头台而一直在逃避。

直到拉格朗日死后15年这个论文才被发表出来。

谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。

为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。

用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真

下图是四种原信号图例:

但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT 方法。这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。

每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶变换就更容易了,所以我们先把复数的傅立叶变换放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。

还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。

三、一个关于实数离散傅立叶变换(Real DFT)的例子

先来看一个变换实例,下图是一个原始信号图像:

这个信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:

9个余弦信号:

9个正弦信号:

把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:

上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右表示正向转换(Forward DFT),从右向左表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的幅度值数组, 因为有N/2+1种频率,所以该数组长度为N/2+1,X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验) 一、实验目的 掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。 二、实验内容 1、已经系统函数为 5147.13418.217.098.2250 5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定; (2)检查系统是否稳定; (3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147]; subplot(2,1,1);zplane(b,a);title('零极点分布图'); z=roots(a); magz=abs(z) magz = 0.9000 0.9220 0.9220 0.9900 n=[0:1000]; x=stepseq(0,0,1000); s=filter(b,a,x); subplot(2,1,2);stem(n,s);title('稳态输出'); (1)因为极点都在单位园内,所以系统是稳定的。 (2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。 (3)稳定时间为570。 2、综合运用上述命令,完成下列任务。 (1) 已知)(n x 是一个6点序列: ???≤≤=其它,050,1)(n n x

计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。 要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。 n=0:5;x=ones(1,6); k=-200:200;w=(pi/100)*k; X=x*(exp(-j*pi/100)).^(n'*k); magX=abs(X);angX=angle(X); subplot(2,1,1);plot(w/pi,magX);grid;title('幅度'); subplot(2,1,2);plot(w/pi,angX);grid;title('相位'); (2) 已知下列序列: a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ; b .)4sin()(πn n x =是一个N =32的有限序列; 试绘制)(n x 及它的离散傅立叶变换 )(k X 的图像。 a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1);plot(n,x);title('x(n)的图像'); X=dft(x,101); magX=abs(X); subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

傅里叶变换 讲解最通俗易懂的一片

【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶 变换?来源:胡姬的日志 写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。在此 向多位原创作者致敬!!! 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.wendangku.net/doc/4d14441640.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,

离散序列傅里叶变换习题教学教材

1、 2、 11、 试求以下各序列的时间傅里叶变换(1)1()(3)x n n δ=- (2)211 ()(1)()(1)22 x n n n n δδδ= +++- (3)3()(),01n x n a u n a =<< (4)4()(3)(4)x n u n u n =+-- 12、 设()j X e ω 是序列()x n 的离散时间傅里叶变换,利用离散时间傅里叶变换的定义与性 质,求下列各序列的离散时间傅里叶变换。 (1)()()(1)g n x n x n =-- (2)()*()g n x n = (3)()*()g n x n =- (4)()(2)g n x n = (5)()()g n nx n = (6)2 ()()g n x n = (7)(), ()2 0, n x n g n n ??=???为偶数为奇数 13、 试求以下各序列的时间傅里叶变换 (1)1()(),||1n x n a u n a =< (2)2()(),||1n x n a u n a =-> (3)||3, ||()0, n a n M x n n ?≤=? ?为其他 (4)4()(3),||1n x n a u n a =+< (5)50 1 ()()(3)4n m x n n m δ∞ == -∑ (6)6sin(/3)sin(/4)()n n x n n n ππππ???? =????????

14、 设()x n 是一有限长序列,已知 1,2,0,3,2,1,0,1,2,3,4,5()0, n x n n --=?=? ?为其他 它的离散傅里叶变换为()j X e ω 。不具体计算()j X e ω ,试直接确定下列表达式的值。 (1)0 ()j X e (2)()j X e π (3)()j X e d π ωπ ω- ? (4) 2|()|j X e d π ω πω- ? (5)2 ()| |j dX e d d ωπ πωω -? 15、 试求以下各序列的时间傅里叶变换 (1)11,||()0, n N x n n ≤?=? ?为其他 (2)21||/,||()0, n N n N x n n -≤?=? ?为其他 (3)3cos(),||()20, n n N x n N n π?≤? =???为其他 6、证明:若()j X e ω 是序列()x n 的离散时间傅里叶变换,而 1(), ()0, n n x x n k k ??=???为整数 其他 则1()()j j X e X e ωω =。 7、设序列()()x n u n =,证明()x n 的离散时间傅里叶变换为 1 ()(2)1j j l X e l e ω ω πδωπ∞ -=-∞ =+--∑ 8、如图所示四个序列,已知序列1()x n 的离散时间傅里叶变换为1()j X e ω,试用1()j X e ω 表示其

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。 非确定性信号(随机信号):给定条件下 取值是不确定的 按取值情况分类:模拟信号,离散信 号

数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始

无终” # 傅里叶级数的三角函数展开式 (n=1, 2, 3,…) 傅立叶系数: 式中T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式: 周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图 解:

解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 幅频谱图相频谱图 二、周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式

复数傅里叶系数的表达式 其中a n,b n的计算公式与三角函数形式相同,只是n包括全部整数。 一般c n是个复数。 因为a n是n的偶函数,b n是n的奇函数,因此# 即:实部相等,虚部相反,c n与c-n共轭。 c n的复指数形式 共轭性还可以表示为 , 即:c n与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0 (等于三角函数模的一半) (与三角函数形式中的相角相等)

连续时间傅立叶变换与离散时间傅里叶变换之间的关系

连续时间傅立叶变换与离散时间傅里叶变换之间的关系 对于连续限带(B )的时间信号x (t),在满足奈奎斯特抽样定理的条件下进行抽样(抽样频率f s =1/T s = 2B'>2B ),其样点为x n =x (nT s )。可以由样点序列进行内插来恢复原始信号x (t): ()()()sin 2')s n x t x nT c B t n = -∑ (1) 证明: 抽样采用理想冲击脉冲串:()()s T s t t nT δδ= -∑ ()()()s s T x t x t t δ= ()()s s n x nT t nT δ= -∑ (2) 其中2B'=1/T s 。由傅里叶变换的频域卷积性质,理想抽样信号x s (t)的傅里叶变换为: 1()()s k s s k X f X f f T T δ?? =* - ??? ∑ (3) 其中*表示连续的卷积运算。于是得到 ()1s k s s k X f X f T T ??= - ?? ?∑ s k s k f X f T ?? =- ?? ?∑ (4) 即理想抽样信号在频域是原信号x (t)傅里叶变换(频谱密度)的周期性位移,周 期为1/T s 。其中更详细的原理请参看经典课本:奥本海姆(《信号与系统》)/樊昌信先生(《通信原理》)/周炯盘先生(《通信原理》)。本文目的是架起连续时间傅里叶变换和离散时间傅里叶变换的桥梁,这在很多课本中都是省略掉的;对抽样定理不再赘述。 在频域k=0处对抽样信号进行理想低通滤波,滤波器带宽为B'>B 。理想低通滤波器的频率响应为矩形窗函数H(f)=( )2' f B ∏,它对应的时域单位冲激响应函数

参考文献(第三章离散时间信号的傅里叶变换)

参考文献(第三章离散时间信号的傅里叶变换) (来自:胡广书, 数字信号处理导论. 北京: 清华大学出版社, 2005年第1版, 2010年1月第6次印刷.) [1] Oppenheim A V, Schafer R. Discrete-time signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [2] Oppenheim A V, Willsky A S, Young I t. Signals and systems. Englewood Cliffs, NJ: Prentice-Hall, 1983. [3] Bracewell R N. The Fourier transform and its applications (2nd ed.). New York: McGraw-Hill, 1986. [4] Proakis J G, Manolakis D G. Introduction to digital signal processing. New York: Macmillan publishing company, 1988. [5] Roberts R A, Mullis C T. Digital signal processing. Reading, MA: Addison-Wesley publishing company, 1987. [6] Sophocles J G. Introduction to signal processing. Prentice-Hall, 1996; 清华大学出版社, 1999(影印). [7] Brigham E O. The fast Fourier transform and its applications. Englewood Cliffs, NJ: Prentice-Hall, 1988. [8] Papoulis A. Signal analysis. New York: McGraw-Hall, 1977. [9] Marple S L. Digital spectral analysis with applications. Englewood Cliffs, NJ: Prentice-Hall, 1987. [10] Dudgeon D E, Mersereau R M. Mulidimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1983. [11] Lim J S. Two-dimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [12] Sanjit K. Digital signal processing: A computer-based approach (2nd ed.). New York: McGraw-Hill, 2001. [13] 郑君里等. 信号与系统. 北京: 人民教育出版社, 1981. [14] 胡广书. 数字信号处理----理论、算法与实现(第二版). 清华大学出版社, 2003.

离散傅里叶变换和快速傅里叶变换

实验报告 课程名称:信号分析与处理 指导老师 成绩: 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握DFT 的原理和实现 2. 掌握FFT 的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。 二、实验内容和原理 2.1 DTFT 和DFT 序列x (n )的离散事件傅里叶变换(DTFT )表示为:n j n j e n x e X Ω-∞ -∞ =Ω ∑= )()( , 如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为:n j N n j e n x e X Ω--=Ω ∑=1 )()( , x(n)的离散傅里叶变换(DFT )表达式为:)1,...,1,0()()(21 -== --=∑N k e n x k X nk N j N n π , 序列的N 点DFT 是DTFT 在 [0,2π]上的N 点等间隔采样,采样间隔为2π/N 。通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。X (k )的幅度谱为)()()(22k X k X k X I R +=,X R (k)和X I (k)分别为X(k)的实部和虚部。X (k )的相位谱 为) () (arctan )(k X k X k R I =?。

离散傅里叶反变换(IDFT )定义为)1,...,1,0()(1 )(21 -== ∑-=N n e k X N n x nk N j N n π 。 2.2 FFT 快速傅里叶变换(FFT )是DFT 的快速算法,它减少了DFT 的运算量,使数字信号的处理速度大大提高。 三、主要仪器设备 PC 一台,matlab 软件 四、实验内容 4.1第一题 求有限长离散时间信号x (n )的离散时间..傅里叶变换(DTFT )X (e j Ω )并绘图。 (1)已知?? ?≤≤-=其他 0221)(n n x ;(2)已知1002 )(≤≤=n n x n 。 4.1.1理论分析 1) 由DTFT 计算式, ()25 2.5 2.52 0.50.52 e 1e e e sin(2.5) ()()e e 1e e e sin(0.5) j j j j j n j n j j j n n X x n Ω-ΩΩ-Ω+∞ -Ω-Ω-Ω Ω-Ω=-∞ =---ΩΩ= = = == --Ω∑∑ X (Ω)是实数,可以直接作出它的图像。

离散序列傅里叶变换习题

1、 试求以下各序列的时间傅里叶变换 (1)1()(3)x n n δ=- (2)211 ()(1)()(1)22 x n n n n δδδ= +++- (3)3()(),01n x n a u n a =<< (4)4()(3)(4)x n u n u n =+-- 2、 设()j X e ω 是序列()x n 的离散时间傅里叶变换,利用离散时间傅里叶变换的定义与性质,求 下列各序列的离散时间傅里叶变换。 (1)()()(1)g n x n x n =-- (2)()*()g n x n = (3)()*()g n x n =- (4)()(2)g n x n = (5)()()g n nx n = (6)2()()g n x n = (7)(), ()2 0, n x n g n n ??=???为偶数为奇数 3、 试求以下各序列的时间傅里叶变换 (1)1()(),||1n x n a u n a =< (2)2()(),||1n x n a u n a =-> (3)||3, ||()0, n a n M x n n ?≤=? ?为其他 (4)4()(3),||1n x n a u n a =+< (5)50 1()()(3)4n m x n n m δ∞ == -∑ (6)6sin(/3)sin(/4)()n n x n n n ππππ???? =????????

4、 设()x n 是一有限长序列,已知 1,2,0,3,2,1,0,1,2,3,4,5()0, n x n n --=?=? ?为其他 它的离散傅里叶变换为()j X e ω 。不具体计算()j X e ω ,试直接确定下列表达式的值。 (1)0 ()j X e (2)()j X e π (3)()j X e d π ωπ ω- ? (4) 2|()|j X e d π ωπ ω- ? (5)2 ()| |j dX e d d ωπ πωω -? 5、 试求以下各序列的时间傅里叶变换 (1)11,||()0, n N x n n ≤?=? ?为其他 (2)21||/,||()0, n N n N x n n -≤?=? ?为其他 (3)3cos( ),||()20, n n N x n N n π? ≤?=???为其他 6、证明:若()j X e ω 是序列()x n 的离散时间傅里叶变换,而 1(), ()0, n n x x n k k ??=???为整数 其他 则1()()j j X e X e ωω =。 7、设序列()()x n u n =,证明()x n 的离散时间傅里叶变换为 1 ()(2)1j j l X e l e ω ωπδωπ∞ -=-∞ =+--∑ 8、如图所示四个序列,已知序列1()x n 的离散时间傅里叶变换为1()j X e ω,试用1()j X e ω 表示其 他序列的离散时间傅里叶变换。

傅里叶变换算法详细介绍

傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 /**************************************************** ***********************************************/ 这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。感谢原作者们(July、dznlong)的精心编写。 /**************************************************** **********************************************/

前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科)

离散时间傅里叶变换

1、DTFT是离散时间傅里叶变换,DFT是离散傅里叶变换。 2、DTFT变换后的图形中的频率是一般连续的(cos(wn)等这样的特殊函数除外,其变换后是冲击串),而DFT是DTFT的等间隔抽样,是离散的点。从表示中可以看出,其函数表示为X(k),而DTFT的函数表示为X(exp(jw))。(这里主要突出DFT是DTFT的等间隔抽样,DTFT变化后的频率响应一般是连续的,DFT变换后的频率响应是离散的) 3、DTFT是以2pi为周期的。而DFT的序列X(k)是有限长的。 4、DTFT是以复指数序列{exp(-jwn)}的加权和来表示的,而DFT是等间隔抽样,既然是等间隔,那么间隔是多少呢?DFT里面有个重要的参数就是N,我们一般都会说,多少点DFT运算,这个点就是N(离散序列的长度),抽样间隔就是将单位元分成N个间隔来抽样,绕圆一周,(2*pi)/N是间隔(这个应该很明显吧,一个圆周是2*pi,分成N个等分,就像我们生日的时候切蛋糕一样)。 5、DTFT和DFT都能表征原序列的信息。因为现在计算主要使用计算机,必需要是离散的值才能参与运算,因此在工程中DFT应用比较广泛,DFT还有一个快速算法,那就是FFT。 基本上你答了上面的5点,面试官至少会对你刮目相看的。因为很多人对概念是很模糊的。 快速傅立叶变换(The Fast Fourier Transform,FFT)是离散傅立叶变换(Discrete Fourier Transform,DFT)的一种快速算法,它是库利(Cooley)和图基(Tukey)于1965年提出的。FFT使DFT的次数由N^2减少到Nlog2(N)次,使DFT应用于实际变为现实,使DFT进一步得到完善。1976年,S.Winograd等人提出一种新算法:Winograd快速变换(Winograd Fast Fourier Transform Algorithm),该算法是基于中国剩余定理提出的,比FFT的运算速度更快。 因我也知之深浅,只作下面三点说明: 1.FFT是通过DFT运算中存在对称性和周期性而做的化简。 2.FFT可以通过对时间参量或者频率参量不断分解为奇偶表达式,再做进一步改进,分别称为时间抽取法和频率抽取法。 3.matlab给出的FFT介绍实际是DFT的表达式,未作DFT向FFT的简化过程说明,但计算过程内核是FFT。(N=1024时FFT比DFT快一百多倍) 对于一般的周期信号可以用一系列(有限个或者无穷多了)正弦波的叠加来表示。这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(其中的5hz叫基频)。这是傅立叶级数的思想。所以说周期信号的频率是离散的。而且,对于周期信号有一个特点,信号的周期越长,信号的基频越小。 非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这样它的频率组成就编程了连续的了。求这个连续频率的谱线的过程就是傅立叶变换。包括这样几种: DTFT(时间离散,频率连续)

相关文档
相关文档 最新文档