文档库 最新最全的文档下载
当前位置:文档库 › 生精细胞凋亡及其可能的信号通路

生精细胞凋亡及其可能的信号通路

生精细胞凋亡及其可能的信号通路
生精细胞凋亡及其可能的信号通路

生精细胞凋亡及其相关内容

细胞凋亡又叫程序性细胞死亡,是细胞在一系列内源性基因的调控下发生的自然或生理性死亡的过程。细胞凋亡过程是受基因的精确调控而完成的,其具体的过程机制尚不明确,Bcl-2 是一种细胞膜蛋白,主要存在于线粒体膜、滑面内质网和核膜上,高水平的Bcl-2 蛋白有抑制细胞死亡等作用,是细胞凋亡调控机制中的一个关键蛋白。Tanaka等证实Bcl-2 能抑制睾丸生精细胞的凋亡和分化。CytC 是一个线粒体起源的细胞凋亡信号,Bcl-2可通过抑制CytC从线粒体的释放入细胞质,而Bax、Bak可与Bcl-2结合,止其对CytC释放孔道的抑制作用,从而促进CytC从线粒体释放,引起凋亡。CytC通过接头分子使caspase(胱冬肽酶)分子募集并相互酶解活化,进而诱导细胞凋亡。caspase-3是介导细胞凋亡的关键效应酶,是凋亡执行的重要效应分子。正常情况下,caspase-3以酶原的形式存在于细胞质中,无活性,当细胞接受凋亡刺激时,其被激活,而诱导凋亡。caspase-3是多种凋亡刺激信号传递的汇聚点,它的活化是细胞凋亡进入不可逆阶段的标志。

检测生精细胞凋亡的技术

4.1 形态学检测

透射电镜检测:处死大鼠,取出睾丸。取出左侧睾丸少量组织,迅速在冰浴上切成1mm×1mm×2mm小块,置于预冷的2%戊二醛溶液中固定,标本经锇酸固定、脱水、树脂包埋、超薄切片和醋酸双氧铀染色后,在透射电镜下观察。可见细胞质空泡化,核膜增厚,核周隙增宽;染色质浓缩,附着于核边缘呈新月形;严重者染色质固缩、断裂, 出现凋亡小体。4.2 琼脂糖凝胶电泳

通过观察DNA梯状电泳带或定量检测DNA片段,可测定凋亡。凋亡细胞DNA 在核小体连接处规律性降解,形成以180 bp一200 bp为最小单位的寡聚体片段,琼脂糖凝胶电泳时呈典型的“梯状带”。但Singh等琼脂糖凝胶电泳检测到青年人生精细胞DNA迁移呈圆形,老年人凋亡生精细胞DNA迁移呈彗星状。

4.3 DNA缺口原位标记法

处死大鼠,取出睾丸。置于10%中性福尔马林溶液中固定24h,常规石蜡包埋、切片(4μm),用于原位末端标记法(TUNEL)检测。主要以精原细胞凋亡为主。可见曲细精小管中各级生精细胞大量凋亡,管腔变薄,管腔中可见大量凋亡的分裂晚期的精子细胞。DNA 缺口原位标记(TUNEL)法可用于检测凋亡细胞。此方法是将细胞的外源性核苷酸(dUTP)结合到单股断链的3′粘性未端上,标记的DNA 再用荧光或显色法检出。该法可检测早期细胞凋亡,特异性和敏感性都很高。E renpreisa等用甲苯胺蓝(tolui di ne blue,TB)、吖啶橙(acridine orange,A0)和TUNEL法检测人生精细胞DNA的完整性,证实这3种方法具有一致性。

4.4 流式细胞术

流式细胞(flow cytometry,FCM)可进DNA 、RNA含量分析,细胞周期、细胞表面标志和细胞受体分析。凋亡细胞的DNA裂解,FCM的DNA图上呈亚二倍体核型峰特点。应用DNA 染色剂穿透正常和凋亡细胞膜的能力,及其与凋亡细胞DNA 结合能力不同以区分正常细胞、凋亡细胞。FCM 还可定量检测凋亡标记蛋白的表达。吞噬凋亡细胞和未吞噬凋亡细胞的巨噬细胞群可利用带有荧光染料反应物的FCM 区分。

4.5 免疫组化法

利用抗原抗体特异性结合测定凋亡相关物质以检测凋亡。凋亡蛋白抗体或抗单链DNA 抗体标记观察凋亡细胞可检测凋亡标记蛋白Fas/FasL、Bc1-2/Bax、p53、p2l、caspases等以鉴定细胞凋亡。

死亡受体途径

Fas/FasL系统:现已有多种证据表明Fas/FasL信号系统启动生精细胞的凋亡:①在混合培养的支持细胞和生精细胞中加入FasL的反义核苷酸(阻断FasL的翻译), 能明显观察到生精细胞凋亡数目的减少;②Fas和Fas L的mRNA表达量随动物年龄的不同而不同。大鼠在16~ 33 d最多, 此时刚好是大鼠生精细胞凋亡的高峰期;③加入模拟FasL功能的Fas激动剂Jo-2(一种抗Fas的抗体), 生精细胞的数目大大减少;④在环境内分泌干扰物邻苯二甲酸-2-乙基已基酯(DEHP)的代谢产物邻苯二甲酸-单-乙基已基酯(MEHP)等一些有害化合物引起的睾丸损伤中, 随着生精细胞凋亡数目的增多, Fas和FasL的表达量也相应提高并逐渐达到峰值。

Bcl一2 家族成员引发的线粒体途径

在细胞凋亡中, 死亡信号通过Bcl-2 家族或直接诱导线粒体膜通透性增加, 释放细胞色素c ( Cyt c) , 激活半胱氨酸蛋白酶, 继而使细胞发生凋亡。

Bcl-2 家族的凋亡前体成员,一组BH3亚蛋白家族引发线粒体途径。胞外因素促使这些蛋白与另一组Bcl-2家族的凋亡前体成员——Bcl-2相关X蛋白(Bcl-2-associated x protein,Bax)亚蛋白家族结合。Bax为可溶性蛋白,存在于生精细胞质,受诱导向细胞核移动,定位于核旁聚合的线粒体外膜,以诱导生精细胞凋亡。Olderid 等在凋亡生精细胞中检测剑p53、p21、Bcl-2 和Bax的表达。Zhang等恒河猴隐睾症模型检测凋亡生精细胞,检测出Bax 转移剑细胞核附近及Bcl-2 表达增加,反映Bc1-2、Bax参与生精细胞凋亡。Bc1-2 和Bax的相互作用使Bax 聚合并横跨线粒体内外膜。

Bax的变化使原位于线粒体内膜caspases活化蛋白、Cyt—C从线粒体内移入胞质。释放的Cyt-C与胞质凋亡蛋白酶激活因子—1(apoptotic protease activating factor-1,Apaf-1)结合并诱导Apaf-1聚合,聚合Apaf-1 募集并活化procaspase-9。第二个caspases的线粒体激活因子(second mitochon—dria—derived activator of caspases,Smac) 同时从线粒体进入胞质,S ma c与APaf-1结合并促进procaspase一9活化。Caspase一9募集并活procaspase-3,最终引发生精细胞凋亡。

Procaspase-3活化引发Bcl一2作用促死亡蛋白(Bc1-2-interacting death agonist,Bid)裂解,Bid为Bcl-2连接蛋白,可诱导Cyt— C从线粒体释放,从而与Bcl一2/Bax途径相联系。Yu等观察到大鼠凋亡生精细胞内存在Bc1-2/Bax及Fas/FasL,显示这2条途径有相关性。Bcl-2基因是线粒体途径的初始信号

Bcl- 2基因(B细胞淋巴瘤/白血病-2基因)是人B淋巴细胞的染色体易位激活的原癌基因, 该基因编码一种细胞质膜蛋白, 能够抑制细胞的程序性死亡。

Bcl-2原癌基因存在于多种动物的许多正常组织内, 对凋亡具有抑制作用。它不能促进细胞增殖,但能延长细胞的生命期限。Bcl -2蛋白之间常常以同源二聚体形式存在。用免疫组化法检测正常人体睾丸内Bcl-2蛋白表达时发现,精子细胞呈现中度到高度染色阳性(2+~4+) ,而精原细胞、初、次级精母细胞、支持细胞及间质细胞绝大多数染色呈阴性。Bcl-2蛋白主要分布在生精细胞线粒体,可能通过阻止细胞内Ca2 +的流动,干扰过氧化物的产生和脂膜的过氧化而抑制细胞凋亡。Ba x则可能通过插入线粒体膜, 引起细胞色素C (Cyt C )释放入细胞质而诱导生精细胞的凋亡。无细胞系统实验发现,外源性Bcl-2防止Cyt c释放与线粒体功能有关。在其他死亡信号不存在时, Bax 异位表达可以触发Cyt c的释放。Bax直接加入分离的线粒体环境中, 可以诱导Cyt c释放。但这种效应可被临近细胞Bcl-xl过表达或通过直接加入重组的Bcl-xl而阻断。但是, caspase抑制剂虽不影响Cyt c的释放, 但却可以有效地阻断caspase激活和延缓细胞凋亡。

通过研究基因敲除和转基因小鼠发现:Bcl- 2基因家族在精子发生中有重要作用, Bax过量表达可诱导细胞凋亡, Bcl- 2过量表达可抑制细胞凋亡, Bax敲除小鼠不能产生成熟精子, 曲细精管中有大量不正常精原细胞的累积, 最终导致不育;Bcl-2和Bcl-Xs表达水平高的小鼠

精子发生不正常时同样可引起不育。还有人对鸡睾丸的发育过程进行了研究。结果发现,在鸡胚胎期的睾丸中几乎检测不到Bca- XL, 而在未成熟和成熟的睾丸中均可检测到。由于在成熟睾丸中处于减数分裂及减数分裂后的细胞占大多数, 因此说明Bcl-2和Bcl- XL在鸡精原细胞减数分裂及减数分裂后细胞凋亡过程中的调节作用有所不同。

细胞色素C /Cyt— C是线粒体途径的关键节点

生精细胞DNA 受损引起p53表达,p53诱导Bax产生,引发Cyt C释放入胞质,进而发生caspases级联反应。在细胞凋亡中, 死亡信号通过Bcl-2家族或直接诱导线粒体膜通透性增加, 释放细胞色素c (Cyt c) , 激活半胱氨酸蛋白酶, 继而使细胞发生凋亡。CytC是一个线粒体起源的细胞凋亡信号,Bcl-2可通过抑制CytC从线粒体的释放入细胞质,而Bax、Bak 可与Bcl-2结合,阻止其CytC 释放孔道的抑制作用,从而促进CytC 从线粒体释放,引起凋亡。CytC通过接头分子使caspase(胱冬肽酶)分子募集并相互酶解活化,进而诱导细胞凋亡。

Caspase-3 是线粒体途径的最终执行者

caspase-3 是介导细胞凋亡的关键效应酶,是凋亡执行的重要效应分子。正常情况下,caspase-3 以酶原的形式存在于细胞质中,无活性,当细胞接受凋亡刺激时,其被激活,而诱导凋亡。caspase-3 是多种凋亡刺激信号传递的汇聚点,它的活化是细胞凋亡进入不可逆阶段的标志。

天冬氨酸特异性的半胱氨酸蛋白酶(cysteinylaspartate- specific protease,Caspase)是执行细胞凋亡的蛋白酶家族,通过各种不同信号传导途径激活后降解或失活某些关键的细胞蛋白,并与凋亡的形态学特征密切相关。Caspase-3酶原能够被caspase- 8、- 9、- 10以及颗粒酶B 所激活,是细胞凋亡的主要执行者。有证据表明,细胞凋亡的某些特征性标志,如染色体凝聚和DNA 片断化等均与caspase- 3 有直接关系。Caspase介导的细胞凋亡信号传导通路上,线粒体通路和死亡受体通路的交汇点也在caspase-3。Caspase-3对睾丸各级生精细胞凋亡的作用:潘连军等对睾丸静脉曲张大鼠各级生精细胞进行免疫组化检测,发现正常精原细胞及精母细胞胞质中均有少量caspase- 3表达,凋亡细胞则主要在细胞核表达,提示在睾丸静脉曲张所导致的生精细胞凋亡过程中发生了caspase-3由胞质向胞核的转位。用TUNEL法检测凋亡生精细胞数目,试验组与对照组无明显差异,但试验组caspase- 3活性增加,提示caspase- 3 的激活可能与发生在凋亡早期阶段的生化改变有关。Kim等也发现了类似现象,但是目前其入核机制尚不清楚。生精细胞的凋亡是一个复杂的、多因素调控过程,因此,caspase-3活性的增加,不仅可以表明生精细胞凋亡的存在,而且还可以表明生精细胞凋亡的发生是caspase- 3 依赖性的,从而在一定程度上阐明了凋亡发生早期的分子机制。

线粒体对生精细胞凋亡的作用

Narimon 等通过小鼠Apaf-1基因敲除发现, 有5%的小鼠能发育成熟。在这些成年鼠中, 大脑发育正常; 而在雄性成年鼠中, 精原细胞的降解导致了精子的减少, 说明Cyt c介导的细胞凋亡途径, 对神经的发育不是必要的, 而对生殖的发育却是必需的。

Li等通过皮下注射的方式给予大鼠可卡因, 在第15、30和90天后提取细胞浆成分和线粒体发现, 与未经药物处理的对照组比较, 细胞浆成分中Cyt c在第15 天即开始增加, 并持续到第90天; 而在线粒体中, 结果却相反。Caspase-3和caspase-9也明显增加, caspase -8 却没有特征性改变, 说明Cyt c从线粒体中释放, 进而激活caspas-9 和caspase -3, 在可卡因诱导的生精细胞凋亡中起重要作用。

Matsuki 等将小鼠睾丸暴露于42℃的热水中15 min,然后用TUNEL 和Western blot 方法检测发现, 生精细胞凋亡比未经处理的增多, 而释放到细胞浆中的Cyt c 也增多。分离的生精细胞在42℃培养 1 h 后, 结果相同, 但在支持细胞( Sertoli 细胞) 却未见Cyt c 的增多。用美满霉素( 一种能通过血脑屏障的抑制凋亡的药物) 作用于热应激诱导的生精细胞时

发现, Cyt c 释放减少, 说明在生精细胞凋亡中, 线粒体释放Cyt c, 导致凋亡途径的激活是非常重要的。

Vera 等通过热应激诱导小鼠睾丸生精细胞的凋亡,应用FasL 和Fas 分别突变而致功能缺失的小鼠发现, 睾丸生精细胞凋亡未被阻断。另外, 还发现对热敏感的野生型小鼠生精细胞中, Bax 从细胞浆中重新定位在核外, 并伴随着线粒体在核外聚集, 进而Cyt c 释放, 激活caspase -9和caspase -3, 证明在热应激诱导小鼠睾丸生精细胞凋亡中,线粒体途径是主要的凋亡途径。

实验:

目的:观察小鼠生后生精细胞的凋亡规律及p53的表达。

方法:用生后0,1,3,5,7,10,13,17,20天9个年龄组,每组3只只动物。所有动物均同时脱臼处死后,取睾丸,固定,按常规行组织切片。TUNEL染色,免疫组化,统计学分析在TUNEL 染色切片和P53染色切片上,计数每组动物睾丸500个生殖细胞中的阳性细胞数,各组间比较用T检验。预期结果:随着天数的增加,阳性细胞逐渐增加,在20天的时候达到最高峰。睾丸生精细胞细胞p53表达的检测:

P53mrna的检测:采用核酸分子杂交方法原位检测生精细胞内p53mRNA的表达,以细胞内有棕黄色颗粒为阳性反应。阳性细胞在显微镜下进行计数, 每张切片随机选取10个视野, 每个视野计数总细胞数和阳性细胞数, 计算出阳性细胞的百分比。每组计数3 只动物的睾丸每个标本计数5张切片。Western blot 印迹分析检测睾丸组织内的蛋白含量, 取40ul的细胞裂解液以12%SDS-PAGE电泳分离并转移至硝酸纤维素膜以丽春红显示总蛋白条带, 以抗p53的抗体检测p53蛋白的表达,DAB显色。

预期结果:p53mRNA的阳性细胞随天数的增加而增加;p53蛋白随天数的增加蛋白条带颜色增强。阳性细胞减少。

p38MAPK信号转导通路与细胞凋亡研究进展.

综述与进展 p38M APK信号转导通路与细胞凋亡研究进展 王誉霖1,张励才2 作者单位:1.安徽省宣城市人民医院麻醉科242000;2江苏徐州医学院作者简介: 王誉霖(1978,女,吉林市人,住院医师,硕士。研究方向:疼痛信号转导及调控。 主题词p38丝裂原活化蛋白激酶类;细胞凋亡;综述 中图分类号R345文献标识码A文章编号1674 8166(201012 1665 03 丝裂原活化蛋白激酶(mitog en2activated pr otein kinase,MA PK级联是细胞内广泛存在的丝/苏氨酸蛋白激酶超家族,是将细胞质的信号传递至细胞核并引起细胞核发生变化的重要物质。目前在人类已鉴定了4条MAPK途径:细胞外信号调节蛋白 激酶(ex tra cellular sig nal regulated protein kinase,ERK途径,C Jun 基末端激酶(c Jun N term inal kinase,JN K/应激活化蛋白(stress activated protein kinase,SAPK途 径,ERK5/大丝裂素活化蛋白激酶1(big MAP MAP kinase,BM K1途径和p38M APK(p38mitogen activated protein kinases,p38MA PK 传导途径[1]。p38 信号途径是 MAPK家族中的重要组成部分,多种炎症因子和生长因子及应激反应可使p38MAPK的酪氨酸和苏氨酸双磷酸化,从而激活p38M APK,使它在炎症、细胞应激、凋亡、细胞周期和生长等多种生理和病理过程中起重要作用。因此,p38MAPK 通路参与了多种刺激引起的信号级联反应,表明它在引起多种细胞反应中起重要作用,并且,p38在细胞凋亡中也有着重要的调节效应。1 p38M APK信号转导通路 丝裂原活化蛋白激酶(m ito gen activated pr otein kinase,MA PK级联是细胞内重 要的信号转导系统之一。在哺乳动物细胞M APK通路主要有:细胞外信号调节激酶(extracellular signal r eg ulated kinase,ERK ffi路、p38MA PK 通路、c jun 氨基末端激酶(c jun N term inal kinase,JNK通路和ERK5 通路[1]。其中,p38MAPK 是M APK 家族中的重要成员。

生精细胞凋亡及其可能的信号通路

生精细胞凋亡及其相关内容 细胞凋亡又叫程序性细胞死亡,是细胞在一系列内源性基因的调控下发生的自然或生理性死亡的过程。细胞凋亡过程是受基因的精确调控而完成的,其具体的过程机制尚不明确,Bcl-2 是一种细胞膜蛋白,主要存在于线粒体膜、滑面内质网和核膜上,高水平的Bcl-2 蛋白有抑制细胞死亡等作用,是细胞凋亡调控机制中的一个关键蛋白。Tanaka等证实Bcl-2 能抑制睾丸生精细胞的凋亡和分化。CytC 是一个线粒体起源的细胞凋亡信号,Bcl-2可通过抑制CytC从线粒体的释放入细胞质,而Bax、Bak可与Bcl-2结合,止其对CytC释放孔道的抑制作用,从而促进CytC从线粒体释放,引起凋亡。CytC通过接头分子使caspase(胱冬肽酶)分子募集并相互酶解活化,进而诱导细胞凋亡。caspase-3是介导细胞凋亡的关键效应酶,是凋亡执行的重要效应分子。正常情况下,caspase-3以酶原的形式存在于细胞质中,无活性,当细胞接受凋亡刺激时,其被激活,而诱导凋亡。caspase-3是多种凋亡刺激信号传递的汇聚点,它的活化是细胞凋亡进入不可逆阶段的标志。 检测生精细胞凋亡的技术 4.1 形态学检测 透射电镜检测:处死大鼠,取出睾丸。取出左侧睾丸少量组织,迅速在冰浴上切成1mm×1mm×2mm小块,置于预冷的2%戊二醛溶液中固定,标本经锇酸固定、脱水、树脂包埋、超薄切片和醋酸双氧铀染色后,在透射电镜下观察。可见细胞质空泡化,核膜增厚,核周隙增宽;染色质浓缩,附着于核边缘呈新月形;严重者染色质固缩、断裂, 出现凋亡小体。4.2 琼脂糖凝胶电泳 通过观察DNA梯状电泳带或定量检测DNA片段,可测定凋亡。凋亡细胞DNA 在核小体连接处规律性降解,形成以180 bp一200 bp为最小单位的寡聚体片段,琼脂糖凝胶电泳时呈典型的“梯状带”。但Singh等琼脂糖凝胶电泳检测到青年人生精细胞DNA迁移呈圆形,老年人凋亡生精细胞DNA迁移呈彗星状。 4.3 DNA缺口原位标记法 处死大鼠,取出睾丸。置于10%中性福尔马林溶液中固定24h,常规石蜡包埋、切片(4μm),用于原位末端标记法(TUNEL)检测。主要以精原细胞凋亡为主。可见曲细精小管中各级生精细胞大量凋亡,管腔变薄,管腔中可见大量凋亡的分裂晚期的精子细胞。DNA 缺口原位标记(TUNEL)法可用于检测凋亡细胞。此方法是将细胞的外源性核苷酸(dUTP)结合到单股断链的3′粘性未端上,标记的DNA 再用荧光或显色法检出。该法可检测早期细胞凋亡,特异性和敏感性都很高。E renpreisa等用甲苯胺蓝(tolui di ne blue,TB)、吖啶橙(acridine orange,A0)和TUNEL法检测人生精细胞DNA的完整性,证实这3种方法具有一致性。 4.4 流式细胞术 流式细胞(flow cytometry,FCM)可进DNA 、RNA含量分析,细胞周期、细胞表面标志和细胞受体分析。凋亡细胞的DNA裂解,FCM的DNA图上呈亚二倍体核型峰特点。应用DNA 染色剂穿透正常和凋亡细胞膜的能力,及其与凋亡细胞DNA 结合能力不同以区分正常细胞、凋亡细胞。FCM 还可定量检测凋亡标记蛋白的表达。吞噬凋亡细胞和未吞噬凋亡细胞的巨噬细胞群可利用带有荧光染料反应物的FCM 区分。 4.5 免疫组化法 利用抗原抗体特异性结合测定凋亡相关物质以检测凋亡。凋亡蛋白抗体或抗单链DNA 抗体标记观察凋亡细胞可检测凋亡标记蛋白Fas/FasL、Bc1-2/Bax、p53、p2l、caspases等以鉴定细胞凋亡。 死亡受体途径

(完整word版)细胞凋亡过程

细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似2)细胞色素C释放和Caspases激活的生物化学途径线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C 释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征:1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。3)末端具有一个小的或大的原结构域。参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。

(完整版)流式细胞仪检测细胞凋亡

流式细胞仪检测细胞凋亡:PI单染色法 基本原理 其原理主要是根据细胞凋亡时在细胞、亚细胞和分子水平上所发生的特征性改变。这些改变包括细胞核的改变、细胞器的改变、细胞膜成分的改变和细胞形态的改变等,其中细胞核的改变最具特征性,主要包括以下几个方面: 1. 细胞核的改变:由于凋亡细胞核的改变,造成各种染色体荧光染料对凋亡细胞DNA可染性发生改变。研究表明,用各种染色体荧光染料对经固定的凋亡细胞进行染色,其DNA可染性降低。许多学者把这种DNA可染性的降低认为是凋亡细胞的标志之一。 2. 光散射特性:凋亡细胞形态上的改变影响它们的光散射特性。在流式细胞仪上,前散射光与细胞的大小有关,而侧散射光反映的是光在细胞内的折射作用,与细胞内的颗粒多少有关。在细胞凋亡时,细胞固缩,体积变小,故前散射光降低,这一特性往往被认为是凋亡细胞的特点之一。此外细胞凋亡时由于染色体降解,核破裂形成,细胞内颗粒往往增多,故凋亡细胞侧散射光常增加。细胞坏死时,由于细胞肿胀,其前散射光增大;侧散射光在细胞坏死时也增大,因此可根据前散射光和侧散射光区别凋亡细胞和坏死细胞。但需要注意的是,根据前散射光和侧散射光判断凋亡细胞的可靠性受被检测细胞形态上的均一性和核胞浆比率影响很大。因此在某些淋巴细胞凋亡中,用光散射特性检测凋亡的可靠性较好,而在肿瘤细胞凋亡中,其可靠性就较差。根据光散射特性检测凋亡细胞最主要的优点是可以将光散射特性与细胞的表面免疫荧光分析结合起来,用以区别经这些特殊处理发生选择性凋亡的淋巴细胞亚型。也可用于活细胞的分类。 试剂与仪器 PBS溶液; PI染液:将PI溶于PBS(pH7.4)中,终浓度为100ug/ml。用棕色瓶4℃避光保存。 70%乙醇 400目筛网 流式细胞仪 实验步骤 1. 收集细胞{数目约(1~ 5)×106个/mL},500 ~ 1000 r/min离心5min,弃去培养液。 2. 3ml PBS洗涤1次。 3. 离心去PBS,加入冰预冷的70%的乙醇固定,4℃,1—2小时。 4. 离心弃去固定液,3mlPBS重悬5min。 5. 400目的筛网过滤1次,500—1000r/min离心5min,弃去PBS。 6. 用1ml PI染液染色,4℃避光30min。 7. 流式细胞仪检测:PI用氩离子激发荧光,激光光波波长为488nm,发射光波波长大于630nm,产生红色荧光分析PI荧光强度的直方图也可分析前散射光对侧散射光的散点图。 8. 结果判断:在前散射光对侧散射光的散点图或地形图上,凋亡细胞与正常细胞相比,前散射光降低,而侧散射光可高可低,与细胞的类型有关;在分析PI荧光的直方图时,先用门技术排除成双或聚集的细胞以及发微弱荧光的细胞碎片,在PI荧光的直方图上,凋亡细胞在G1/G0期前出现一亚二倍体峰。如以G1/G0期所在位置的荧光强度为1.0,则一个典型的凋亡细胞样本其亚二倍体峰的荧光强度为0.45,可用鸡和鲑鱼的红细胞的PI荧光强度做参照标准,两者分别为0.35和0.7,可以确保在两者之间的不是细胞碎片而是完整的细胞。 注意事项 细胞凋亡时,其DNA可染性降低被认为是凋亡细胞的标志之一,但这种DNA可染性降低也可能是因为DNA含量的降低,或者是因为DNA结构的改变使其与染料结合的能力发生改变所致。在分析结果时应该注意。

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

细胞常见信号通路图片合集

目录 actin肌丝 (5) Wnt/LRP6 信号 (7) WNT信号转导 (7) West Nile 西尼罗河病毒 (8) Vitamin C 维生素C在大脑中的作用 (10) 视觉信号转导 (11) VEGF,低氧 (13) TSP-1诱导细胞凋亡 (15) Trka信号转导 (16) dbpb调节mRNA (17) CARM1甲基化 (19) CREB转录因子 (20) TPO信号通路 (21) Toll-Like 受体 (22) TNFR2 信号通路 (24) TNFR1信号通路 (25) IGF-1受体 (26) TNF/Stress相关信号 (27) 共刺激信号 (29) Th1/Th2 细胞分化 (30) TGF beta 信号转导 (32) 端粒、端粒酶与衰老 (33) TACI和BCMA调节B细胞免疫 (35) T辅助细胞的表面受体 (36) T细胞受体信号通路 (37) T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40) Synaptic突触连接中的蛋白 (42) HSP在应激中的调节的作用 (43) Stat3 信号通路 (45) SREBP控制脂质合成 (46) 酪氨酸激酶的调节 (48) Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53) SODD/TNFR1信号 (56) AKT/mTOR在骨骼肌肥大中的作用 (58) G蛋白信号转导 (59) IL1受体信号转导 (60) acetyl从线粒体到胞浆过程 (62) 趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65) SARS冠状病毒蛋白酶 (67) Parkin在泛素-蛋白酶体中的作用 (69)

细胞凋亡及周期阻滞基本信号通路

CELL DEATH AND CELL-CYCLE CHECKPOINT DURING DNA DAMAGE 细胞死亡及周期阻滞基本信号通路 有哪些因素可引起DNA损伤?DNA损伤的结局如何? (课件) (一)DNA损伤的原因 环境因素,化学因素,生物因素例如: UV ,离子辐射,基因毒性化学试剂引起ssDNA/dsDNA 损伤,DNA两条链交联或链内交联。正常细胞线粒体的一些代谢物(ROS)活泼氧类过多引起损伤。 (二) DNA损伤结局: 急性效应:干扰核酸代谢,触发细胞周期阻滞或死亡 长期效应:不可逆转突变导致肿瘤 细胞周期阻滞,衰老,肿瘤/癌症,有丝分裂危象 (一)DNA损伤的原因 1.DNA分子的自发性损伤 (1)DNA复制中的错误。 (2)DNA的自发性化学变化 a.碱基的异构互变性损伤 b.碱基的脱氨基作用 c.脱嘌呤与脱嘧啶 d.碱基修饰与链断裂 2.物理因素引起的DNA损伤 (1)紫外线引起的DNA损伤 (2)电离辐射引起的DNA损伤 a.碱基变化 b.脱氧核糖变化 c.DNA链断裂 d.交联 3.化学因素引起的DNA损伤 (1)烷化剂对DNA的损伤 a.碱基烷基化 b.碱基脱落 c.断链 d.交联 (2)碱基类似物、修饰剂对DNA的损伤 DNA损伤的后果 1.点突变(point mutation)指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。 2.缺失(deletion)指DNA链上一个或一段核苷酸的消失。 3.插入(insertion)指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的 氨基酸序列全部混乱,称为移码突变(frame shift mutaion)。 4.倒位或转位(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 5.双链断裂已如前述,对单倍体细胞一个双链断裂就是致死性事件。 (2)THE CONSEQUENCES OF DNA INJURY

细胞凋亡的信号通路

山东农业大学学报(自然科学版),2015,46(4):514-518VOL.46N0.42015 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2015.04.007 细胞凋亡的信号通路 谢昆,李兴权 红河学院生命科学与技术学院,云南蒙自661199 摘要:细胞凋亡是细胞程序性死亡的一种方式,与自噬和坏死有明显的区别。细胞凋亡的信号途径比较复杂,在凋亡诱导因子的刺激下经历不同的信号途径。本文就细胞凋亡的三条信号通路——线粒体途径、内质网途径和死亡受体途径做一综述,以便为人们进一步了解细胞凋亡发生的机制,从而对癌症及其他一些相关疾病的治疗奠定基础。关键词:细胞凋亡;信号通路;线粒体途径;内质网途径;死亡受体途径 中图法分类号:R329.2+8文献标识码:A文章编号:1000-2324(2015)04-0514-05 The Signal Pathway of Apoptosis XIE Kun,LI Xing-quan Department of Life Science and Technology/Honghe University,Mengzi661199,China Abstract:Apoptosis is a process of programmed cell death which distinguishes from autophagy and necrosis.The signal pathways of apoptosis are complex and different under apoptosis induced factor stimulating.Three kinds of signal pathways of apoptosis including Mitochondrial pathway,Endoplasmic Reticulum pathway and Death Receptor pathway were summarized in this review in order to make people further comprehend the mechanism of apoptosis,so that it should make a basis for us all to treat cancer and other related diseases. Keywords:Apoptosis;signal pathway;Mitochondrial pathway;Endoplasmic Reticulum pathway;Death Receptor pathway 细胞凋亡是细胞程序性死亡(Program cell death,PCD)中特有的一种细胞死亡方式,是细胞在一系列内源性基因调控下发生的自然或生理性死亡过程。Kerr等1972年最早提出了凋亡(apoptosis)和坏死(necrosis)的概念[1],随后Paweletz等对其进行了详细的描述[2,3]。在形态学上,凋亡表现为核浓缩、细胞质密度增高、染色质凝聚、核膜破裂、核内DNA断裂、细胞集聚成团、形成凋亡小体(Apoptosome)等特征,这些凋亡小体最终被巨噬细胞清除,但不会引起周围细胞的炎症反应,另外,凋亡发生在单个细胞之间[4,5]。坏死,通常是由相邻的多个细胞之间发生细胞肿胀,细胞核溶解,细胞膜破裂,细胞质流入到细胞间质中,并伴发一系列的炎症反应,从而与凋亡表现为本质性区别[6,7]。 目前认为,凋亡发生的途径分为三种。第一种是线粒体途径,也称为内源性途径,该途径包括两类,第一类需要通过激活Caspase通路促进凋亡,在一序列凋亡诱导因素刺激下,线粒体中的Cyt C(细胞色素C)释放至细胞质中,从而与Apaf-1(Apoptosis protease activating factor1,凋亡蛋白酶活化因子1)结合形成多聚体,形成的多聚体再进一步与凋亡起始分子Caspase-9结合形成凋亡小体,凋亡小体激活Caspase-9,从而激活下游的凋亡执行分子Caspase-3,Caspase-6和Caspase-7等诱导细胞凋亡的级联反应;第二类是不依赖于Caspase途径的,通过线粒体释放AIF(Apoptosis induce factor,凋亡诱导因子)直接诱导凋亡的发生。但是在细胞内,直接检测AIF比较困难,而且AIF的变化不一定能代表凋亡发生的程度,因为引起凋亡发生的途径不一。第二种是死亡受体途径(也称为外源性途径),经由死亡受体(如TNF,Fas等)与FADD的结合而激活Caspase-8和caspase-10,进一步激活凋亡执行者caspase-3,6,7,从而促进凋亡的发生;第三条途径是内质网途径,内质网应激(蛋白质错误折叠或未折叠、内质网胁迫)会导致细胞内钙超载或钙离子稳态失衡一方面激活caspase-12,caspase-12进一步激活caspase-9而促进凋亡的发生,另一方面诱导Bcl-2(B细胞淋巴瘤蛋白)家族中促凋亡蛋白Bax和Bak的激活诱导凋亡[8]。 1凋亡的线粒体途径 在哺乳动物中,由于凋亡的激活需要线粒体中细胞色素C(CytC)的释放,因此CytC由线粒体膜间隙释放到细胞质中的多少可以作为判断凋亡发生强弱的指标之一。有研究认为,CytC的释放是通过Bcl-2家族调控线粒体膜透化(Mitochondrial outer membrane permeabilization,MOMP),科学 收稿日期:2013-03-07修回日期:2014-09-11 基金项目:云南省科技厅应用基础研究面上项目(2010ZC151) 作者简介:谢昆(1975-),男,云南富民人,博士研究生,研究方向为动物生物化学与分子生物学.E-mail:xk_biology2@https://www.wendangku.net/doc/5013266773.html, 数字优先出版:2015-06-03https://www.wendangku.net/doc/5013266773.html,

细胞凋亡信号转导途径及调控的研究进展

细胞凋亡信号转导途径及其调控的研究 进展 学科:基础兽医学 专业:药理毒理学 姓名:ma cai hui 学号:13203023

细胞凋亡信号转导途径及其调控的研究进展 摘要目的:为了研究抗肿瘤药物促使细胞凋亡的作用机理,探讨细胞凋亡的信号转导途径以及相关基因对其的调控。方法:查阅近年的国内外相关文献,归纳整理细胞凋亡的信号转导途径和相关的调控基因。结果:介绍了细胞凋亡存在三条主要通路:线粒体通路、内质网通路和死亡受体通路,各通路间互相联系,共同调节细胞凋亡。以及调控凋亡的主要基因,Bcl-2、p53、c-myc、P16、Rb。结论:研究抗肿瘤药物的作用机理应从以上三条凋亡途径和相关调控基因出发。 关键词细胞凋亡;信号转导途径;基因调控;caspase Progress study on signal transmission pathways and regulation of cell apoptosis Wang Saiqi School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 Key words : cell apoptosis; signal transmission pathways; gene regulation; caspase Abstract Aim : To check the mechanism of apoptosis induced by anticarcinogen and research the cell apoptosis signal transmission pathways and related genes on its regulation. Methods: Signal transmission pathways and related genes were concluded by referring to related papers at home and abroad in recent years. Results: Three main signal transmission pathways, death receptor-mediated pathways, mitochondrial pathway, endoplasmic reticulum pathway and several main regulator genes,Bcl-2,p53, c-myc,P16,Rb were introduced. Conclusions: Research on the mechanism of anticarcinogen should start from the said signal transmission pathways and genes. 1 细胞凋亡概述 细胞凋亡,又名细胞程序性死亡,是诱导性的细胞自杀过程,它使生物体可以有序地清除受损伤或无用的细胞。自从1927年John Kerr第一次提出凋亡这一概念后,人们发现它在多细胞生物的基本生命活动中起着十分重要的作用。它对于

KEGG上的信号通路图怎么看

KEGG上的信号通路图怎么看? 提示:请点击标题下方蓝色“实验万事屋”,添加关注后,发“嗯”可以查看我们之前的文章。未经允许,其他公众号不得转载哦! 想要把自己研究的分子扯上明星分子或者明星通路?那是不难,难的是具体到底要怎么去扯,芯片结果啊,生信结果啊,都会给你提示,但真的要具体扯上去,还得看懂那些七七八八的信号通路图。 KEGG Pathway上有着大量的信号通路图,画得一个复杂啊!巨坑爹有没有?曾经有师弟说我之前曾经把Wnt通路描述错了,他师兄告诉他,应该是GSK-3β磷酸化抑制β-Catenin降解,并促进它入核的。在这里,我们只能默默地祝福这位师兄了…… 那我们就用Wnt通路来做例子吧。先上KEGG下载一个Wnt的信号通路图,如下: 绝壁是很高大上的不是么?这要咋看呢?其实这张图上把三个Wnt通路都画上去了,也就是Wnt/β-Catenin(经典Wnt通路),Wnt/PCP(平面的细胞极性途径)和Wnt/Ca2+(Wnt/钙离子)三条信号通路组成,我们就删减一下,就光看经典的Wnt通路,就变成了下面这个模样:

感觉还是很高大上有木有?那就再删减一下,把它变成经典Wnt信号通路的骨架会是什么样呢?就是这样: 简洁明快了吧,但要怎么来看懂这样的图呢?我们来看一下KEGG Pathway的具体图例:

把这些图例用来解释经典Wnt信号通路骨架图,就变成了: 看懂了么?那给你从左到右解释一下: 1)Wnt激活膜上受体,将信号传递到第二信使Dvl,活化的Dvl抑制由Axin、APC 和GSK-3β组成的复合物的活性,使β-catenin不能被GSK-3β磷酸化。 2)磷酸化的β-catenin才可通过泛素化(ubiquitination)而被胞浆内的蛋白酶体所降解,由于非磷酸化的β-catenin不能被蛋白酶体降解,从而导致β-catenin在胞浆内积聚,并移向核内。

流式细胞仪检测正常人类精子细胞的凋亡-第三军医大学学报

正常男性精子凋亡的流式细胞仪检测 王芳1,罗婧,王丽婷,孙玮,张正治,潘峰 (第三军医大学基础部中心实验室,重庆400038) 摘要:目的检测重庆市近郊男性精子细胞凋亡率,以了解在目前生活环境下男性的生育力是否有改变。方法用Annexin –V凋亡试剂盒对30例精子细胞样本进行染色后,用流式细胞仪检测其凋亡率。结果重庆近郊30例男性的精子细胞的凋亡率与国内外文献报道无明显差别。结论流式细胞仪检测精子细胞凋亡,Annexin-V是一种有效、准确、快速的方法。 关键词:流式细胞仪;精子细胞;细胞凋亡 中图法分类号:文献标识码: 随着工业化进程加快,人们生活更加方便快捷,生活水平也不断提高,不过人们在享受现代科技成果的同时,也在经受环境污染对健康的危害。特别是大量使用除草剂、杀虫剂、去污剂、洗涤剂等,这些物质被统称为内分泌干扰物(endocrine disrupting, EDs)。它们对男性生殖功能的影响,已引起社会各界的广泛关注[1]。 细胞凋亡存在于细胞的增殖、分化中,是一种正常的现象。检测精子细胞凋亡,是从分子水平评价精子功能的重要指标,精子细胞凋亡率与男性生育能力密切相关[2]。本实验用流式细胞术检测重庆市近郊男性精子细胞的凋亡,以了解目前生态环境下男性生育能力的变化。 1.材料与方法 1.1精液样本 受试者来自于重庆市近郊,以社区为单位进行收集,以25~45岁的青壮年男性为目标人群进行收集,共30例。禁欲3~5 d,手淫法采集精液,37°C水浴箱保存,3h内送达实验室。 1.2方法和染色 用Annexin-V FITC/PI试剂盒(碧云天公司),小心吸取上层云雾状细胞50μl,加入145μl 结合缓冲液,加入5μl FITC ,避光室温孵育10min,1500r/min离心10min,沉淀用200μl结合缓冲液重悬,加入10μl PI ,1h 内上机检测。 1.3流式细胞仪检测条件及参数 采用美国Becton Dickinson 公司的FACS Calibur 型流式细胞仪,激发光源,5mW氩离子激光器,激光波长为488nm 。应用CellQuest 软件收集及分析,用 作者简介:王芳,女,重庆市北碚区人,助理实验员。电话:(023)68752353, E-mail :wangfangcxdoris@https://www.wendangku.net/doc/5013266773.html, 通信作者:潘峰,电话:(023)68752349

细胞凋亡途径(汇编)

细胞的凋亡 凋亡抑制蛋白(inhibitors of apoptosis , IAPs)是细胞内一类独特的抗凋亡蛋白家族,包括XIAP,c-IAP1,c-IAP2,神经元凋亡抑制蛋白(NIAP) ,ML-IAP, Apollon和survivin。IAPs通过在体外或体内抑制不同的caspases而抗细胞凋亡。与其他的可抑制上游 caspases的蛋白不同, IAPs是唯一的内源性 caspase 抑制物【1】。 Survivin(生存素)是凋亡抑制蛋白家族中的成员,是迄今发现最强的凋亡抑制因子,于1997年由耶鲁大学Alfieri【2】等用效应细胞蛋白酶受体1(effector-cell protease receptor 1, ERP-1)在人类基因库的杂交中分离出来,Survivin大量表达于胚胎及婴幼儿组织中,在正常的分化组织中几乎检测不到【3】,然而却在60余种肿瘤细胞株和大部分人体肿瘤组织过度表达。 1.Survivin的分子结构 IAP家族蛋白一般在N末端含有 2~3个串联的含有 Cys/ His的保守冠状病毒IAP重复序列结构域(Baculovirus IAP Repeat, BIR),发挥着极为重要的凋亡抑制作用。IAPs家族发挥抗凋亡作用的机理是通过BIR功能区之间的连接序列直接与Caspases家族蛋白结合,抑制细胞凋亡的发生。多数IAPs的C末端还含有一个环指状结构域(RING-finger domain)能够与两个锌原子形成配位键。这一锌指结构对于IAPs家族蛋白抗凋亡的功能密切相关。只有包含BIR2功能区的IAPs蛋白分子才具有结合和抑制死亡蛋白酶的功能,单一BIR1, BIR3或环指结构以及它们的任意组合蛋白体均无此效应。 Ambrosini 等【4】测定并绘出了Survivin基因完整的基因图谱,全长14796 bp,位于距离端粒约3%的位置。Survivin 基因与EPR-1 基因的编码区序列高度互补,位于染色体17q25的同一基因族,含有3个内含子和4个外显子,编码产生1个由142个氨基酸组成的胞浆蛋白,分子量约为16. 5kD。Survivin只含有一个BIR区域,C末端有一个α卷曲螺旋结构,不含环指状结构域【5】。 Survivin是唯一具有剪接异构体的IAP基因,一个是序列中缺少外显子3的survivin-ΔEX3;另一个是把部分内含子2作为隐蔽的外显子的survivin-2B。两者序列的改变导致了相应蛋白质结构和功能发生了显著变化,survivin-ΔEX3仍保留抗凋亡特性,survivin-2B抗凋亡功能则显著下降[6]。2004年Badran A等[7]发现survivin的另一新剪接异构体survivin-3B,survivin-3B 含有5个外显子,比survivin多3B外显子, survivin-3B包含单一的BIR,这对于其抗调亡作用致关重要。最近,包含两个外显子,3'为197bp的内含子的survivin-2α发现【8】。其终止密码在第2内含子,编码产生74个氨基酸的蛋白质。survivin的剪接异构体的功能尚不清楚,初步认为survivin-ΔEX3与线粒体依赖性凋亡通路有关,另外,证实survivin-2α能减弱survivin的抗凋亡活性[7]。 Survivin的异构体如图1。

(完整版)mTOR信号通路图

mTOR信号通路图 mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP 酶Rheb(Ras-homolog enriched in brain)的抑制剂,而Rheb是mTOR活化所必需的刺激蛋白,因此TSC-1/TSC-2在正常情况下抑制mTOR的功能。当Akt活化后,它可磷酸化TSC-2的Ser939和Thr1462,抑制了TSC-1/TSC-2复合物的形成,从而解除了对Rheb 的抑制作用,使得mTOR被激活。活化的mTOR通过磷酸化蛋白翻译过程中的某些因子来参与多项细胞功能,其中最主要的是4EBP1和P70S6K。

在整个PI3K/Akt/mTOR信号通路中,有一条十分重要的负反馈调节剂就是10号染色体上缺失与张力蛋白同源的磷酸酶基因(phosphatase and tensin homology deleted on chromosome 10, PTEN)。PTEN是一个肿瘤抑制基因,位于人染色体10q23。它有一个蛋白酪氨酸磷酸酶结构域,在这条通路中可以将PI-3,4-P2与PI-3,4,5-P3去磷酸化,从而负调节PI3K下游AKt/mTOR信号通路的活性。 本信号转导涉及的信号分子主要包括 IRS-1,PI3K,PIP2,PIP3,PDK1,PTEN,Akt,TSC1,TSC2,Rheb,mTOR,Raptor,DEPTOR,GβL,p70S6K,ATG13,4E-BP1,HIF-1,PGC-1α,PPARγ,Sin1,PRR5,Rictor,PKCα,SGK1,PRAS40,FKBP12,Wnt,LRP,Frizzled,Gαq/o,Dvl,Erk,RSK,GSK-3,REDD1,REDD2,AMPK,LKB1,RagA/B,RagC/D等。

MAPK信号通路与细胞凋亡的关系

一 MAPK信号转导途径 MAPK途径的基本组分 MAPK级联反应包含三个顺序激活的成分:MAPK激酶的激酶(MAPKKK或MEKK),MAPK 激酶(MAPKK,MKK 或MEK) 和MAPK [1]。目前在人类主要有三组MAPK通路:ERK1/2(细胞外信号调节激酶)MAPK家族,P38MAPK家族,JNK/SAPK(c-Jun 氨基端激酶/应激活化蛋白激酶)MAPK 家族[2]。 1.1 ERK1/2家族ERK1/2信号通路包括五个亚组,ERK1/2,ERK3/4和ERK5[3]。ERK1 /2 与细胞增殖最为密切,其上游激酶为MAPK 激酶(MEK1/2), MEK1与细胞分化有关,而MEK2 与细胞增殖有关[4]。 1.2 JNK/SAPK MAPK家族外界刺激可通过Ras依赖或非Ras依赖的两条途径激活JNK[6]。已有研究证实,双特异性激酶JNK Kinase(JNKK)是JNK/S A P K的上游激活物,其中M K K7/JNKK2可特异性地激活JNK[5],MKK4则可同时激活JNK1和p38。 1.3 P38MAPK家族p38是由360个氨基酸组成的38kD的蛋白,与JNK 同属应激激活的蛋白激酶。研究表明,在许多细胞反应中发现P38 活化,并且与细胞种类及外界刺激有关。p38MAPK 通路可 被应激刺激(Uv、H 2O 2 、热休克和缺氧 等)、炎性因子(TNF-α、IL-1 和FGF 等) 及LPS 和革兰氏阳性细菌细胞壁成分而激活[7,8]。SKF86002 是第一个报道的P38M A P K抑制剂,以后又出现了SB203580 和其他的2 ,4 ,5 -三芳基咪唑, 它们能够特异性地抑制P38 MAPKα和P38 MAPKβ,而不影响JNK和ERK 的活性[9]。二 并行的MAPKs 信号通路在 细胞信号转导中的协调作用 研究表明,哺乳类细胞可通过多种机制维持其每一条MAPKs信号通路信号转导的特异性。Schaeffer和Whitmarsh 等人报告在哺乳类细胞中也存在着类似于真菌的支架蛋白[10]。此外,在哺乳类细胞中并行的MAPKs信号通路对细胞信号转导具有协调作用。有研究证实,在成纤维细胞中,激活SAPK的刺激可以诱导MKP-1基因的表达,但激活ERK的刺激并无此作用,提示这二条通路之间具有相互调控,这一调节机制的存在可使细胞特异地对激活SAPK通路的刺激发生反应[11]。此外还有学者报告,J N K及ERK均可磷酸化转录因子Elk-1,促进TCF的形成、增加SRE的转录活性,提示SRE是这两条通路的汇合点,表明细胞可对不同的细胞外刺激信号进行整合,最终产生协调的生物学反应[12]。 三 MAPK 通路与细胞凋亡 3.1 显性失活(dominant-negative)Ras、Raf-1突变体可以抑制细胞增殖,而持续激活的Raf-1可介导细胞增殖;同样,显性失活MEK突变体或持续激活的MEK 分别抑制或促进NIH3T3细胞的增殖;突变的ERK或其反义cDNA可抑制细胞增殖[13]。 3.2J u r k a t细胞经γ射线处理后JNK可被激活,出现细胞凋亡,而当细胞被转染了显性失活JNK突变体后,γ射线诱导的凋亡可以被阻断[15]。以上研究表明,JNK的激活可诱导细胞发生凋亡。JNK 激活方式的不同也可产生不同的生物学效应,γ射线照射Jurkat T细胞后,JNK 被持续激活,细胞发生凋亡;而CD28单 DOI:10.3969/j.issn.1001-8972.2010.14.092 MAPK信号通路与细胞凋亡的关系王利东 韩冲 吴冬金 中国医科大学

相关文档