文档库 最新最全的文档下载
当前位置:文档库 › 贝叶斯决策模型及实例分析

贝叶斯决策模型及实例分析

贝叶斯决策模型及实例分析
贝叶斯决策模型及实例分析

贝叶斯决策模型及实例分析

一、贝叶斯决策的概念

贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。

风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。

二、贝叶斯决策模型的定义

贝叶斯决策应具有如下内容

贝叶斯决策模型中的组成部分:

)

(

θP

S

A

a及

∈。概率分布S

P∈

θ

θ)

(表示决策者在观察试验

结果前对自然θ发生可能的估计。这一概率称为先验分布。

一个可能的试验集合E,E

e∈,无情报试验e0通常包括在集合E之内。

一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。

概率分布P(Z/e,θ),Z

z∈表示在自然状态θ的条件下,进行e试验后发生z结果的概率。这一概率分布称为似然分布。

一个可能的后果集合C,C

c∈以及定义在后果集合C的效用函数u(e,Z,a,θ)。

每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。

三、贝叶斯决策的常用方法

3.1层次分析法(AHP)

在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。

3.1.1层次分析模型

最高层:表示解决问题的目的,即层次分析要达到的目标。

中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。

最低层:表示事项目标而供选择的各种措施,方案和政策等。

3.1.2层次分析法的基本步骤

(l) 建立层次结构模型

在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。

(2) 构造判断矩阵

判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。

(3) 层次单排序及其一致性检验

判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。

(4) 层次总排序

计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。

设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n 个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:

b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。

层次总排序权值计算表

层次总排序的一致性检验,这一步也是从高到低逐层进行的。如果B 层次若干因素对于上一层次某一因素A j 的单排序一致性检验指标为CI j ,相应的平均随机一致性指标为RI j ,则B 层总排序随机一致性

比率为

∑∑===

m

j j

j

m

j j

j

RI a

CI

a CR 1

1类似地,当CR<0.01时,认为层次总排序结果具有满意的一致性;否则,需要重

新调整判断矩阵的元素值。

3.2 盈亏转折分析法(又称平均值法)

该方法的关键在于找出盈亏平衡的状态转折点θb ,在此状态转折点上各行为等价(即有相同的收益和费用,各行为的优劣一样)。故只能用于求解两行为问题。下面只对收益型问题推导该算法公式。费用型问题可以依此类推。

假设在第i 个状态θj 发生时两行为的收益函数分别为

)

,...,2,1(,222111m i b m Q b m Q i i i i =+=+=θθ

式中,Q ij >=0,θi >=0,其概率p i >=0(i=1,2,…,m;j=1,2)。且设问题有解,即θb >0存在。在不失一般性的情况下,又为叙述方便,还设m 1>m 2(否则可调换两行为顺序标号),则必有b 1

所以

2

11

2m m b b b --=θ。另一方面,状态θj 的均值记为θ,并有

∑==m

i i

i P 1

θθ

行为j(j=1,2)的期望收益额

∑==+=+=m

i j

j j i j i j j j b m b m p EMV 1

)

2,1()(θθ

要判断两行为的优劣,必须比较它们的期望收益值的大小。由于

)

)(()(1)()()

()()]()[()

()(21211

22121211

1

21211

212111

221121b m i m

i i i i m

i i i m i m

i i i i i m m m m b b m m b b m m b b p p m m b b m m p b m p b m p EMV EMV θθθθθθθθ--=??

????----=?-+-=-+-=-+-=+-+=-∑∑∑∑∑=====加加上一开始

假定的条件m 1>m 2

所以有下列结论:

∑<-=

==>b

j i i i

b Q Q p EVPI EMV EMV θ

θααθθ)

(,,12

1*1*时,;

当∑>-=

==

j i i i

b Q Q p EVPI EMV EMV θ

θααθθ)

(,,21

2*2*时,;

时,

b θθ=两行为期望收益额相等(二者之差值为零),故它们等价,无优劣之分。

费用型决策依此类推,结论正好同收益型决策问题相反:设行为j(j=1,2)在状态θi 发生时的费用支付函数V ij =m j θi +b j (i=1,2,…,m;j=1,2),且设θi >0,θb >0存在和m 1>m 2等其它条件不便,则当

b

θθ<时,有

∑>-=

==b

j i i i

V V p EVPI EMV EMV θ

θαα)

(,,21

1*1*

当∑<-=

==>b

j i i i

b p EVPI EMV EMV θ

θααθθ)

V V (,,12

1*1*时,有

时,

b θθ=行为1.和2.同等优劣。

3.3 后验分析法

如果获得了一些新的有关状态概率的情报,例如从市场信息中心购买某商品的下一年需求量信息,由专家调查、抽样检验等途径得到状态(如次品率)的样本概率等,并用它来修正原来的状态概率(即修正先验概率),就得到后验概率。用后验概率进行贝叶斯决策,这就是后验分析法。修正概率过程中需要消耗人力、物力和财力。为了考虑这些因素,后验分析法增加了“抽样情报期望金额”(EVSI)和“抽样情况净收益”(ENGS)两个指标。 3.4 决策树法

为了使决策方法形象化,把计算过程画成树形结构,称之为决策树。它由节点和分支组成,它可适用于任何一种决策方法形象化。其中节点分条件节点、决策节点和状态节点。分别用菱形、正方形和圆形标记。条件节点表示需要的条件费用(其值等于菱形内部的数字)。决策节点生成各行动方案,并将最优方案的期望金额(收益或费用值)记入其内部。状态节点生成各状态,其内数字表示某一方案期望金额(收益或费用值)。决策节点和状态节点分别引出决策分支和状态分支,旁边的数字分别表示决策方案和状态概率。

四、实例分析

4.1 层次分析法在个人理财方面的应用 4.1.1 问题的提出

假设某个体有余款2万元,现理财方式有储蓄和投资两大方向,投资又分为购买股票、债券和开放式基金,分别用x i (i=1,2,3,4)表示。对于理财来说最终目的是收入增加而风险最小。而影响收益的因素有利率,经营者素质及企业收益能力,影响风险的主要因素主要有政治、政策风险、通货膨胀以及其它风险。P(y i )是每种因素发生的概率,并设它们相互独立。决策的后果是在未来一年后余款的改变,试选择一种最佳理财方案并证明你的有关结论。

4.1.2问题分析及建模

每个决策者对收益和风险大小有不同的考虑,对于求稳的决策者来说,其首先考虑的是风险大小带来的损失问题,然后才考虑收益的问题,一般来说,高风险常常伴着高收益。有的决策者追求高收益是其考虑的首要目标,对于风险却存在冒险心理,鉴于此,在投资2万元情况下,出现五种可能:

al :表示可能造成2千元的损失 a2:表示可能0.5千元的损失

a3:表示收益甚微,可视为无收益也无损失 a4:表示可能收益0.5千元 a5:表示可收益2千元

其中对于利率带来的两种影响:收益或损失。来年的利率变动的概率为0.1,不变为0.9,当利率改变时造成收益的概率为0.4,造成损失的概率为0.6。如下示:

利率

变化的概率

0.1

不变化的概

率0.9

损失的概率

0.6

受益的概率

0.4

综上考虑:利率变动不造成收益损失的概率为0.9+0.4*0.1=0.94;利率变动造成损失的收益概率为0.1*0.6=0.06

同理,政治及政策造成的两种影响的概率分别为:

不造成收益损失概率为:0.8+0.2*0.5=0.9;造成收益损失概率为:0.2*0.5=0.1

其它风险造成的两种影响的概率分别为:

不造成收益损失的概率为:0.6;造成收益损失的概率为:0.4

将各种因素对投资收益和损失列表(表1)如下:

4.1.3 建立层次结构

对于yl ,y2,y3,y4,为方便讨论,我们采用T.L Saty 等人提出的一种有效地处理这类问题的实用方法,即层次分析法 层次分析如下: 4.1.4 形成判断矩阵

依据Saty 等人提出的1-9作为尺度的方法通过两两比较得到正互反阵为:

???

?

???????

?????=157

1

2/15/1133/15/17/13/115

/17/1135

18/125

781

w

表2 判断矩阵标度说明

4.1.5 计算矩阵的特征向量和最大特征值

利用软件Matlab 计算出w 0

特征向量:w 0

=(0.8744,0.2670,0.0613,0.1179,0.3870),最大特征λ=5.4350。 4.1.6 一致性检验

为保证得到的权重的合理性,通常要对每一个判断矩阵进行一次一致性检验,以观察其是否具有满意的一致性(CR<0.1)。否则,应修改判断矩阵,直到满足一致性要求为止。对矩阵w 0

中求出的最大特征

值检验其

1max --=

n n

CI λ值(一致性指标比率)

RI CI

CR =

值(一致性比率)以及RI (随机一致性指标)

表3 RI 系数表 此时CR=0.091<0.1,所以矩阵w 0

是一致性的正互反阵。

现考虑较低层次对较高层次的影响,a 1-b 表示利率、政治政策、通货膨胀、其他收益风险对可能造成2千元的损失这一因素构成的正互反阵。用同样方法构造矩阵,求出特征值和特征向量并进行一致性检验。 4.1.7 合成权重的计算

)

4488.0,4939.0,1237.1,9956.1(),,,,(21054321=??==w w w W τττττ

??

????

??

??=3083.03565.08765.00979.02962.03395.00889.00875.02553

.04011.00771.08764

.02846.04356.00919.08490.02760.01534.09445.00904

.01w ??

?

??

??

?

?=2587.01568.09481.00975.01142.02438.03967.08776.00910.01933.03421.09150.03820.01418.01011.09076

.02w

对表1加权处理,计算平均收益和平均损失:

收益:p i =∑p(y).d ij ;损失:q i =∑p(y).d ij ,????

??><-=00

0ij ij ij

ij d d d d

根据风险尽可能小而收益尽可能大的投资的投资原则就有如下的两目标函数:

∑∑==?=?=n

i i

i n

i i i x q q x p p 1

1

:min ,

:max

投资模型:

∑∑==?-?=n i n

i i

i i i x q x p Z 1

1

:max

∑=≥==n

i i i x x Z st 1

,1:max :

模型求解通过计算,正互反阵为w 0

对应的权向量的模型是

max:Z=0.0919·x l -0.0233·x 2+0.0178·x 3+0.3347·x 4

∑=≥=4

1

,1:i i i x x st

4.1.8实例分析

我们可以根据各自不同的投资理念,合理取储蓄、股票、债券、基金相互之比的比重,利用上述层次分析法就可以得到相应的投资决策。例如:当取权重为W=(τ1,τ2,τ3,τ4,τ5)=w 0

·w 1

·w 2

=(1.9956,1.1237,0.4939,0.4488)时,利用软件Lindo 计算得x l =0,x 2=0,x 3=0,x 4=1,这一结果与保守型人们心理一致。 4.2 决策树在风险决策中的应用。 4.2.1 问题的提出

某建筑企业对于扩大生产的方案有两个,一个为建大厂,投资600万元,另一个为建小厂,投资为280万元,使用期限均为10年。在时间上分为前3年和后7年,若前3年需求高其概率为0.7,则后7年需求高概率为0.9;若前3年需求量低,则后7年需求量肯定低。对建小厂若前3年需求量高,则扩建,需再投资400万元,使用7年,损益值与建大厂金时间价值的概念相同。损益值如表4:

决策树如下:

万元

万元

万元

万元

万元

万元

万元

万元

4.2.2 决策树应用中资金时间价值的引入

在任何一个工程项目的实施方案中,其消耗的人力、物力和自然资源,最终都是以价值形态,即资金的形式表现出来的。而资金是劳动手段、劳动对象和劳动报酬的价值表现。资金的运动反映了物化劳动和活劳动的运动过程,也是资金随时间的运动过程。任何一个常规性的实施方案,通常是先发生一系列的投资,然后再发生一系列的经营费用和销售收入。因而对工程项目进行决策性的经济分析时,就必须着眼于工程的整个寿命周期的资金收入和支出的情况。在决策时,不能把工程或方案的寿命期内的收入和支出情况进行简单的加、减。其主要原因在于资金收支的经济效应不仅与资金量的大小有关,且与资金发生的时间有密切的关系。现在用来投资的资金若不考虑通货膨胀因素,比在将来同等数量的资金更有价值,这是因为当前可用来投资的资金可以立即使用创造收益,而将来可取得的资金,则不可能在今天投资。由此可知,同样一笔资金在不同时期具有不同的时间价值,现在的一笔资金在投资过程中产生增值。资金的价值随时间变化,是时间的函数,随时间的推移而增值,其增值的这部分资金就是资金的时间价值。资金时间价值是客观存在的。在进行工程项目决策时,企业经营的一项基本原则就是,充分利用资金时间价值并极大限度的获得其时间价值。也就是加速资金周转早期回收资金并不断进行高利润的投资活动,任何积压或闲置资金,就损失了资金的时间价值。

由于资金时间价值的存在,使不同时间上发生的现金流量不具有可比性,需通过换算,在同一时间上进行对比,才符合客观实际。这就考虑了资金的时间价值,使决策更加可靠。通常,利息是资金时间价值的一种表现形式,常以利息额的多少作为衡量资金时间价值的绝对尺度,用利率(或收益率)作为资金时间价值的相对尺度。

由于资金时间价值的存在,使工程项目的实施在时间上有一个延续过程,因而在实际工作中要注意如下问题:(1)投资时间上的差异;(2)投产时间上的差异;(3)工程项目或方案的寿命;(4)在项目运营的过程中各年经营费用所产生的差异。

4.2.3 实例中决策树应用存在的局限性

局限性一:决策树在不考虑资金时间价值时,适用于短期,不能用于长期的决策。其主要原因在于时间短,资金运作受时间因素的影响较小,资金时间价值所体现出的作用不明显。同时在工程或方案的

执行过程中,不确定因素减少,项目所面临的风险就要小得多。对于这种情况,在工程招投标中用得很多,就是因为招投标持续时间短,且发生的费用不大,决策树的作用能充分发挥出来。

局限性二:决策树在工程项目或方案跨时间较长的情况下仍在使用,其计算方式通常为简单的加和,求期望值。如决策树中。

点④:0.9*200*7+0.11*(-40)*7=1232(万元)

点⑤:1.0*(-40)*7=-280(万元)

点②:1232*0.7+200*3*0.7+0.3*(-40)*3+0.3*(-280)-600=562.4(万元)

点⑧:0.9*200*7+0.l*(-40)*7-400=832(万元)

点⑨:0.9*80*7+0.1*60*7=546(万元)

点③:0.7*80*3+832*0.7+0.3*60*3+0.3*1.0*60*7-280=650.4(万元)

通过点②与点③的比较,则选择建小厂,需求量高则3年后扩建。这种方法在计算各节点的期望值时,直接考虑其产生的收益值和,即简单的把各年收益值相加减。由前述资金的时间价值可知,第三年的期望收益值比第四年的期望收益值要值钱得多,而常用的计算方法把各年收益简单加和,仅考虑了方案的静态情况,没有考虑资金随时间而在发生变动。

局限性三:局限二的计算没有考虑到在以后各年不确定因素所产生的影响,如通货膨胀导致投资增大,政策变动使税收加大而减少当年的收益等,这系列因素若发生单个或多个同时变动,就会影响到决策所计算出的期望值。换句话说,在项目时间周期较长时,简单加和理想的设计后各年收支相等,不会发生变动。通常,项目从筹建到运行,任何因素都会发生变动。目前运用的计算方法也忽略了风险因素的影响。

4.2.4 时间价值的引入

在前例中,各节点的计算只是简单相加。现在假设银行的利率为i,在第1年,第2年…第7年所得的收益值不再进行投资,而是存入银行,那么各年的收益将会产生6,5,…,1年的利息。从项目决策点来看,该收益则含了1,2,3…7年的利息,比如:第四年、第七年的期望收益值均为136*(200*0.9+0.l*(-40)+(-40)*1.0),而第四年的136万元的期望收益值中含了4年的利息,第7年的期望收益136万元中含了7年的利息,形式上二者是相等的,实质上不等,这就是资金时间价值的影响。简单的加和,没有考虑收益值所产生的利息情况,且假设在以后各年的不确定因素是相同的。现在,利用资金时间价值的因素来计算各节点的期望收益值,假设期望收益率为10%

点④:0.9*200*(P/A,10%,7)+0.l*(-40)*(P/A,10%,7)=856.84万元

点⑤:(-40)*1.0*(P/A,10%,7)=-194.74万元

点②:856.84*(P/A,10%,3)*0.7-194.74*(P/A,10%,3)*0.3+200*0.17*(P/A,10%,3)+(-40*0.3*

(P/A,10%,3)-600=126.06万元

点⑧:0.9*200*(P/A,10%,7)+0.l*(-40)*(P/A,10%,7)-400=456.84万元

点⑨:0.9*80*(P/A,10%,7)+0.1*60*(P/A,10%,7)=379.74万元

点③:0.7*80*(P/A,10%,3)+456.84*(P/A,10%,3)+0.3*60*(P/A,10%,3)+0.3*1.0*60*

(P/A,10%,7)*(P/A,10%,3)-280=313.09万元

方案决策结果是建小厂,3年后若需求量高再进行扩建。但我们可以看出,虽然两种方法的决策结果相同,但是计算结果却相差很大。如点④,使用资金时间价值和未使用的差值为375.16万元

(1232-856.84),对于最终决策方案点的期望值则相差337.31万元(650.4-313.09)。这些差值其本质就是投资额和各年收益及随时间变化而发生变化的累计值。由于它们在定量上产生的数值差异以及投资存在的机会成本,会使决策者对项目存在的风险进行错误估计:其一是决策失误,放弃了不该放弃的项目或决定了不该选择的项目;其二是反映在管理方法上,如不考虑资金时间价值,所得的结果又比较乐观,进而影响决策者对所决定的项目的控制和计划,但项目在实施过程中,由于时间因素的参与,其实际值与期望值相差很大,甚至不可预见因素而导致亏损。

4.2.5 引入资金时间价值理论应注意的问题

(l)在利用资金时间价值理论计算期望收益值时,最重要的一个参数就是投资者期望的基准收益率,其微小变动在投资总数和年限不变的情况下,期望收益值也会产生较大的变动。对于基准收益率的确定因素主要有:①加权平均资本成本和机会成本。在决策时选择其中大者,在通常情况下资金机会成本高于项目的加权平均资本成本,不考虑二者之和,将其设为t1;②风险补贴率。任何项目投资都存在风险,高风险则有高的收益,投资者在对项目决策时,应充分考虑项目所面临的风险,合理的确定风险补贴率,设为t2,以项目所产生的收益中得到补偿;③通货膨胀率。对跨时间较长的项目,不可避免地要受到以后年度物价变动的影响。物价变动则会使投资增加,从而对计算的期望收益产生影响,设通货膨胀率为t3。综上所述,理论上确定基准收益率为:i=(l+t1)(l+t2)(l+t3)-l(当t1、t2、t3均为零点零后小数时,i=t1+t2+t3)

(2)评价指标上的确认

前面举例进行项目决策是通过计算期望收益值。而利用资金时间价值计算的期望收益值其实质是计算该项目FNPV(财务净现值)。据项目在投资已定、收益估计确定以及一定年限下,也可以用项目自身所产生的收益率对各个方案进行选择,即确定FIRR(财务内部收益率)。但是项目的最终决策,不能从单个指标确定,需同时考虑多个指标。如FNPV最大,项目并不一定最好,有可能它的单位投资盈利比其他项目或方案低,这种情况就要进行综合权衡投资方及投资的组合形式。

(3)不确定因素灵敏度的分析

由于引用了资金时间价值理论,即采用了动态的分析、决策方法,同样需要用动态的方法,分析不确定因素的变动对计算指标值的影响程度,即各工程方案对不确定因素的灵敏度分析。决策树法作为风险型决策的一种方法,就是在决策过程中对风险发生的时间、风险类型、风险影响程度,项目或方案对风险类型的反映程度进行全面的预测和估计。灵敏度分析能比较充分体现出项目或方案对风险反映的敏感强度,使决策者在进行决策时或决策以后实施过程中的管理有目的性和方向胜。

(4)动态系统决策

在利用决策树法时,形式上表现为静态,但在决策时用动态系统全面的观点。项目决策在一定程度只是项目全部运行中的一步。项目全过程是一个完整的系统,在这个系统里面发生资金支出。若系统中某一要素变化就会引起系统结构、功能发生变化。把项目或方案作为一个系统,用系统的观点全面分析其实施全过程使决策树简单的决策功能得到引伸,充分发挥其决策过程中的重要作用。

五、总结

基于系统评价与决策分析课程的学习,特别对贝叶斯决策模型和方法进行了研究,介绍了层次分析法、盈方转折分析、后验分析法和决策树法,最后重点将层次分析法和决策树法与应用实例相结合进行

探讨,深化理解了决策分析方法的操作性和实用性,并提出了一些在决策中需要注意的问题。

决策分析的论文

关于决策分析的论文 选择方案的一般原则,也就是指导人们选择行动方案的一般原则。被称为决策准则。传统的决策理论认为,决策者是“理性人”或“经济人”,在决策时他们受“最优化”的行为准则支配,应当选择“最优”方案。 现代决策理论认为,由于决策者在认识能力和时间、成本、情报来源等方面的限制,不能坚持要求最理想的解答,常常只能满足于“令人满意的”或“足够好的”决策。因此。实际上人们在决策时并不考虑一切可能的情况,而只考虑与问题有关的特定情况,使多重目标都能达到令人满意的、足够好的水平,以此作为行动方案。下面举例来详细说明决策分析中的乐观主义决策和悲观主义决策两种方法。 举例:某城市需建立垃圾焚烧炉,并用来发电,提供给附近工业新区用电,制定了三种方案:A1方案,引进进口炉;A2方案,引进国外厂商部分先进技术,国内生产;A3方案,采用国产焚烧炉。其中进口炉由于采用了先进技术,对垃圾中町燃烧热值利用较高,因此发电量较高,当然单位废物运行成本也高;国产炉由于技术不成熟,对于同样垃圾发电量要低,但是运行成本低;A2方案炉子发电量和运行成本居于二者之间。由于工业新区刚刚建立,对于其发展前途和发展规模缺乏必要资料和准确预测,因此对于其将来企业数以及用电量无法进行有效估计,因此有可能出现进口炉发电量虽大,但是面对状态N3,多生产的电卖不出去,而处理成本较高,因此可能亏本,如表3—1所述(一200),但是也有可能在状态N1下有较大收益,处理成本由卖电所抵消同时产生效益,因此收益受到未来发生自然状态影响,其他方案同样也是如此,这就需要做出一个科学合理的决策。 (1)乐观主义原则 采用这种方法的决策者一般为敢担当风险的人,决不放弃任何一个获得好结果的机会。 具体方法是:找出不同自然状态下的最好效益值,再从中选取出有最大收益的所对应方案为所求的决策方案,见表3—2。

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

贝叶斯统计决策

叶斯统计决策理论是指综合运用决策科学的基础理论和决策的各种科学方法对投资进行分析决策。其应用决策科学的一般原理和决策分析的方法研究投资方案的比选问题,从多方面考虑投资效果,并进行科学的分析,从而对投资方案作出决策。涉及到投资效果的各种评价、评价标准、费用(效益分析)等问题。投资决策效果的评价问题首要的是对投资效果的含义有正确理解,并进行正确评价。 贝叶斯统计中的两个基本概念是先验分布和后验分布。 ①先验分布。总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于总体分布参数θ的任何统计推断问题中,除了使用样本所提供的信息外,还必须规定一个先验分布,它是在进行统计推断时不可缺少的一个要素。他们认为先验分布不必有客观的依据,可以部分地或完全地基于主观信念。 ②后验分布。根据样本分布和未知参数的先验分布,用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及样本分布。 贝叶斯统计(Bayesian statistics),推断统计理论的一种。英国学者贝叶斯在1763年发表的论文《有关机遇问题求解的短论》中提出。依据获得样本(Xl,X2,…,Xn)之后θ的后验分布π(θ|X1,X2,…,Xn)对总体参数θ作出估计和推断。它不是由样本分布作出推断。其理论基础是先验概率和后验分布,即在事件概率时,除样本提供的后验信息外,还会凭借自己主观已有的先验信息来估计事件的概率。而以R.A.费希尔为首的经典统计理论对事件概率的解释是频率解释,即通过抽取样本,由样本计算出事件的频率,而样本提供的信息完全是客观的,一切推断的结论或决策不允许加入任何主观的先验的信息。以对神童出现的概率P的估计为例。按经典统计的做法,完全由样本提供的信息(即后验信息)来估计,认为参数p是一个“值”。贝叶斯统计的做法是,除样本提供的后验信息外,人类的经验对p 有了一个了解,如p可能取pl与户p2,且取p1的机会很大,取p2机会很小。先验信息关于参数p的信息是一个“分布”,如P(p=p1)=0.9,P(p=p2)=0.1,即在抽样之前已知道(先验的)p取p1的可能性为0.9。若不去抽样便要作出推断,自然会取p=p1。但若抽样后,除非后验信息(即样本提供的信息)包含十分有利于“p—=p2”的支持论据,否则采纳先验的看法“p=p1”。20世纪50年代后贝叶斯统计得到真正发展,但在发展过程中始终存在着与经典统计之间的争论。 [编辑]

贝叶斯公式论文

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (3) 第一章贝叶斯公式及全概率公式的推广概述..................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

Bayes_判别分析及应用论文

Bayes判别分析及应用 班级:计算B101姓名:孔维文学号201009014119 指导老师:谭立云教授 【摘要】判别分析是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方法,在社会生产和科学研究上应用十分广泛。在判别分析之前,我们往往已对各总体有一定了解,样品的先验概率也对其预测起到一定作用,因此进行判别时应考虑到各个总体出现的先验概率;由于在实际问题中,样品错判后会造成一定损失,故判别时还要考虑到预报的先验概率及错判造成的损失,Bayes判别就具有这些优点;然而当样品容量大时计算较复杂,故而常借助统计软件来实现。本文着重于Bayes判别分析的应用以及SPSS的实现。 论文共分三部分。首先简单地介绍了判别分析的意义、主要应用及SPSS的优点;其次详细讲解了Bayes判别分析理论,举例说明利用SPSS实现Bayes判别分析的操作及结果分析;最后,在09年统计年鉴收集到“各地区农村居民家庭平均每人生活消费支出”数据资料,研究各地区经济发展程度说明Bayes判别分析在经济学方面的应用。 【关键词】判别分析Bayes判别Spss实现判别函数判别准则 Class: calculation B101 name: KongWeiWen registration number 201009014119 Teacher: TanLiYun professor .【Abstract】Discriminant analysis is based on the study of certain indicators of individual observations to infer that the individual belongs as a type of statistical methods in social production and scientific research is widely used. In discriminant analysis, we often have a certain understanding of the overall sample of the a priori probability of its prediction play a role, it should be taken into account to determine the overall emergence of various prior probability; because of practical problems, samples will result in some loss of miscarriage of justice, so identification must be considered when the prior probability and wrongly predicted loss, Bayes discriminant to have these advantages; However, when the sample is large computing capacity of more complex, often using statistical software Guer to achieve. This article focuses on the application of Bayes discriminant analysis, and implementation of SPSS. Thesis is divided into three parts. First, a brief overview of the significance of discriminant analysis, the main applications and advantages of Spss; followed by detailed explanation of the Bayes discriminant analysis theory, an example implementation using Spss Bayes discriminant analysis and results of operations; finally, in the 2009 Statistical Yearbook of the collected " all areas of life of rural residents per capita household

贝叶斯决策方法综述

贝叶斯决策方法综述 一、决策问题 决策就是对一件事情要做出决定,它与推断的差别在于是否涉及后果。统计学家在作推断时是按统计理论进行的,很少或根本不考虑推断结论在使用后的损失,而决策者在使用推断结果做决策时必须与得失联系在一起考虑。能给他带来利润的他就使用,使他遭受损失的就不会被采用,度量得失的尺度就是损失函数。著名统计学家A.Wald(1902-1950)在20世纪40年代引入了损失函数的概念,指的是由于决策失误导致的损失值。损失函数与决策环境密切相关,因此从实际问题中归纳出合适的损失函数是决策成败关键。把损失函数加入贝叶斯推断就形成贝叶斯决策论,而损失函数被称为贝叶斯统计中的第四种信息。 决策分析是一般分四个步骤:1)形成决策问题,包括提出方案和确定目标;2)判断自然状态及其概率;3)拟定多个可行方案;4)评价方案并做出选择。常用的决策分析技术有:确定型情况下的决策分析、风险型情况下的决策分析及不确定型情况下的决策分析。 (1)确定型情况下的决策分析。确定型决策问题的主要特征有四方面:一是只有一个状态,二是有决策者希望达到的一个明确的目标,三是存在着可供决策者选择的两个或两个以上的方案,四是不同方案在该状态下的收益值是清楚的。确定型决策分析技术包括用微分法求极大值和数学规划等方法。 (2)风险型情况下的决策分析。这类决策问题与确定型决策只在第一点特征上有所区别,即在风险型决策问题中,未来可能的状态不只一种,究竟出现哪种状态不能事先肯定,只知道各种状态出现的可能性大小(如概率、频率、比例或权等)。常用的风险型决策分析技术有期望值法和决策树法。期望值法是根据各可行方案在各自然状态下收益值的概率平均值的大小,决定各方案的取舍。决策树法有利于决策人员使决策问题形象化,把各种可以更换的方案、可能出现的状态、可能性大小及产生的后果等,简单地绘制在一张图上,以便计算、研究与分析,同时还可以随时补充。 (3)不确定型情况下的决策分析。如果不只有一个状态,各状态出现的可能性大小又不确定,便称为不确定型决策问题。常用的决策分析方法有: a)乐观准则。比较乐观的决策者愿意争取一切机会获得最好结果。决策步骤是从每个方案中选一个最大收益值,再从这些最大收益值中选一个最大值,该最大值对应的方案便是入选方案。 b)悲观准则。比较悲观的决策者总是小心谨慎,从最坏结果着想。决策步骤是先从各方案中选一个最小收益值,再从这些最小收益值中选出一个最大收益值,其对应方案便是最优方案。这是在各种最不利的情况下找出一个最有利的方案.

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

贝叶斯决策方法课后习题

1.什么叫贝叶斯决策?如何进行贝叶斯决策? 风险型决策方法是根据预测各种事件可能发生的先验概率,然后再采用期望值标准或最大可能性标准来选择最佳决策方案。这样的决策具有一定的风险性,因为先验概率是根据历史资料或主观判断所确定的概率,未经试验证实,为了减少这种风险,需要较准确的掌握和估计这些先验概率。这就要通过科学实验,调查,统计分析等方法获得较为准确的情报信息,以修正先验概率,并据以确定各方案的期望损益值,拟订可供选择的决策方案,协助决策者做出正确的决策。一般来说,利用贝叶斯定理要求得后验概率,据以进行决策的方法称为贝叶斯决策方法。贝叶斯决策方法步骤: (1)进行预后验分析,决定是否值得搜集补充资料以及从补充资料中可能得到的结果和如何决定最优对策。 (2)收集补充资料,取得条件概率,包括历史概率和逻辑概率,对历史概率要加以检验,辨明其是否适合计算后验概率。 (3)用概率的乘法定理计算联合概率,用概率的加法定理计算边际概率,用贝叶斯定理计算后验概率。 (4)用后验概率进行决策分析。 2.如何进行预后验分析和后验分析? 预后验分析是后验概率决策分析的一种特殊形式的演算,这里的特殊形式是指用一套概率对多种行动策略组合进行多次计算,从中择优。 预后验分析有两种形式,一是扩大型,预后验分析,这实际上是一种反推决策树分析,二是常规型预后验分析,这实际上是一种正向分析,用表格形式进行。扩大型分析要解决的问题是搜集追加信息对决策者有多大的价值,如果试验应采取

什么行动策略,常规型分析要解决的问题是,如果试验应采取什么行动策略,但是这两种分析方法所得出的结论是一致的。 根据预后验分析,如果认为采集信息和进行调查研究是值得的,那么就应该决定去做这项工作。一旦取得了新的信息,决策者就结合这些新信息进行分析,计算各种方案的期望损益值,选择最佳的行动方案,结合运用这些信息并修正先验概率,称为后验分析,这正是发挥贝叶斯决策理论威力的地方。 3.什么是先验分析? 先验分析就是决策者要详细列出各种自然状态及其概率,各种备选行动方案与自然状态的损益值,并根据这些信息对备选方案作出抉择的决策过程,当时间,人力和财力不允许搜集更完备的信息时,决策者往往用这类方法进行决策,在贝叶斯决策中,先验分析是进行更深入分析的必要条件。 4.贝叶斯决策有哪些优点?哪些局限? 贝叶斯决策的优点表现在以下几个方面: (1)如果说在第14章中大多用的是不完善的信息或主观概率的话,那么贝叶斯决策则提供了一个进一步研究的科学方法,也就是说,它能对信息的价值或是否需要采集新的信息作出科学判断。 (2)它能对调查结果的可能性加以数量化的评价,而不是像一般的决策方法那样对调查结果,或者是完全相信,或者是完全不相信。 (3)如果说任何调查结果都不可能是完全准确的,而先验知识或主观概率也不是完全可以相信的,那么贝叶斯决策则巧妙的将这两种信息有机的结合起来了。(4)它可以在决策过程中,根据具体情况不断的使用,使决策逐步完善和更加科学。贝叶斯决策方法也有其局限性,主要表现在以下几个方面:

贝叶斯决策的经典例题练习

一、贝叶斯决策(Bayes decision theory) 【例】某企业设计出一种新产品,有两种方案可供选择:—是进行批量生产,二是出售专利。这种新产品投放市场,估计有3种可能:畅销、中等、滞销,这3种情况发生的可能性依次估计为:,和。方案在各种情况下的利润及期望利润如下表。 企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。若实际市场状况为畅销,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别为、和;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率分别为、和。问:企业是否委托专业市场调查机构进行调查 解: 1.验前分析: 记方案d1为批量生产,方案d2为出售专利 E(d1)=*80+*20+*(-5)=(万元) E(d2)=40*+7*+1*=(万元) 记验前分析的最大期望收益为E1,则E1=max{E(d1),E(d2)}=(万元) | 因此验前分析后的决策为:批量生产 E1不作市场调查的期望收益 2.预验分析: (1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 由全概率公式 P(H1)=*+*+*= P(H2)=*+*+*= P(H3)=*+*+*= (2)由贝叶斯公式有 P(?1|H1)=*= [ P(?2|H1)=*= P(?3|H1)=*= P(?1|H2)=*= P(?2|H2)=*= P(?3|H2)=*= P(?1|H3)=*= P(?2|H3)=*= P(?3|H3)=*= (3)用后验分布代替先验分布,计算各方案的期望收益值 a)当市场调查结果为畅销时 *

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析(doc 12页)

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步

确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分:)(,θθP S A a 及∈∈。概率分布S P ∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E ,E e ∈,无情报试验e0通常包括在集合E 之内。 一个试验结果Z 取决于试验e 的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z ∈表示在自然状态θ的条件下,进行e 试验后发生z 结果的概率。这一概率分布称为似然分布。 一个可能的后果集合C ,C c ∈以及定义在后果集合C 的效用函数u(e,Z,a,θ)。 每一后果c=c(e,z,a,θ)取决于e,z,a 和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可

模式识别实验一(最小贝叶斯决策及ROC曲线)讲解

实验一 一、 实验原理 1. 最小错误率贝叶斯决策规则: 对于两类问题,最小错误率贝叶斯决策有如下判决规则: 1212(|)(|),;P x P x x x ωωωω>∈∈则反之,则。 由于先验概率i (P ω)可以确定,与当前样本x 无关,所以决策规则也可整理成下面的形式: 121212(|)() (),() (|)P x P l x x x P P x ωωωωωω= >∈∈若,则否则。 2. 平均错误率 决策边界把x 轴分割成两个区域,分别称为第一类和第二类的决策区域.样本在中但属于第二类的错误概率和样本在中但属于第一类的错误概率就是出现错误的概率,再考虑到样本自身的分布后就是平均错误率: 212211()(|)()(|)()(|)P()(|)P()t t t t P e P x p x dx P x p x dx p x dx p x dx ωωωωωω∞ -∞ ∞ -∞ =+=+???? 3. 此实验中的判决门限和平均错误率 (1) 判决门限 假设随机脉冲信号f 中0的概率为,高斯噪声信号n 服从,信号叠加时的放大倍数为a ,叠加后的信号为 *s f a n =+。 由最小错误率贝叶斯决策可得:

1122()(|)()(|)P p x P p x ωωωω→→ > 化简计算得:220022(ln(1)ln ) 2a a a p p t μσ+---= (2) 平均错误率 由上述积分式可计算。 二、 实验内容 1、 已知均值和方差,产生高斯噪声信号,计算其统计特性 实验中利用MATLAB 产生均值为0,方差为1的高斯噪声信号,信号统计分布的程序和结果如下: %产生高斯噪声并统计其特性 x=0;%均值为0 y=1;%方差为1 n=normrnd(x,y,[1 1000000]);%产生均值为0,方差为1的高斯噪声 m1=mean(n);%高斯噪声的均值 v1=var(n); %高斯噪声的方差 figure(1) plot(n(1:400)); title('均值为0,方差为1的高斯噪声'); figure(2) hist(n,10000); title('高斯噪声的统计特性'); 得到m1=-4.6534e-005;v1= 0.9971。

万能的贝叶斯决策——应用总结

万能的贝叶斯决策——应用总结 学完《模式识别》一课之后,收获颇多。说实话,这门课要想学好不简单,但是老师教会我们要掌握方法,不要拘泥于大堆的公式。方法的思想掌握了,遇到问题以后就可以开阔思路,直接拿来用了。课上主要讲了四大块,Beyes 决策,概率密度函数估计,线性判别以及聚类和Fuzzy 模式识别。下面就其中的Beyes 判别一项做一下应用方面的总结,所选材料均来自学校图书馆CNKI 中国学术期刊全文总库。 众所周知,Beyes 公式是统计学里一个非常重要的公式,而Beyes 决策理论方法则是统计模式识别中的一个基本方法。根据Beyes 决策设计的分类器理论上性能最优,经常被用来作为衡量其他分类器优劣的标准。 当然,要想使用Beyes 理论进行决策,还必须满足几个条件:(1)对象的所有特征观察量,我们设为d 维特征空间,记为],,,[21d x x x d =;(2)要决策分类的类别数,我们设为c 类,用i ω来表示,},,,{21c ωωωω =Ω∈;(3)各类别总体的概率分布,即i ω出现的先验概率)(i p ω;(4)类条件概率密度)|(i x p ω。知道以上几个条件以后,给定一个观测值x ,我们就可以根据需要利用相应的Beyes 决策规则把它分到相应的类去。几种决策规则包括:基于最小错误率的Beyes 决策、基于最小风险的Beyes 决策、最小最大决策以及序贯分类方法等。 Beyes 决策理论是模式识别中的一个比较基础的决策方法,应用十分广泛,几乎涉及到了方方面面。 1.医学方面 Beyes 决策在医学方面有非常重要的地位,主要应用在医疗诊断中。比如我们模式识别经典课本中所例举的癌细胞判别的例子。在医疗诊断中,许多疾病的症状比较相似,即使同一种病,病情的严重程度不同,症状更复杂(如:阑尾炎是慢性,急性还是穿孔;胃癌的早期,中期与晚期等),这就给医生的诊断带来了一定的困难。利用Beyes 统计决策就可以很好的解决这一问题。 例如:诊断阑尾炎的例子[1] 设有三种疾病状态:1A 表示慢性阑尾炎,2A 表示急性阑尾炎,3A 表示阑尾炎穿孔,根据以往的统计经验先验概率已知。又设疾病的症状可分为n 类,表示为n B B B ,,,21 。疾病)3,2,1(=i A i 涉及到症状),,2,1(n j B j =的概率为)|(i j A B p 。

第四章 贝叶斯决策分析

第四章 贝叶斯决策分析 前面所讨论过的风险型决策,其基本方法是将状态变量视为随机变量,用先验状态分布表示状态变量的概率分布,用期望值准则计算方案的满意程度。由于先验状态分布与实际情况存在一定误差,为了提高决策质量,需要通过市场调查,收集有关状态变量的补充信息,对先验分布进行修正,用后验状态分布进行决策,这就是本章将要介绍的贝叶斯决策。 第一节 贝叶斯决策的基本方法 一.贝叶斯决策的意义 在管理决策的实际过程中,往往有两种偏向。一是缺乏市场调查,对状态变量概率分布情况的掌握和分析还十分粗略,就匆忙进行决策分析,使得决策结果与市场现实的出入过大,造成决策失误;二是市场调查费用过高,收集的信息没有给企业带来应有的效益。 所以既要充分重视信息对决策的价值,同时也要注意信息自身的价值,少花钱多办事。只有将两者合理的结合起来,才能提高决策分析的科学性和效益性。如何将两者有机的结合也就是贝叶斯决策所要解决的问题。 在讨论贝叶斯决策方法之前,我们先来回顾在概率统计中学过的全概率公式和贝叶斯公式。 1. 离散情况:设有完备事件组{},(j=1,2,……,n ),满足条件θi θj =Ф(i ,j=1,2,…… , n ;i ≠ j ),且∑=n j j 1 θ =Ω,对任一随机事件H ,其全概率公式和贝叶斯公式分别 为 P (H )= ∑=n j j j P H P 1 |) ()(θθ ,()(j P θ > 0) (4-1) P (θi |H )=) ()()(H P P H P i i θθ| = )()() ()(j n j j i i P H P P H P θθθθ∑ =1 || , (i=1,2,。。。 ,n ;P (H )>0) (4-2) 2. 连续情况:设随机变量θ的概率密度为p(θ),则对一随机变量τ,有 h (τ)=? +∞ ∞ -θθθτπd P )()(| (4-3) k (θ| τ)=) () ()(τθθτπh P | =θ θθτπθθτπd P P )()() ()(? ∞ +∞ -|| (h (τ)> 0) (4-4)

贝叶斯决策例题

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元) 完全信息价值:EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。(3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x1(好天气)、x2(坏天气)将会出现哪一种状态。

从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率: 111111()(/) (/)() P P x P x P x θθθ?= =0.3×0.8/0.31=0.77 预报天气好而天气坏的概率: 212211()(/) (/)() P P x P x P x θθθ?= =0.7×0.1/0.31=0.23 预报天气坏而实际天气好的概率: 121122()(/) (/)() P P x P x P x θθθ?= =0.3×0.2/0.69=0.09 预报天气坏且实际天气也坏的概率: 222222()(/) (/)() P P x P x P x θθθ?= =0.7×0.9/0.69=0.91 上述计算可以用表格表示:

相关文档
相关文档 最新文档