文档库 最新最全的文档下载
当前位置:文档库 › 第三章 城市污水处理典型工艺流程

第三章 城市污水处理典型工艺流程

第三章  城市污水处理典型工艺流程
第三章  城市污水处理典型工艺流程

第三章城市污水处理典型工艺流程

第一节传统活性污泥工艺

一、工艺原理

向生活污水中不断地注入空气,维持水中有足够的溶解氧,经过一段时间后,污水即生成一种絮凝体。这种絮凝体是由大量繁殖的微生物构成的,易于沉淀分离,使污水得到澄清,这就是“活性污泥”。活性污泥法就是以悬浮生长在水中的活性污泥为主题,在微生物生长有利的环境条件下和污水充分接触,使污水净化的一种方法。它的主要构筑物是曝气池和二次沉淀池。

活性污泥法关键在于要使曝气池保持高的反应速率,让曝气池中的活性污泥处于良好的状态,同时要使曝气池内保持足够高的活性污泥微生物浓度。为此,沉淀后的活性污泥又回流至曝气池前端,使之与进入曝气池的废水混合后充分接触,以重复吸附、氧化分解废水中的有机物。

在正常的连续生产(连续进水)条件下,活性污泥中微生物不断利用废水中的有机物进行新陈代谢,由于合成作用的结果,活性污泥大量增殖,曝气池中活性污泥的量愈积愈多,当超过一定的浓度时,应适当排放一部分,这部分被排出的活性污泥称作剩余污泥。

活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/cm3,活性污泥具有较大的比表面积,一般为20~100cm2/mL。

活性污泥由有机物及无机物两部分组成,组成比例因污泥性质不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分占15%~25%。活性污泥中有机物成分主要由生长在活性污泥中的各种微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链,其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。

在活性污泥中,细菌含量一般在107~108个/mL之间,原生动物为103个/mL左右,而原生动物中则以纤毛虫为主,因此可以用其作为指示生物,通过镜检法判断活性污泥的活性。通常当活性污泥中有固着型纤毛虫,如钟虫、等枝虫、盖纤虫、独缩虫、聚缩虫等出现,且数量较多时,说明活性污泥经培养驯化后较为成熟而且活性较好。反之,如果在正常运行的曝气池中发现活性污泥中固着型纤毛虫减少,而游泳纤毛虫突然增多,说明活性污泥活性差,处理效果将变差。

二、工艺流程

传统活性污泥法工艺系统主要是由曝气池、曝气系统、二次沉淀以及回流系统和污泥消化系统组成,如图3-1所示。

图3-1 传统活性污泥工艺流程

1.曝气池

曝气池是由微生物组成的活性污泥与污水中的有机污染物质充分混合接触,并进而将其吸收并分解的场所,它是活性污泥工艺的核心。

曝气池有推流式和完全混合式两种类型。推流式是在长方形的池内,污水和回流污泥从一端流入,水平推进,经另一端流出。而完全混合式是污水和回流污泥一起进入曝气池就立即与池内其他混合液均匀混合。推流式的特点是池子大小不受限制,不易发生短流,出水质量较高;而完全混合式的特点是池子受池型和曝气手段的限制,池容不能太大,当搅拌混合效果不佳时易产生短流,但它对入流水质的适应能力较强。由于以上特点,城市污水处理一般采用推流式,而完全混合式则广泛应用于工业废水处理。

2.曝气系统

曝气系统的作用是向曝气池供给微生物增长及分解有机物所必需的氧气,并起混合搅拌作用,使活性污泥与有机污染物质充分接触。曝气系统总体上可分为鼓风曝气和机械曝气两大类。

鼓风曝气是将压缩空气通过管道送入曝气池的扩散设备,以气泡形式分散进入混合液,使气泡中的氧迅速扩散转移到混合液中,供给活性污泥中的微生物。鼓风曝气系统主要由空气净化系统、鼓风机、管路系统和空气扩散器组成。城市污水处理厂采用的鼓风机有多种,如罗茨鼓风机和离心鼓风机。国产罗茨风机单机风量小,适用于中小型污水处理厂;离心风

机噪声小、效率高,适用于大型污水厂。空气扩散器也有很多种,按材质分有陶瓷扩散器、橡胶扩散器和塑料扩散器。按扩散器形状分有钟罩型扩散器、长条板型扩散器和圆管式(或筒套式)扩散器,另外还有固定双螺旋、双环伞形以及射流曝气器等特殊形式。扩散器在曝气池内的布置形式也有很多种,如池底满布形式、旋转流形式、半水深布置形式等。风管按气量和风速选择管径,干管、支管风速10~15m/s,竖管及小支管4~5m/s。空气管线上设空气计量和调节装置,以便控制曝气量。

机械曝气则是利用装设在曝气池内的叶轮转动,剧烈地搅动水面,使水循环流动,不断更新液面并产生强烈的水跃,从而使空气中的氧与水滴或水跃的界面充分接触,转入到混合液中。因此,机械曝气也称作表面曝气,简称表曝。机械曝气分为竖轴表曝和卧轴表曝两种形式,竖轴表曝机多用于完全混合式的曝气池,转速一般为20~100r/min,并可有两级或三级的速度调节。卧轴表曝机一般用于氧化沟工艺,称为曝气转盘(刷)。

3.二次沉淀池

二次沉淀池的作用是使活性污泥与处理完的污水分离,并使污泥得到一定程度的浓缩。二次沉淀池内的沉淀形式较复杂,沉淀初期为絮凝沉淀,中期为成层沉淀,而后期则为压缩沉淀,即污泥浓缩。

二沉池的结构形式同初沉池一样,分为平流沉淀池、竖流沉淀池和辐流沉淀池。国内现有城市污水处理厂二沉池绝大多数都采用辐流式。有些中小处理厂也采用平流式,竖流式二沉池尚不多见。

平流式二沉池的构造及布置形式与平流初沉池基本一样,只是工艺参数不同。平流初沉池的水平冲刷流速为50mm/s,而二沉池的水平冲刷流速为20mm/s,当水平流速大于20mm/s 或吸泥机的刮板行走速度大于20mm/s时,下沉的污泥将受扰动而重新浮起。除工艺参数不同以外,辐流式二沉池与辐流式初沉池构造形式也基本相似。

二沉池的排泥方式与初沉池差别较大。初沉池一般都是先用刮泥机将污泥将污泥刮至泥斗,再将其间歇或连续排除。而二沉池一般直接用吸泥机将污泥连续排除。这主要是因为活性污泥易厌氧上浮,应及时尽快地从二沉池中分离出来。另外,曝气池本身也要求连续不断地补充回流污泥。平流二沉池一般采用桁车式吸泥机,辐流式二沉池一般采用回转式吸泥机。常用的排泥方式有静压排泥、气提排泥、虹吸排泥或直接泵吸。

4.回流污泥系统

回流污泥系统把二沉池中沉淀下来的绝大部分活性污泥再回流到曝气池,以保证曝气池有足够的微生物浓度。回流污泥系统包括回流污泥泵和回流污泥管道或渠道。回流污泥泵的

形式有多种,包括离心泵、潜水泵和螺旋泵。螺旋泵的优点是转速低,不易打碎活性污泥絮体,但效率较低。回流污泥泵的选择应充分考虑大流量、低扬程的特点,同时转速不能太快,以免破坏絮体。回流污泥渠道上一般应设置回流量的计量及调节装置,以准确控制及调节污泥回流量。

5.剩余污泥排放系统

随着有机污染物质被分解,曝气池每天都净增一部分活性污泥,这部分活性污泥称为剩余活性污泥,应通过剩余污泥排放系统排出。污水处理厂用泵排放剩余污泥,也可直接用阀门排放。可以从回流污泥中排放剩余污泥,也可以从曝气池直接排放。从曝气池直接排放可减轻二沉池的部分负荷,但增大了浓缩池的负荷。在剩余污泥管线上应设置计量及调节装置,以便准确控制排泥。

三、活性污泥系统的工艺参数

活性污泥工艺是一个较复杂的工程化的生物系统,其工艺参数可分为三大类。第一类是曝气池的工艺参数,主要包括污水在曝气池内的水力停留时间、曝气池内的活性污泥浓度、活性污泥的有机负荷。第二类是关于二沉池的工艺参数,主要包括混合液在二沉池的停留时间、二沉池的水力表面负荷、出水堰的堰板溢流负荷、二沉池内污泥层深度、固体表面负荷。第三类是关于整个工艺系统的参数,包括入流水质水量、回流污泥量和回流比、回流污泥浓度、剩余污泥排放量、泥龄。以上工艺参数相互之间联系紧密,任一参数变化都会影响到其它参数。

1.入流水质水量

入流污水量Q必须充分利用所设置的计量设施准确计量,它是整个活性污泥系统运行控制的基础。

入流水质也直接影响到运行控制。传统活性污泥工艺的主要目标是降低污水中的BOD5,因此,入流污水的BOD5必须准确测定,它是工艺调整的一个基础数据。

2.回流污泥量与回流比

回流污泥量是二沉池补充到曝气池的污泥量,常用Qr表示。Qr是活性污泥系统的一个重要控制参数,通过有效地调节Qr可以改变工艺运行状态,保证运行的正常。回流比是回流污泥量与入流污泥量(Q)之比,通常用R表示。保持R的相对恒定,是一种重要的运行方式。回流比也可以根据实际运行需要加以调整。传统活性污泥工艺的R一般在25%~100%之间。

3.悬浮固体和回流污泥悬浮固体

悬浮固体是指混合液中悬浮固体的浓度,通常用MLSS表示。MLSS也可近似表示曝气池内活性微生物的浓度,这是运行管理的一个重要控制参数。当入流污水的BOD5增高时,一般应提高MLSS,即增大曝气池内的微生物量。实际测得的MLSS,是混合液的过滤性残渣,活性污泥絮体内的活性微生物量、非活性的有机物和无机物都被滤纸截留而包括所测得的MLSS中,因此MLSS值实际比活性微生物的浓度值要大。MLVSS是MLSS中的有机部分,称为混合液的挥发性悬浮固体,由于不包含无机物,它能较好地反应活性污泥微生物的数量,但不是活性微生物的实际浓度。

回流污泥悬浮固体是指回流污泥中悬浮固体的浓度,通常用RSS表示,它近似表示回流污泥中的活性微生物浓度。如上所述,运行管理中应尽量采用RVSS,即回流污泥挥发性悬浮固体。

传统活性污泥法的MLSS在1500~3000mg/L之间,而RSS则取决于回流比R的大小,以及活性污泥的沉降性能和二沉池的运行状况。

4.活性污泥的有机负荷F/M

活性污泥的有机负荷是指单位质量的活性污泥,在单位时间内要保证一定的处理效果所能承受的有机污染物量,单位为kgBOD5/(kgMLSS·d)。活性污泥的有机负荷通常是用BOD5代表有机污染物进行计算的,因此也成为BOD负荷。F/M代表了微生物量与有机污染物之间的一种平衡关系,它直接影响活性污泥增长速率、有机污染物的去除效率、氧的利用率以及污泥的沉降性能。传统活性污泥工艺的F/M值一般在0.2~0.4 kgBOD5/(kgMLSS·d)之间,即每1000gMLVSS每天承受0.2~0.4kgBOD5,这属于中负荷范围。F/M较大时,由于有机污染物较充足,活性污泥中的微生物增长速度较快,有机污染物被去除的速率也较快,但此时的活性污泥的沉降性能可能较差。反之,F/M较小时,由于有机污染物不太充足,微生物增长速率较慢或基本不增长,甚至也可能减少,此时有机物被去除的速率也必然较慢,但这时活性污泥沉降性能往往较好。运行管理中应选择合适的F/M值,在有机物去除速率满足要求的前提下,污泥的沉降性能最佳。

5.溶解氧浓度

传统活性污泥工艺主要采用好氧过程,因而混合液中必须保持好氧状态,即混合液内必须维持一定的溶解氧DO浓度。DO是通过单纯扩散方式进入微生物细胞内的,因而混合液须有足够高的DO值,以保持强大的扩散推动力,将微生物好氧分解所需的氧强制“注入”微生物细胞体内。传统活性污泥法一般控制曝气池出口DO大于2.0mg/L。

6.剩余污泥排放量和污泥龄

剩余活性污泥的排放量用Q w 表示。剩余污泥排放是活性污泥系统运行控制中一项最重要的操作,Q w 的大小,直接决定污泥龄的长短。如从曝气池排放剩余活性污泥,则其浓度为混合液的污泥浓度MLVSS ;如果从回流污泥系统内排除剩余活性污泥,则其浓度为RSS 。绝大部分处理厂都从回流污泥系统排泥,只有当二沉池入流固体值严重超负荷时,才考虑从曝气池直接排放。

污泥龄是指活性污泥在整个系统内的平均停留时间,一般用SRT 表示。因为活性微生物基本上存在于活性污泥絮体中,因此,污泥龄也就是微生物在活性污泥系统内的停留时间。不同种类的微生物,具有不同的世代期。控制污泥龄是选择活性污泥系统中微生物的种类的一种方法。所谓世代期,是指微生物繁殖一代所需要的时间,如某种微生物群体数量增加一倍需要2d 的时间,则该种微生物的世代期就是2d 。如果某种微生物的世代期比活性污泥系统的泥龄长,则该类微生物在繁殖出下一代微生物之前,就被以剩余污泥的方式排走,该类微生物就不会在系统内繁殖起来。反之,如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此这种微生物就能在系统内繁殖起来。分解有机污染物的绝大部分微生物,其世代期都小于3d ,因此只要控制污泥龄大于3d ,这些微生物就能在活性污泥系统生存下来并得以繁殖,用于处理污水。而硝化杆菌的世代期一般为5d ,因此要在系统内培养出硝化杆菌,将NH 3—N 硝化成

N NO 3--,则必须控制SRT 大于5d 。

SRT 也直接决定着活性污泥系统中微生物的年龄大小。SRT 较大时,年长的微生物也能在系统中存在。而SRT 较小时,只有年轻的微生物存在,它们的“父辈或祖辈”早已被作为剩余污泥排走。一般而言,年轻的污泥活性高,分解代谢有机污染物的能力强,但凝聚沉降性能较差,而年长的污泥有可能已经老化,分解代谢能力较差,但凝聚沉降性能较好。通过调节SRT 可以选择合适的微生物年龄,使活性污泥既有较强的分解代谢能力,又有良好的沉降性能。传统活性污泥工艺一般控制SRT 在3~5d 。

7.曝气池和二沉池的水力停留时间

污水在曝气池内的水力停留时间一般用T a 表示。对于一定流量的污水,必须保证足够的池容,以便维持污水在曝气池内足够的停留,否则有可能将处理尚不彻底的污水排出曝气池,影响处理效果。T a 有时也叫污水的曝气时间,即污水在曝气池内曝气的时间。T a 有两种计算方法:

r

a a Q Q V T += (3-1) Q

V T a a = (3-2) 式中,V a 为曝气池容积;Q 和Q r 分别为入流污水量和回流污泥量。

前一种计算方法是污水在曝气池内的实际停留时间,后一种计算方法计算的时间实际上比实际停留的时间长,有时称为名义停留时间。当回流比相对恒定或较小时,可采用第二种,但当回流比较大时,应用第一种方法核算,检查污水实际接受曝气的时间是否充足。传统活性污泥工艺的曝气池名义停留时间一般为6~9d ,而实际停留时间则取决于回流比。

混合液在二沉池内的停留时间一般用T c 表示。T c 也有名义停留时间和实际停留时间,其计算如下:

r

c c Q Q V T += (3-3) Q

V T c c = (3-4) 式中,V c 为二沉池的容积;Q 和Q r 分别为入流污水量和回流污泥量。

T c 要足够大,以保证足够的时间进行泥水分离以及污泥浓缩。传统活性污泥工艺二沉池名义停留时间一般在2~3h 之间,实际停留时间往往取决于回流比的大小。

8.二沉池的水力表面负荷、固体表面负荷和出水堰溢流负荷

二沉池的水力表面负荷是指单位二沉池面积在单位时间内所能沉降分离的混合液流量,单位一般为m 3/(m 2·h),它是衡量二沉池固液分离能力的一个指标。对于一定的活性污泥来说,二沉池的水力表面负荷越小,固液分离效果越好,二沉池出水清澈。此外,控制水力表面负荷的大小还取决于污泥的沉降性能,沉降性能良好的污泥即使水力表面负荷较大,也能得到较好的泥水分离效果。如果污泥沉降性能恶化,则必须降低水力表面负荷。水力表面负荷可用q h 表示:

c

h A Q q = (3-5) 式中,Q 为入流污水量;A c 为二沉池的表面积。

传统活性污泥工艺中,q h 一般不超过1.2 m 3/(m 2·h)。

二沉池的固体表面负荷是指单位二沉池面积在单位时间内所能浓缩的混合液悬浮固体,

单位为kg/(㎡·h)。它是衡量二沉池污泥浓缩能力的一个指标。对于一定的活性污泥来说,二沉池的固体表面负荷越小,污泥在二沉池的浓缩效果越好,即二沉池排泥浓度越高。对于浓缩性能良好的活性污泥浓缩性能较差,则必须降低二沉池的固体表面负荷。固体表面负荷可用q s 表示,计算如下:

c

r s A MLSS Q Q q ?+=)( (3-6) 式中,Q 和Q r 分别为入流污水量和回流污泥量;MLSS 为混合液污泥浓度;A c 为二沉池的面积。

传统活性污泥工艺的固体表面负荷最大不超过150kgMLSS/(㎡·h)。

出水堰溢流负荷是指单位长度的出水堰板单位时间内溢流的污水量,单位为m 3/(m ·h)。出水堰溢流负荷不能太大,否则可能导致出流不均匀,二沉池内发生短流,影响沉淀效果。同时,溢流负荷太大,还导致溢流流速太大,出水易挟带污泥絮体。传统活性污泥工艺的二沉池堰板溢流负荷一般控制在5~10 m 3/(m ·h)。

9.二沉池的泥位和污泥层厚度

二沉池的泥位是指泥水界面的水下深度,用L s 表示。如果泥位太高,即L s 太小,便增大了出水溢流漂泥的可能性,运行管理中一般控制恒定的泥位。

污泥层厚度用H s 表示,H s 和L s 之和等于二沉池的水深。一般控制H s 不超过L s 的1/3。

四、传统活性污泥系统的变形工艺

传统活性污泥工艺最早采用的是活性污泥法,有时也成为标准活性污泥工艺或普通活性污泥工艺。具有以下特点:曝气池为推流式,采用空气曝气且沿池均匀曝气,有机负荷F/M 在0.2~0.5kgBOD 5/(kgMLVSS ·d)之间。随着活性污泥工艺的广泛应用,人们发现传统活性污泥工艺有很多缺点,在对这些缺点的改进过程中,出现工艺上的一些变形,或称为传统活性污泥法的变形工艺。

1.完全混合活性污泥法

这种工艺是在传统工业基础上,将曝气池由推流式改成完全混合式,以便提高抗冲击负荷能力。通过对F/M 值的调整,可以将完全混合曝气池内的有机物讲解反应控制在最佳状态。完全混合活性污泥法适用于处理工业废水,特别是高浓度的有机废水。完全混合法的一个缺点是易产生污泥膨胀。

2.逐点进水工艺

逐点进水工艺,也称阶段曝气工艺,该种工艺是在传统工艺基础上将曝气池一端进水改成延池多点进水,如图3-2所示。传统工艺曝气池前端F/M 高,可能产生供氧不足,而后段F/M 很低,可能产生供氧过剩。逐点进水工

艺能使全池F/M 基本一致,从而使全池曝气效

果均匀。该工艺另一个特点是污泥浓度延池长

逐渐降低,曝气池出口处排入二沉池的混合液

MLSS 浓度很低,有利于二沉池的固液沉降分

离。

3.渐减曝气工艺 传统工艺曝气量沿池长均匀分布,但实际需氧量则沿池长逐渐降低,造成沿池长氧量供需的反差。所谓渐减曝气工艺就是曝气量沿池长逐渐降低,与需氧量的变化相匹配,在保证供氧的前提下,降低能耗,如图3-3所示。实际上,新建的所有活性污泥工艺处理厂都设计成渐减曝气。对于典型的城市污水,如把曝气池

等分成三段,则每段占总曝气量的比例一般分别

为50%、35%、15%。

4.吸附再生工艺

有机污染物在污水中以悬浮态、胶态和溶解

态三种形式存在。传统工艺对这三种形式的有机

污染物的去除是在同一池子内完成的。活性污泥絮体以及絮体内微生物对悬浮态和胶态物质的吸附过程是非常快的。对于悬浮态和胶态有机污染物含量较高的城市污水,可以将曝气池分成两部分,一部分为吸附池,另一部分为再生池。在吸附池内,活性污泥利用较短的时间迅速完成对胶态和悬浮态污染物质的吸附。在再生池内活性污泥将吸附的有机污染物逐渐分解掉,这就是所谓的吸附再生工艺。与传统工艺相比,吸附再生工艺的F/M 比可适当提高,从而减小池容,降低投资。此外,再生池中基本没有营养物质,活性污泥处于“空曝”状态,这样一方面活性污泥微生物处于“饥饿”状态,进入吸附池后会产生更高的吸附速度,另一方面空曝状态能有效抑制丝状菌,使活性污泥不易产生膨胀现象。吸附池也叫接触池,再生池也叫稳定池,因此吸附再生工艺也称为接触稳定工艺。吸附池和再生池可以合建也可以分建,分别如图3-4和图3-5所示。

吸附再生工艺对污水具有一定的承受冲击负荷的能力,当吸附池的活性污泥受到破坏时,可以由再生池内的污泥进行补救。该工艺的缺点是,对于溶解性有机物含量较多的污水,

图3-2 逐点进水活性污泥工艺

图3-3 渐减曝气工艺

处理效果略差。

5.延时曝气工艺

传统活性污泥工艺属于中等负荷,F/M 比在0.2~0.5 kgBOD 5/(kgMLVSS ·d)之间。延时曝气工艺属于低负荷或超负荷活性污泥法,F/M 一般在0.15 kgBOD 5/(kgMLVSS ·d)以下。延时曝气工艺的特点是剩余污泥排放量少,臭味小,一般可不设初沉池,所有悬浮态的有机污染物质均在曝气池内被氧化分解。但延时曝气工艺池容比较大,曝气时间长,电耗相对较高。主要适用于处理水质要求高,而且有不易采用污泥处理的小型城镇工业废水,水量最好不超过1000m 3/h 。

6.高负荷活性污泥法

高负荷活性污泥工艺的F/M 比一般在0.5 kgBOD 5/(kgMLVSS ·d)以上,其特点是有机污染物去除速率较快,因此也称为高速曝气工艺,缺点是去除效率较低,产泥量较多。当F/M 大于1.5 kgBOD 5/(kgMLVSS ·d)时,则为高负荷工艺也称为修正曝气工艺。该工艺主要适用于对处理水质要求不高的污水处理。

7.纯氧曝气工艺

纯氧曝气工艺是将传统工艺的空气供氧改为用氧气直接供氧。纯氧曝气可使污水中的饱和溶解氧浓度提高几倍以上,供氧速度不再成为微生物活性的限制因素,曝气池的MLVSS 可以大幅度提高,从而降低F/M ,提高处理效果。纯氧曝气工艺总运转费用的高低主要取决于纯氧的来源。一种方式是由制氧厂集中供氧,污水处理厂内储存液态氧随时使用,这种方式一般适用20000m 3/d 以下的小型污水处理厂;另一种方式是在处理厂内现场制氧。目前,国内仅在石化行业的一些污水处理厂采用了纯氧曝气工艺,城市污水处理厂尚未采用。

采用纯氧曝气系统的主要效益:①氧利用率可达80%~90%,而鼓风曝气系统仅为10%左右;②曝气池内混合液的MLSS 值可达4000~7000mg/L ,能够提高曝气池的容积负荷;③曝气池混合液的SVI 值较低,一般都低于100,污泥膨胀现象较少发生;④产生的剩余污泥图3-4 分建式吸附再生工艺

图3-5

合建式吸附再生工艺

量少。

8.其他改进方法

除上述方法外,活性污泥法还有很多其他的曝气方法可以提高氧转移的效率,以提高处理效果,比如以下两种方法。

(1)深水曝气活性污泥法系统系统的主要特征是采用深度在7m以上的深水曝气池,这种曝气池具有优点有:①由于水压增大,加快了氧的传递速率,提高了混合液的饱和溶解氧浓度,有利于活性污泥微生物的增殖和对有机物的降解;②曝气池向竖向深度发展,降低了占用的土地面积。

该工艺有下列两种形式曝气池:①深水中层曝气池,水深在10m左右,但空气扩散装置设在深4m左右处,这样仍可使用风压为5m的风机,为了在池内形成环流和减少底部水层的死角,一般在池内设导流板或导流筒;②深水底层曝气池,水深仍在10m左右,空气扩散装置仍设于池底部,需使用高风压的风机,但无需设导流装置,自然在池内形成环流。

(2)浅层曝气活性污泥法系统浅层曝气曝气池的空气扩散装置多设置在曝气池的一侧,距水面约0.6~0.8m的深度。为了在池内形成环流,在池中心处设导流板。浅层曝气曝气池可使用低压鼓风机,有利于降低电耗。

第二节生物脱氮除磷工艺

传统活性污泥工艺能有效地去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮磷较多的污水排到湖泊或海湾等相对封闭的水体,则会产生富营养化,导致水体水质的恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要考虑污水的脱氮除磷。

采用化学或物理化学方法可以有效地脱氮除磷。例如折点加氯或吹脱工艺可以有效地去除氨和氮;采用混凝沉淀或选择性离子交换工艺可以去除磷。但这些方法的运行费用都较高,不适合水量一般都很大的城市污水处理。因此,城市污水的脱氮除磷大量采用的还是生物处理工艺。

根据受纳水体的使用功能和水质要求,城市污水生物脱氮除磷工艺功能可以分成以下几种:①去除污水中有机物、有机氮和氨氮;②去除BOD和脱氮,包括有机氮和氨氮及硝酸盐;

③去除污水中BOD和氮、磷,即完全的脱氮除磷。

生物脱氮除磷工艺在去除污水中BOD的同时,也能有效地去除氮和磷,满足上述脱氮除磷的功能要求,因而愈来愈受到人们的广泛重视。

一、生物脱氮除磷机理

(一)生物脱氮机理

1.生物脱氮过程

污水中的氮主要以下面几种形式存在:有机氮、氨氮、亚硝态氮和硝态氮。一般用来表

示氮含量的指标有:总氮(TN )、总凯氏氮(TKN )、硝酸盐氮(N NO 3--)、亚硝酸盐氮

(N NO 2--)以及氨氮(NH 3—N )。硝酸盐氮和亚硝酸盐氮统称为硝态氮(N NO x --

)。总凯氏氮(TKN )是指有机氮和氨氮之和。总氮(TN )则包括所有有机氮、无机氮,即

N NO N -+-+=--23NO TKN TN 脱氮过程即是各种形态的氮转化为氮气从水中脱除的过程。在好氧池中,污水中的有机氮被细菌分解成氨,硝化作用使氨进一步转化为硝态氮,然后在缺氧池中进行反硝化,硝态氮还原成氨气溢出。图3-6较为详细地显示了生物脱氮的过程。

原污水中的氮几乎全部以有机氮和氨氮形式存在,首先须通过生物硝化将其转化成硝酸盐,然后利用生物反硝化将其转化成氮气逸出污水,以达到脱氮的目的。

2.生物脱氮机理

(1)氨化作用 生物氨化是指微生物将有机氮转化为NH 3-N 的生物过程。一般的异氧微生物都能进行高效的氨化作用,即在细菌分泌的水解酶的催化作用下,有机氮化合物水解断开肽键,脱除羧基和氨基形成氨。在传统活性污泥工艺中,伴随BOD 5的去除,95%以上的有机氮会被转化成NH 3-N 。

(2)硝化作用 生物硝化作用是利用化能自养微生物将氨氮氧化成硝酸盐的一种生

图3-6 各种形态氮的生物转化

化反应过程。硝化作用由两类化能自养细菌参与,亚硝化单细胞菌首先将氨氮NH 3-N 氧化

成亚硝酸盐N NO --2,硝化杆菌再将N NO --

2氧化成稳定状态的硝酸盐N NO --3,反应式如下:

能量亚硝酸菌+++???→?++-+H O H NO O NH 25.12224

--??→?+3225.0NO O NO 硝酸菌

总反应为:

能量氧化+++??→?++-+H O H NO O NH 222324

(3)反硝化作用 生物反硝化是指污水中的硝酸盐,在缺氧条件下,被微生物还原为氮气的过程。参与这一生化反应的微生物是反硝化细菌,这是一类大量存在于活性污泥中的兼性异养菌,如产碱杆菌、假单胞菌、无色杆菌等菌属均能进行生物反硝化。在有氧存在的好氧状态下,反硝化菌能进行好氧生物代谢,氧化分解有机污染物,去除BOD 5;在无分子氧但存在硝酸盐的条件下,反硝化细菌能利用-

3NO 中的氧(又称为化合态或硝态氧),继续分解代谢有机污染物,去除BOD 5,并同时将-3NO 中的氮转化为氮气N 2。这个过程可以用下式表示:

-+-++↑???→?+OH O H N H NO 22)(62222反硝化细菌氢供体 -+-++↑???→?+OH O H N H NO 24)(102223反硝化细菌氢供体

3.生物硝化过程的主要影响因素

(1)温度 硝化细菌对温度的变化很敏感。在5~35℃的范围内,硝化细菌能进行正常的生理代谢活动,并随温度的升高,生物活性增大。在30℃左右,其生物活动增至最大,而在低于5℃时,其生理活动会完全停止。在生物硝化系统的运行管理中,当污水温度低于15℃时,硝化速率会明显下降,当温度低于10℃时,已经启动的硝化系统可以勉强维持,但如果硝化系统被破坏,在10℃以下再重新启动,培养硝化菌将是非常困难的。

在冬季,为保证一定的硝化效果,可以采用增大泥龄SRT 的方法来应付低温对硝化的影响。当污水温度在16℃之上时,采用8~10d 的泥龄即可;但当温度低于10℃时,应将泥龄SRT 增至12~20d 。

(2)pH 硝化细菌对pH 反应很敏感。在pH 为8~9的范围内,其生物活性最强,当pH <6.5或pH >9.6时,硝化菌的生物活性将受到抑制并趋于停止。在生物硝化系统中,

应尽量控制混合液的pH 大于7.0,当pH <7.0时,硝化速率明显下降。当pH <6.5,则必须向污水中加碱。

(3)有机负荷F/M 生物硝化属低负荷工艺,F/M 一般都在0.15

kgBOD 5/(kgMLVSS ·d)以下。负荷越低,硝化进行的越充分,NH 3-N 向 N NO --3转化的

效率就越高。有时为了使出水NH 3-N 非常低,甚至采用F/M 为0.05 kgBOD 5/(kgMLVSS ·d)的超低负荷。

(4)泥龄SRT 生物硝化系统的泥龄SRT 一般较长,主要是由于硝化菌增殖速度较慢,世代期长,如果不保证足够长SRT ,硝化细菌就培养不起来,也就得不到硝化效果。实际运行中,SRT 控制在多少,取决于温度等因素。但一般情况下,要得到理想的硝化效果,SRT 至少应在8d 以上。

(5)溶解氧DO 硝化工艺混合液的DO 应控制在2.0mg/L 以上,一般在2.0~3.0mg/L 之间。当DO 小于2.0mg/L 时,硝化将受到抑制;当DO 小于1.0mg/L 时,硝化将受到完全抑制并趋于停止。生物硝化系统需维持高浓度DO ,有以下原因:①硝化细菌为专性好氧菌,无氧时即停止生命活动,不像分解有机物的细菌那样,大多数为兼性菌;②硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧;③绝大多数硝化细菌包埋在污泥絮体内,只有保持混合液中较高的溶解氧浓度,才能将溶解氧“挤入”絮体内,便于硝化细菌摄取。

一般情况下,将每克NH 3-N 转化成N NO --3约需要4.57g 氧,对于典型的城市污水,

生物硝化系统的实际供氧量一般较传统活性污泥工艺高50%以上,具体取决于进水中有机氮和氨氮的浓度。

(6)BOD 5/TKN 入流污水中的BOD 5与TKN 之比是影响硝化效果的一个重要因素。BOD 5/TKN 越大,活性污泥中硝化细菌所占的比例越小,硝化速率NR 也就越小,在同样运行条件下硝化速率就越低;反之,BOD 5/TKN 越小,硝化速率越高。典型城市污水的BOD 5/TKN 大约为5~6,此时活性污泥中硝化细菌的比例约为5%;如果污水的BOD 5/TKN 增至9,则硝化菌比例将降至3%;如果BOD 5/TKN 减至3,则硝化细菌的比例可高达9%。当BOD 5/TKN 变小时,由于硝化细菌比例增大,部分细菌会脱离污泥絮体而处于游离状态,在二沉池不易沉淀,导致出水混浊。因而,对某一生物硝化系统来说,存在一个最佳BOD 5/TKN 值。很多处理厂的运行实践发现,BOD 5/TKN 值的最佳范围为2~3。

(7)有毒物质 某些重金属离子、络合阴离子、氰化物以及一些有机物质会干扰或

破坏硝化细菌的正常生理活动。当这些物质在污水中的浓度较高,便会抑制生物硝化的正常进行。例如,当铅离子大于0.5mg/L 、酚大于6.5mg/L 、硫脲大于0.076mg/L 时,硝化均会受到抑制。而当NH 3-N 浓度大于200mg/L 时,也会对硝化过程产生抑制,但城市污水中一般不会有如此高的NH 3-N 浓度。

4.生物反硝化过程的影响因素

(1)温度 反硝化细菌对温度变化不如硝化细菌那样敏感,但反硝化效果也会随温度变化而变化。温度越高,硝化速率也越高,在30~35℃时DNR 增至最大。当低于15℃时,反硝化速率将明显降低;至5℃时,反硝化将趋于停止。因此,在冬季要保证脱氮效果,就必须增大SRT ,提高污泥浓度或增加投运池数。

(2)pH 反硝化细菌对pH 变化不如硝化细菌敏感,在pH 为6~9的范围内,均能进行正常的生理代谢,但生物反硝化的最佳pH 范围为6.5~8.0。当pH >7.3时,反硝化的最终产物为N 2,而当pH <7.3时,反硝化最终产物为N 2O 。

(3)BOD 5/TKN 因为反硝化细菌是在分解有机物的过程中进行反硝化脱氮的,所以进入缺氧段的污水中必须有充足的有机物,才能保证反硝化的顺利进行。从理论上讲,当污水的BOD 5/TKN >2.86时,有机物即可满足需要。但由于BOD 5中的一些有机物并不能被反硝化细菌利用或迅速利用,而且另外一部分细菌在好氧段不进行反硝化时,也需要有机物。因此,实际运行中应控制BOD 5/TKN >4.0,最好在5.7之上。否则,应外加碳源,补充有机物的不足。常用的是工业用甲醇,因为甲醇是一种不含氮的有机物,正常浓度下对细菌也没有抑制作用。

(4)缺氧段溶解氧 在实际运行管理中,当DO 低于0.5mg/L 时,即可理解为“缺氧状态”。对细菌的微观生活环境而言,例如,在细胞体内,当游离的分子态溶解氧DO 为零,而存在足量的-3NO 时,反硝化细菌将只能利用-3NO 中的化合态氧分解有机物,并将

-3NO 中的氮转化成N 2。当存在一定量的DO 时,反硝化细菌则将优先利用游离态的DO 分解有机物,只有将DO 耗尽以后,才能利用-

3NO 中的化合态氧。因此,对反硝化来说,希望DO 尽量低,最好是零,这样反硝化细菌可以“全力”进行反硝化,提高脱氮效率。显然,在A/O 脱氮工业的缺氧段中,应使混合液的DO 尽量低。但是,实际运行中使DO 过分降低是非常困难的,大量混合液自好氧段末端回到缺氧段,必然会带回一定量DO 。但是,即使混合液中存在一定量的DO ,也不一定能进入细菌细胞体内被细菌利用,因为正常情况下DO 是以单纯扩散形式进入细胞体内的,要求混合液中有足够高的DO 浓度,才能将DO “挤

入”,而-3NO 进入细胞的扩散速度则较DO 快得多。

大量处理厂的运行实践证明:缺氧段混合液的DO 值控制在0.5mg/L 以下,可以得到良好的脱氮效果,当DO 高于0.5mg/L 时,脱氮效率明显下降。

(二)生物除磷机理

污水中的磷主要来自粪便、洗涤剂、农药和含磷工业污水等。污水中的磷,主要以磷酸盐(-42PO H 、-24HPO 、-

34PO )、聚磷酸盐和有机磷的形式存在。

20世纪70年代中期,人们在传统活性污泥工艺的运行管理中,发现一类特殊的兼性细菌,在好氧状态下能超量地将污水中的磷吸入体内,使体内的磷含量超过10%,有时甚至高达30%,而一般细菌体内的含磷量只有2%左右。这类细菌后来被广泛地用于生物除磷,称为聚磷菌或摄磷菌。最初只发现不动杆菌属的某些细菌具有聚磷作用,现在已发现并分离出60多种细菌和真菌都具有聚磷作用。

生物除磷就是利用这些细菌、藻类等微生物在某种特定条件下在它们体内的细胞内积储大大超过合成细胞所需的磷,并在厌氧条件下释放出来的原理,通过对微生物的这种过剩摄取和释放磷的控制,排除系统中的剩余污泥,达到生物除磷的目的。生物除磷过程分为以下两个阶段(见图3-7)。

图3-7 生物除磷的基本原理

DN —反硝化反应器(可有可无);PHB —聚-β-羟基丁酸盐

(1)厌氧阶段 使含磷化合物成溶解性磷,聚磷菌释放出积储磷酸盐。

(2)好氧阶段 聚磷菌大量吸收并积储溶解性磷化物中的磷,合成TAP 与聚磷酸盐。 聚磷菌是好氧菌,它在活性污泥中不是优势菌种,但能在厌氧环境中将聚磷酸水解。由于它在利用基质的竞争中比其他好氧菌占优势,从而利用它的大量繁殖,经过厌氧与好氧的交替,进行释磷与吸磷的过程,处理后的出水在沉淀池与活性污泥分离,从而通过排除富磷

的活性污泥而达到除磷目的。

磷的去除不同于BOD 被氧化成H 2O 和CO 2,也不同于NH 3-N 转变为N 2,它是通过摄取与释放来实现的,因此,在除磷过程中应尽量减少污泥系统中释放和污泥回流磷的数量。

二、缺氧好养A 1/O 生物脱氮工艺

(一)工艺流程

缺氧好氧(Anoxic-Oxic ,简称A 1/O )工艺流程开创于20世纪80年代初,由缺氧池和好氧池串联而成(图3-8)。由于将反硝化反应器放置在系统之前,故又称为前置反硝化生物脱氮系统。在反硝化缺氧池中,回流污泥中的反硝化菌利用原污水中的有机物作为碳源,将回流混合液中的大量硝态氮(N NO x --

)还原成N 2,达到脱氮的目的,然后再在后续的好氧池中进行有机物的生物氧化、有机氮的氨化和氨氮的硝化等生化反应。O 段后设沉淀池,部分沉淀污泥回流A 段,以提供充足的微生物。同时还将O 段内混合液回流至A 段,以保证A 段有足够的硝酸盐。

A 1/O 工艺的主要特点:①流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;②反硝化池不需外加碳源,降低了运行费用;③A 1/O 工艺的好氧池在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质;④缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷。同时缺氧池中进行的反硝化产生的碱度可以补偿好氧池中进行硝化反应对碱度的需要的一半左右。

A 1/O 工艺的主要缺点是脱氮效率不高,一般为70%~80%。此外,如果沉淀池运行不当,则会在沉淀池内发生反硝化反应,造成污泥上浮,使处理水水质恶化。尽管如此,A 1/O 工艺仍以它的突出特点而受到重视,该工艺是目前采用比较广泛的脱氮工艺。

(二)A 1/O 生物除氮系统的主要工艺参数及影响

(1)F/M 和SRT 在硝化反应中,影响硝化的主要因素是硝化菌的存在和活性,因为自养型硝化菌的最小比增殖速度为0.21/d ,而异氧型好氧菌的最小增殖速度为1.2/d ,前者比后者的比增殖速度小得多。要使硝化菌存活并占有优势,成为优占菌种,则要求污泥龄应

出水

图3-8 A 1/O 工艺流程图

大于4.76d ,但对于异氧型好氧菌,则污泥龄只需0.8d 。在传统活性污泥法中,由于污泥龄只有2~4d ,所以硝化菌不能存活并占优势,故不能完成硝化任务。对此,要加大曝气池容积或增加MLSS 的浓度,以降低有机负荷,从而增大污泥龄。试验证明,其污泥负荷率应小于0.18 kgBOD 5/(kgMLVSS ·d)。

硝化菌的平均世代时间约为3.3d (20℃),为了保证在硝化池内保持足够数量的硝化菌以进行N NH 4-+

硝化,设计的污泥龄应为硝化菌世代时间的3倍,否则硝化菌不能得到大量繁殖,影响硝化效果。

(2)混合液回流比R 混合液回流比的大小直接影响反硝化的脱氮效果。一般来说,混合液回流比升高,脱氮率也提高。但混合液回流比太高,工艺过程动力消耗太大,运行费用大大提高。根据在好氧池中的缺氧池中的硝化率和反硝化率为100%,并忽略细菌合成代谢所去除N NH 4-+的影响,A 1/O 工艺系统的脱氮率与混合液回流比可根据公式%1001%?+=R

R η来计算。 混合液回流比在200%以下时,则脱氮率随回流比增高而显著上升。但混合液回流比大于200%以后,脱氮率提高就比较缓慢了。一般地,混合液回流比的取值为200%~500%,太高则动力消耗太大,故A 1/O 工艺的脱氮率一般为70%~80%,难以达到90%。

(3)水力停留时间 要使脱氮效率达到70%~80%,硝化反应的水力停留时间不应小于6h ,而反硝化反应的水力停留的时间在2h 之内即可。一般,硝化与反硝化的水力停留时间比为3:1,否则,脱氮效率速度下降。

(4)DO 值 硝化好氧池中的DO 值应控制在2.0mg/L 左右,以保证硝化菌的好氧状态,并要满足其“硝化需氧量”的要求。

(5)pH 硝化菌对pH 的变化十分敏感,最佳的pH 是8.0~8.4。随着硝化反应的进行,混合液的pH 下降。为了保持适宜的pH ,就应当在废水中保持足够的碱度,从而起到缓冲作用。通常来说,1g 氨态氮(以N 计)完全硝化约需碱度7.1g (以CaCO 3计)。而反

硝化过程中产生的碱度(3.57g 碱度/g N NO x --)可补偿硝化反应耗碱度的一半左右。

反硝化反应最适宜的pH 为6.5~7.5,此时反硝化速率最高,当大于8或低于6时,则反硝化速率大为下降。

(6)温度 硝化反应适宜温度是20~30℃,在15℃以下时,硝化速率下降,5℃时则完全停止。而反硝化反应的适宜温度为20~40℃,低于15℃时,反硝化菌的增值速率降

低,代谢速率随之也降低,使反硝化速率下降。因此,在冬季低温季节,应考虑采取提高反硝化的污泥龄、降低负荷率、提高废水停留时间等措施来保持一定的反硝化速率。

(7)BOD 5和溶解性BOD 5/N NO x --的比值 进入硝化反应池(好氧池)的BOD 5

值在80mg/L 以下。当BOD 5浓度过高时,导致异氧型细菌迅速繁殖,从而使自养型硝化菌得不到优势而不能称为优占种属,则硝化反应无法进行。

污水中的溶解性BOD 5/N NO x --的比值应大于4,否则使反硝化速率很快下降。当该

比值小于4时,需另投加有机碳源,如甲醇(CH 3OH )。

三、厌氧/好养A 2/O 生物除磷工艺

(一)工艺流程

厌氧/好氧(Anaerobic-Oxic ,简称A 2/O )工艺的作用在于去除有机物的同时去除污水中的磷,整个流程由沉砂池、厌氧池、好氧池和二沉池组成,其工艺流程如图3-9所示。

城市污水和回流污泥进入厌氧池,并借助水下推进式搅拌器的作用使其混合。回流污泥中聚磷菌在厌氧池可吸收去除一部分有机物,同时释放出大量磷。然后混合液流入后段好氧池,污水中的有机物在其中得到氧化分解,同时聚磷菌从污水中吸收更多的磷,然后通过排放富磷剩余污泥而使污水中的磷得到去除。对于低温、低有机物浓度的生活污水,因活性污泥增殖较少,难以通过排放剩余污泥达到除磷效果,宜用旁路除磷工艺达到除磷效果。好氧池在良好的运行状况下,整个A 2/O 工艺的BOD 5去除率大致与一般活性污泥法相同,传统活性污泥工艺排放的剩余污泥中,平均仅含有2%左右的磷,而在A 2/O 除磷工艺排放的剩余污泥中,平均含磷量则在4%~6%,最高可达7%。反应池内水力停留时间较短,一般厌氧池1~2h ,好氧池2~4h ,总共3~6h ,厌氧池与好氧池的水力停留时间之比一般为(1:

2)~(1:3)。而磷的去除率为70%~80%,处理后出水磷的浓度一般都小于1.0mg/L 。

(二)A 2/O 生物除磷系统的主要工艺参数及影响

(1)F/M 与SRT A 2/O 生物除磷工艺是一种高F/M 低SRT 系统。这是因为磷的去除是通过排放剩余污泥完成的。F/M 较高时,SRT 较小,剩余污泥排放量也就较多,因而在污泥含磷量一定的条件下,除磷量也就越多。但SRT 不能太低,必须以保证BOD 5的有效去除为前提。另外,SRT 对污泥的含磷量也有影响,一般认为SRT 在7~10d 时,污泥中的

图3-9 A 2/O 工艺流程

含磷量最高,但并不意味着必须在这个范围内运行,因为总的还应着眼于总磷量。有的处理厂发现,当SRT大于15d时,除磷效率在50%以下,而当SRT降至6d以下时,除磷效率升至80%以上。

(2)回流比R A2/O除磷系统的R不宜太低,应保持足够的回流比,尽快将二沉池内的污泥排出,防止聚磷菌在二沉池内遇到厌氧环境发生磷的释放。在保证快速排泥的前提下,应尽量降低R,以免缩短污泥在厌氧段的实际停留时间,影响磷的释放。已经证明,A2/O除磷系统的污泥沉降性能一般都良好,R想50%~70%范围内,即可保证快速排泥。而有的处理厂将R降至25%,也未发现磷在二沉池大量释放。

(3)水力停留时间污水在厌氧段的水力停留时间一般在1.5~2.0h的范围内。停留时间过短,一是不能保证磷的有效释放,二是污水中的兼性酸化菌不能充分地将污水中的大分子有机物(如葡萄糖)分解成低级脂肪酸(如乙酸),以供聚磷菌摄取,影响磷的释放。停留时间太长,不但没有必要,还可能产生一些负作用。污水在好氧段的停留时间一般在4~6h,即可保证磷的充分吸收。

(4)溶解氧DO 厌氧段应尽量保持严格的厌氧状态,实际运行中应控制DO在0.2mg/L以下。因为聚磷菌只有在严格的厌氧状态下,才进行磷的释放,如果存在DO,则聚磷菌将首先利用DO吸收磷或进行好氧代谢,显然会大大影响其在好氧段对磷的吸收。大量实践证明,只有保证聚磷菌在厌氧段有效地释放磷,才能使之在好氧段充分地吸收磷,从而保证应有的除磷效果。放磷越多,则吸磷越多,吸磷量与放磷量成正比。厌氧状态下,聚磷菌每多释放1mg磷,进入好养状态后就可多吸收2.0~2.4mg磷。

好氧段的DO应保持在2.0mg/L之上,一般控制在2.0~3.0mg/L之间。这是因为聚磷菌只有在绝对好氧的环境中才能大量吸收磷。另外,保持好氧段的高氧环境,还可以防止聚磷菌进入二沉池后,由于厌氧而产生磷的释放。

(5)BOD5/TP 要保证除磷效果,应控制进入厌氧段的污水中的BOD5/TP大于20,以保证聚磷菌对磷的有效释放。聚磷菌大多为不动菌属,其生理活动较弱,只能摄取有机物中极易分解的部分,即只能吃到“极可口”的食物,例如乙酸等挥发性脂肪酸,对于BOD5中的大部分有机物,例如固态的BOD5部分、胶态的BOD5部分,聚磷菌是不能吸收的,甚至对已溶解的葡萄糖,聚磷菌也“懒”得摄取。因而在运行控制中,如能测得BOD5中极易分解的那部分有机物量,将是非常有用的,但实际中很难办得到。国外一些处理厂运行控制中,常将SBOD5/TP作为控制指标,SBOD5是溶解性BOD5或过滤性BOD5。根据以上分析,采用SBOD5/TP控制运行要比单纯采用BOD5/TP准确的得多。有些处理厂运行发现,要使

城市污水处理工艺流程

城市污水处理工艺流程 曝气生物滤池 工艺简介 曝气生物滤池(Biological Aeration Filtration),就是在生物滤池处理装置中设置填料,通过人为供氧,使填料上生长大量的微生物。曝气生物滤池由滤床、布气装置、布水装置、排水装置等组成。曝气装置采用配套专用曝气头,产生的中小气泡经填料反复切割,达到接近微控曝气的效果。由于反应池内污泥浓度高,处理设施紧凑,可大大节省占地面积,减少反应时间。 工艺流程 工艺特点 ①克服了污泥膨胀,处理效果稳定,运行管理简单。②改变了传统的高负荷生物滤池自然通风的供气方式,人为供氧,强化处理效果,出水水质提高。③耐冲击负荷能力强,特别适合于工业废水所占比例越来越高的现代城市污水处理。 ④生物填料对空气有相互切割作用,可以明显提高氧气利用率。⑤根据需要可以组合成具有生物除磷脱氮功能的A2/O工艺。⑥采用中小气泡专用曝气头,杜绝了微孔曝气头容易堵塞、破裂的缺陷。⑦采用北京桑德环保产业集团开发的特种生物填料,污泥浓度高,处理设施紧凑,占地面积小。 应用范围

中、小型城市污水处理厂 城市污水SPR除磷工艺 工艺简介 水体富营养化主要原因是人类向水体排放了大量的氨氮和磷,磷更是水体富营养化的最主要因素。纵观国内污水处理厂,除磷技术一直是困扰污水处理厂运行的难题。传统的物化除磷技术需要大量的药剂,具有运行成本高,污泥产量大的缺点;前置厌氧的生物除磷工艺具有运行费用低的优点,但是由于完全依赖于微生物的摄磷、释磷作用,难以达到国家污水综合排放的要求。当考虑中水回用时,则更难以达到要求。为此,我公司在现有的物化除磷与生化除磷的技术基础上,结合我公司的实际工程经验,开发出了城市污水深度除磷技术—SPR除磷工艺。该工艺以厌氧生物除磷机理为主要技术依托,采用SPR除磷工艺,通过强化厌氧释磷,并辅以物化沉淀去除释放磷的方法,达到整个生化处理系统的除磷要求。 工艺流程 工艺特点 ①除磷效果好,较传统的前置厌氧除磷的释磷效果增大10倍以上,回流污泥的摄磷能力也可以提高很多倍。②运行稳定可*,在进水TP 7mg/L的条件下,

水处理工艺流程

1污水的分类及其来源 根据废水来源可分为城镇污水和农业废水。城市废水又分为:生活污水工业污水雨水 A生活污水 *主要包括粪便水、洗浴水、洗涤水和冲洗水。 *来源:除家庭生活排的废水外还有集体单位和公共事业单位排出的废水。 生活污水以有机物污染为主、可生化性好、但随着饮食结构的改变尤其是治病的新药层出不穷,部分排泄物与生活污水混为一体使污水结构趋于复杂并使处理效果的难度增加。 B工业污水 *是工业生产过程排放的废水,由工业生产车间与厂矿排出的绝大部分工业废水是用于冷却、洗涤及地面冲洗,因此,里面会含有工业生产所用的原料、产品、副产品、和中间产物。 *工业废水的排放特点:1具有排放量大、方式多、范围广。2种类繁多,浓度波动范围大。3迁移变化规律差异大。4毒性强、危害大。5 不宜治理,恢复困难 C雨水 *雨雪降至地面形成地表径流,工业废渣和垃圾堆放厂冲刷排水随着

时间季节环境的变化其成分复杂 D农业废水 *农业废水包括农田灌溉,畜牧业养殖,食品生产加工等过程中废液的排放,分散面积广,不易集中,治理困难。农药化肥,有机富营养物的含量较高 污水污染程度表示指标: 1) BOD -定义:水中有机污染物被好氧微生物分解至无机物时所消 耗的溶解氧的量。 ?指标:在20 C水温下,5d的BOD约占总BOD的70%—80%, 常用BOD20作为总生化需氧量La,工程上常用BOD5作为可生 物降解有机物的综合浓度指标。BOD意义: 直接反应水体中的有机污染情况 能表征易生物降解的有机物 BOD/COD>0.3才认为可采用生物处理 定义:在一定的严格的条件下,水中还原性物质与外 加的强氧化K2Cr2O7,KMnO4等)作用时所消耗的氧量,用 氧(O2)的mg/L表示。COD综合反映有机物质相对含量。

典型输油工艺流程

典型输油工艺流程 一、工艺流程的设计原则及要求 (1)工艺流程设计应符合设计任务书及批准的有关文件的要求,并应符合现行国家及行业有关标准、规范及规程的要求。 (2)工艺流程应能实现管道必需的各种输油操作,并且应体现可靠的先进技术,应采用新工艺、新设备、新材料,达到方便操作、节约能源、保障安全的目的。 (3)工艺流程设计力求简洁、适用。尽可能减少阀门及管件的设置,管线连接尽可能短捷。 (4)工艺流程的设计除满足正常输油的功能要求外,还应满足操作、维修、投产、试运的要求。当工程项目有分期建设需要时,还应能够适应工程分期建设的衔接要求。 (5)工艺流程图中,工艺区域编号及设备代号应符合《油气管道监控与数据采集系统通用技术规范》Q/SY 201的规定;所有的机泵、阀门等设备均应有独立的编号,重要阀门应有固定的编号。 二、各类站场的典型工艺流程 (一)输油首站 1.输油首站典型工艺流程说明 (1)对于需要加热输送的输油首站,加热设施应设在给油泵与外输泵之间,加热设施可采用直接加热炉,也可采用间接加热系统,由于加热方式的不同,工艺流程也不相同。为节约能源,加热系统应设冷热油掺合流程。 (2)对于加热输送的管道,根据我国输送油品的性质和管道在投产运行初期低输量的特点,在投产前试运期间,需要通过反输热水建立稳定的管道沿线温度场,为确保管道输油安全,必要时还应设置反输流程。 (3)为方便管道管理,必要时可设置计量流程,流量计应设在给油泵与外输泵之间,加热系统之后。流量计的标定可采用固定方式,也可采用移动方式。 (4)与油罐连接的进出油管线,可采用单管,在油罐区外设罐区阀组,油罐的操作阀门集中设置,这种安装方式,阀门在罐区外操作,阀门的动力电缆和控制电缆不进罐区,比较安全,但相对罐区管网管材量较大。也可以采用双管,操作阀门设在罐区内。

典型输油站场工艺流程教材

第三章输油站场及阀室 第一节典型输油站场工艺流程 一、工艺流程的设计原则及要求 (1)工艺流程设计应符合设计任务书及批准的有关文件的要求,并应符合现行国家及行业有关标准、规范及规程的要求。 (2)工艺流程应能实现管道必需的各种输油操作,同时应体现可靠的先进技术,应采纳新工艺、新设备、新材料,达到方便操作、节约能源、保障安全的目的。 (3)工艺流程设计力求简洁、适用。尽可能减少阀门及管件的设置,管线连接尽可能短捷。 (4)工艺流程的设计除满足正常输油的功能要求外,还应满足操作、维修、投产、试运的要求。当工程项目有分期建设需要时,还应能够适应工程分期建设的衔接要求。 (5)工艺流程图中,工艺区域编号及设备代号应符合《油气管道监控与数据采集系统通用技术规范》Q/SY 201的规定;所有的机泵、阀门等设备均应有独立的编号,重要阀门应有固定的编号。 二、各类站场的典型工艺流程 (一)输油首站 1.输油首站典型工艺流程讲明

(1)关于需要加热输送的输油首站,加热设施应设在给油泵与外输泵之间,加热设施可采纳直接加热炉,也可采纳间接加热系统,由于加热方式的不同,工艺流程也不相同。为节约能源,加热系统应设冷热油掺合流程。 (2)关于加热输送的管道,依照我国输送油品的性质和管道在投产运行初期低输量的特点,在投产前试运期间,需要通过反输热水建立稳定的管道沿线温度场,为确保管道输油安全,必要时还应设置反输流程。 (3)为方便管道治理,必要时可设置计量流程,流量计应设在给油泵与外输泵之间,加热系统之后。流量计的标定可采纳固定方式,也可采纳移动方式。 (4)与油罐连接的进出油管线,可采纳单管,在油罐区外设罐区阀组,油罐的操作阀门集中设置,这种安装方式,阀门在罐区外操作,阀门的动力电缆和操纵电缆不进罐区,比较安全,但相对罐区管网管材量较大。也能够采纳双管,操作阀门设在罐区内。 (5)倒罐流程可在管线停输和不停输两种情况下进行,后者流程较为复杂,需设专门的倒罐泵。为了简化流程,也可不设专门的倒罐流程,采纳给油泵在停输的情况下进行倒罐。 (6)输油泵依照需要可采纳串联、并联或串并结合的运行方式,由于输油泵运行方式的不同,管线的连接流程也不相同。 (7)当原油采纳热处理输送时,为节约能源,热处理后的原油应采纳急冷方式与冷油进行换热,再输油泵前设置冷、热油换热器。当采纳加剂输送时,降凝剂应在油品加热前注入,减阻

(工艺技术)污水处理厂工艺

污水处理厂工艺 污水处理厂工艺的选择,直接关系到一个地区污水处理的效果,关系到整个地区的可持续发展和环境建设。处理厂工艺是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合。而污水处理厂工艺的选择,直接关系到建设费用和运行费用的多少、处理效果的好坏、占地面积的大小、管理上的方便与否等关键问题。因此,在进行污水处理厂设计时,必须做好工艺流程的比较,以确定最佳方案。 1?污水处理级别的确定 选择污水处理工艺流程时首先应按受纳水体的性质确定出水水质要求,并依此确定处理级别,排水应达到国家 排放标准(GB8978- 1996)。设市城市和重点流域及水资源保护区的建制镇必须建设二级污水处理设施;受纳水体为封闭或半封闭水体时,为防治富营养化,城市污水应进行二级强化处理,增强除磷脱氮的效果;非重点流域和非水源保护区的建制镇,根据当地的经济条件和水污染控制要求,可先行一级强化处理,分期实现二级处 理。 2. 工艺流程选择应考虑的因素 2.1技术因素 处理规模;进水水质特性,重点考虑有机物负荷、氮磷含量;出水水质要求,重点考虑对氮磷的要求以及回用 要求;各种污染物的去除率;气候等自然条件,北方地区应考虑低温条件下稳定运行;污泥的特性和用途。 2.1经济因素 批准的占地面积,征地价格;基建投资;运行成本;自动化水平,操作难易程度,当地运行管理能力。 3. 工艺流程选择的原则 保证出水水质达到要求;处理效果稳定,技术成熟可靠、先进适用;降低基建投资和运行费用,节省电耗;减 小占地面积;运行管理方便,运转灵活;污泥需达到稳定;适应当地的具体情况;可积极稳妥地选用污水处理新技术。 4. 处理工艺 4.1 一级强化处理工艺 一级强化处理,应根据城市污水处理设施建设的规划要求和建设规模,选用物化强化处理法、水解好氧法前段 AB法前段工艺、工艺、高负荷活性污泥法等技术。

常见污水处理工艺介绍范文

常见污水处理工艺介绍 污水处理厂处理流程: 污水进入厂区先通过 1. 截流井(让厂能处理的污水进入厂区进行处理) 2. 粗格栅(打捞较大的渣滓) 3. 污水泵(提升污水的高度) 4. 细格栅(打捞较小的渣滓) 5. 沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除) 6. 生化池(采用活性污泥法去除污水里的 BOD5 SS 和以各种形式的氮或磷) 7. 终沉池(排除剩余污泥和回流污泥) 型滤池(进一步减少 SS,使岀水达到国家一级标准)进入紫外线 9. 消毒(杀灭水中的大肠杆菌) 10. 岀水 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理 ,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级 BOD —般可去除 30%左右,达不到排放标准。一级处理属于 二级处理的预处理。 二级处理 ,主要去除污水中呈胶体和溶解状态的有机污染物质 达 90%以上,使有机污染物达到排放标准。 三级处理 ,进一步处理难降解的有机物、氮和磷等能够导致的可溶性无机物等。主要方法 有生物脱氮除磷法,混凝沉淀法,砂滤法,,离子交换法和电渗分析法等。 整个过程为通过粗的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂 池,经过砂水分离的污水进入初次沉淀池,以上为一级处理 ( 即物理处理 ) ,初沉池的岀水进入 生物处理设备,有和生物膜法, ( 其中活性污泥法的反应器有,氧化沟等,生物膜法包括生物滤 池、生物转盘、和生物流化床 ) ,生物处理设备的岀水进入二次,二沉池的岀水经过消毒排放或 者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物除磷法,混凝沉淀法,砂 滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生 物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被 最后利用。 工艺选择 ( 1)按城市污水处理及污染防治技术政策推荐,日处理能力在 20 万立方米以上(不包括 20 万立方米 /日)的污水处理设施,一般采用常规活性污泥法。也可采用其他成熟技术;日处理能力在 10-20 万 立方米的污水处理设施,可选用常规活性污泥法、氧化沟法、 SBR 法和AB 法等成熟工艺;日处理能力在 10万立方米以下的污水处理设施,可选用氧化沟法、 SBR 法、水解好氧法、 AB 法和生物滤池法等技术,也可选用常规活性污泥法。 ( 2)按城市污水处理及污染防治技术政策要求,在对氮、磷污染物有控制要求的地区,应采用具备较 强的除磷脱氮功能的二级强化处理工艺。 日处理能力在 10 万立方米以上的污水处理设施, 一般选用 A/O 法、 A/A/O 法等技术。也可审慎选用其他的同效技术;日处理能力在 10 万立方米以下的污水处理设施, 处理的要求。经过一级处理的污水, (BOD , COD 物质),去除率可

污水处理厂的工艺流程设计

目录 设计任务书 2 第一章环境条件 4 第二章设计说明书 5 第三章污水厂工艺设计及计算 7 第一节格栅 7 第二节推流式曝气池 9 第三节沉淀池 11 第四节混凝絮凝池 14 第五节气浮池 15 第六节污泥浓缩池 17 第七节脱水机房 19 第八节其他 19 第四章水头损失 21 第五章总结与参考文献 22

设计任务书 1 设计任务: 某化工区2.5万m3/d污水处理厂设计 2 任务的提出及目的,要求: 2.1 任务的提出及目的: 随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。近年来,大型污水处理厂建设数量相对减少,而中小型污水厂则越来越多。如何搞好中、小型污水处理厂,特别是小型污水厂,是近几年许多专家和工程技术人员比较关注的问题。 根据所确定的工艺和计算结果,绘制污水处理厂总平面布置图,高程图,工艺流程图。 2.2 要求: 2.2.1 方案选择合理,确保污水经处理后的排放水质达到国家排放标准 2.2.2 所选厂址必须符合当地的规划要求,参数选取与计算准确 2.2.3 全图布置分区合理,功能明确;厂前区,污水处理区污泥处理区条块分割清楚。延流程方向依次布置处理构筑物,水流创通。厂前区布置在上风向并用绿化隔离带与生产区隔离,以尽量减少对厂前区的影响,改善厂前区的工作环境。 2.2.4 构筑物的布置应给厂区工艺管线和其他管线设有余地,一般情况下,构筑物外墙距道路边不小于6米。 2.2.5 厂区设置地坪标高尽量考虑土方平衡,减少工程造价,同时满足防洪排涝要求。 2.2.6 水力高程设计一般考虑一次提升,利用重力依次流经各个构筑物,配水管的设计需优化,以尽量减少水头损失,节约运行费用, 2.2.7 设计中应该避免磷的再次产生,一般不主张采用重力浓缩池,而是采用机械浓缩脱水的方式,随时将排出的污泥进行处理。 2.2.8 所选设备质优、可靠、易于操作。并且设计必须考虑到方便以后厂区的改造。 2.2.7 附有平面图,高程图各一份。 3 设计基础资料: 该区为A市重要的工业及化工区,化工业门类比较齐全,主要为石油化工类,并规模较大,具有的化工厂目前为十多家,每天排出生活污水量8000m3左右,工业废水量为18000m3,污水BOD、COD、SS、酸、碱、硫化物、石油、苯等浓度较高,若未经处理处理直接排海,将会对生态环境造成重大影响,根据化工区规划,必须建设一座污水处理厂。 3.1 水量 最大时水量:1042m3/h 总设计规模为25000m3/d。(远期设计规模为:100000 m3/d)

污水处理厂工艺流程图

污水处理工艺流程图 污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水 生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运 主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理 sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理. 一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理. 二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD 物质).去除率可达90%以上.使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用.

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

纯水处理工艺流程-基础-培训版

给水处理的目地和对象 。给水处理的目的与任务是什么? 答:目的与任务是对从水源取得的水进行适当的净化处理,得到质量符合用户要求的水质。 。天然水杂质按它们在水中存在的状态分为哪三类? 答:分为悬浮物、胶体杂质和溶解物三类。 悬浮物 1.什么是悬浮物 --指杂质颗粒直径在10-4㎜以上的微粒。它们常悬浮于水中,产生浑浊现象。2. 悬浮物的构成 --漂浮的:如草本植物等; 悬浮的:如一些动植物的微小碎片,纤维或死亡的腐烂产物等; 沉降的:如泥沙、粘土之类的无机化合物。 3. 悬浮物的特点 --在水中很不稳定,分布也很不均匀,是一种比较容易除去的杂质。 悬浮物是造成水质浊度、色度、气味的主要来源。它们在水中的含量也不稳定,往往随着季节、地区的不同而变,这些杂质凭肉眼可以看见。水静止的时候,较重的微粒(主要是沙子和泥土一类的无机物质)会沉淀下去,轻的微粒(主要是动植物及其残骸的一类有机化合物)会浮在水面上,这些用过滤分离的方法可以除去。 一、沉降类的混砂、粘土的危害: (1)使水浑浊,沉积于各配管装置系统的锅炉,热交换器中; (2)产生粘泥; (3)沉积在树脂中,影响离子交换,使工交下降。 二、漂浮、悬浮类的藻类、微生物的危害: (1)产生色度,并有臭味; (2)产生粘泥。 三、还有某些有机物的危害: (1)产生沉积; (2)污染树脂; (3)进入锅炉,发生起泡现象,从而产生汽水共腾现象,影响蒸汽品质。

胶体 1.什么是胶体 --分散质粒子在1nm—100nm之间的分散系;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。 通俗的讲,用一束激光从胶体射出,如果能看到一条光亮的通路,那就是胶体。 2. 胶体的构成 --分散剂类:气溶胶,固溶胶,液溶胶; 分散质类:分子胶体、粒子胶体; 1、气溶胶:烟、云、雾; 固溶胶:烟水晶、有色玻璃; 液溶胶:蛋白溶液,淀粉溶液,肥皂水,人体的血液。 2、分子胶体:淀粉胶体,蛋白质胶体; 粒子胶体:土壤。 3. 胶体的特点 --能发生丁达尔现象,聚沉,产生电泳,可以渗析。 刚才胶体的通俗讲法所用检验方法就是丁达尔现象。 最大的危害就是容易堵塞反渗透膜,十分不利于RO的清洗工作。 (天然水中的胶体等大多带有负电荷,这种胶体由带正电的胶核与带负电荷的外层所构成,由于胶体的多层结构及水化作用,因而胶体能悬浮于水中,由于胶体带负电荷的外层与其他胶体带正电荷的胶核相互吸引,使许多带有相同电荷的胶体粒子同时存在,但粒子之间并不实际接触。) 地下水及地表水均含有铁、铝、硅、有机质等物质,它们和预处理时加入的混凝剂、助凝剂、阻垢剂等形成胶体沉积在膜表面造成胶体污染。 胶体物污染难处理是由于带有同种电荷,比较稳定,不易沉降,易污染膜,导致水通量下降。一般这种趋向用污染指数(SDI)进行评价。通常当SDI<3时,膜表面不产生此类污;当SDI>3时,会发生污堵。 给水处理前后期对象 。给水处理中,前期净化要去除的对象是什么? 答:悬浮物和胶体杂质。 。给水处理中,后期淡化和除盐的对象是什么? 答:水中各种溶解盐类包括阴阳离子。

污水处理工艺流程图

污水处理工艺流程图

污水处理工艺流程图 污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理 sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某

些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理. 一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理. 二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD物质).去除率可达90%以上.使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括

电厂化学水处理工艺流程

化学水处理系统一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (口mol/L)溶解氧 (卩g/L)电导率 (s/cm)二氧化硅 (口g/L) PH值 (25 C )二氧化碳 (u g/L) 标准 < 30 < 50 10 < 20 8.8 ?9.2 < 20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离 子(Ca2+)和镁离子(Mg廿)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2 +内含6.02 X 1023个钙离子)。如果1L溶液中含有1g Ca2 +,那么它的摩尔浓度是1/80 = 0.0125mol/L = 12.5mmol/L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危

害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物, 这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下, 就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中, 结有1mm厚的水垢时,其燃料用量就比原来的多消耗1.5 %? 2.0%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低, 从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后, 必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2. 热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO,离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时, 还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

城镇污水处理厂中常用工艺介绍

城镇污水处理厂中常用工艺介绍 摘要:简要叙述现国内的污水厂常用的水处理工艺的优缺点及适合条件和现有多数污水厂存在的常见问题。从实际问题出发,根据本工程的具体条件,具体要求,根据处理水的出水水质要求,选择合适的污水处理工艺。 关键词:城镇;污水;设计; 前言:随着城市工业生产的发展,城市人口的递增,城市规模的扩大,工业废水和生活污水排出量日益增多,大量未经处理的污水直接排入周围河流,致使城市周围环境污染十分严重,不但直接污染了市区的地下饮用水,而且对河流下游地区的农业生产和人民生活造成了危害,人类和生物赖以生存的生态环境受到了日益严重的威胁[1]。同时,水生态系统体现了人与水的和谐共存与协调发展,是城市生态系统的主要组成部分和关键因素,与一个城市的可持续发展密切相关。因而,城市污水治理已成当前迫切需要解决的问题之一。 1国内污水厂常用工艺 1.1 AO法工艺 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,是脱氮除磷阶段;O(Oxic)是好氧段,是去除水中的有机物的阶段。 A/O法脱氮工艺的特点: (1)流程简单,不需外加碳源和曝气池,以原污水作为碳源,建设和运行费用较低; (2)反硝化阶段在前,硝化阶段在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分; (3)为使硝化残留物得以进一步去除,在后面设置曝气池,提高处理水水质; (4)A阶段搅拌,使污泥悬浮,避免DO增加。O阶段的前段采用强曝气,后阶段减少氧气量,使内循环液的DO降低,以保证A阶段的缺氧状态。 A/O法存在的问题: (1)A/O法由于没有独立的污泥回流系统,故不能培育出具有独特功能的污泥,所以降解难降解有

(工艺流程)典型的汽车零件的加工工艺流程

汽车发动机连杆加工工艺分析 3.1 汽车发动机连杆结构特点及其主要技术要求 连杆是汽车发动机中的主要传力部件之一,其小头经活塞销与活塞联接,大头与曲轴连杆轴颈联接.气缸燃烧室中受压缩的油气混合气体经点火燃烧后急剧膨胀,以很大的压力压向活塞顶面,连杆则将活塞所受的力传给曲轴,推动曲轴旋转。 连杆部件由连杆体,连杆盖和螺栓、螺母等组成。在发动机工作过程中,连杆要承受膨胀气体交变压力和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的重量,以减小惯性力。连杆杆身的横截面为工字形,从大头到小头尺寸逐渐变小。 为了减少磨损和便于维修,在连杆小头孔中压入青铜衬套,大头孔内衬有具有钢质基底的耐磨巴氏合金轴瓦。 为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大。因此,在连杆部件的大、小头端设置了去不平衡质量的凸块,以便在称重后切除不平衡质量。 连杆大、小头两端面对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等。 连杆小头的顶端设有油孔,发动机工作时,依靠曲轴的高速转动,气缸体下部的润滑油可飞溅到小头顶端的油孔内,以润滑连杆小头铜衬套与活塞销之间的摆动运动副。 连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等.连杆总成的技术要求如下: (1)为了保证连杆大、小头孔运动副之间有良好的配合,大头孔的尺寸公差等级为IT6,表面粗糙度Ra值应不大于0.4μm,小头孔的尺寸公差等级为IT5,表面粗糙度Ra 值应不大于0.4μm。对两孔的圆柱度也提出了较高的要求,大头孔的圆柱度公差为0.006mm,小头孔的圆柱度公差为0.00125mm。 (2)因为大、小头孔中心距的变化将会使气缸的压缩比发生变化,从而影响发动机的效率,因此要求两孔中心距公差等级为IT9。大、小头孔中心线在两个相互垂直方向上的平行度误差会使活塞在气缸中倾斜,致使气缸壁唐攒不均匀,缩短发动机的使用寿命,同时也使曲轴的连杆轴颈磨损加剧,因此也对其平行度公差提出了要求。 (3)连杆大头孔两端面对大头孔中心线的垂直度误差过大,将加剧连杆大头两端面与曲轴连杆轴颈两端面之间的磨损,甚至引起烧伤,所以必须对其提出要求。

城市污水处理工艺流程

1.从污水处理的角度,污染物可分为悬浮固体污染物、有机污染物、有毒物质、污染生物和污染营养物质。城市污水中含有的大量有机物排入水体,会使水体中溶解氧的含量降低,甚至达到缺氧状态,严重污染水体,使水中鱼类无法生存。污水中有机物浓度一般用生物化学需氧量(BOD5)、化学需氧量(COD)、总需氧量(TOD)和总有机碳(TOC)来表示。营养物质主要指氮、磷,其可使藻类和浮游生物繁殖,形成"水华"和"赤潮"。 2.污水处理方法可根据水质类型分为物理处理法、生物处理法、污水处理产生的污泥处置及化学处理法,还可根据处理程度分为一级处理、二级处理及三级处理等工艺流程。 城市污水的物理处理方法是利用物理作用分离和去除污水中污染物质的方法。常用方法有筛滤截留、重力分离、离心分离等,相应处理设备主要有格栅、沉砂池、沉淀池及离心机氧其中沉淀池同城镇给水处理中的沉淀池。 生物处理法是利用微生物的代谢作用,去除污水中有机物质的方法。常用的有活性污泥法、生物膜法等,还有氧化塘及污水土地处理法。 化学处理法在城市污水处理中使用较少,一般涉及混凝,类同于城市给水处理中的其他化学方法如中和、氧化还原、离子交换、电解主要用于工业废水处理,很少用于城市污水处理。 污泥需处理才能防止二次污染,其处置方法常有浓缩、厌氧消化、脱水及热处理等。 3.一级处理主要针对水中悬浮物质,常采用物理的方法,经过一级处理后,污水悬浮物去除可达40%左右,附着于悬浮物的有机物也可去除30%左右;工艺流程如图1K414022-1所示: 4.二级处理主要去除污水中呈胶体和溶解状态的有机污染物质。通常采用的方法是微生物处理法,具体方式有活性污泥法和生物膜法。生物处理就是利用微生物分解氧化有机物的这一功能,并采取一定的人工措施,创造有利于微生物生长、繁殖的环境,使微生物大量繁殖,以提高其分解氧化有机物效率。污水经过一级处理以后,已经去除了漂浮物和部分悬浮物,BOD5的去除率约25%~30%。经过二级处理后,BOD5去除率可达90%以上,二沉池出水能达标排放。 活性污泥处理系统,在当前污水处理领域,是应用最为广泛的处理技术之一,曝气池是其反应器。污水与污泥在曝气池中混合,污泥中的微生物将污水中复杂的有机物降解,并用释放出的能量来实现微生物本身的繁殖和运动等。 按照曝气池的流态分,曝气池可分为推流式和完全混合式及两种流态的组合形式。 推流式曝气池建成两折或多折,污水从一端进入,从另一端推流出去。在推流式曝气池中,有机物浓度和种类沿程不断变化,污泥负荷和耗氧速率前高后低。沿程各个断面之间存在较大的浓度梯度,因此降解速率较快,运行灵活,可采用多种运行方式,特别适用于处理水质比较稳定的废水。 完全混合式曝气池一般为圆形。污水进入搅拌中心后立即与全池混合液混合,全池的污泥负荷、好氧速率和微生物种类等性能完全相同,不像推流式曝气池那样上下游有明显区别。由于曝气池原有混合液对进水的稀释作用,完全混合式曝气池耐冲击负荷的能力较强,负荷均匀,使供氧与需氧平衡,从而节省供氧动力。 在许多实际运行的曝气池中,推流和完全混合并不是绝对的。在推流池中,可用一系列曝气机串联充氧和搅拌,这样一来在每个表面曝气机周围的流态都是完全混合式的,而对全池来说,流态具有推流性质。将曝气池建成独立的多个完全混合池,各池可以串联可以部分并联,即整个流程的流态为推流式。这样的池型具有推流式和混合式的优点,而月.灵活性相相当大。来源:考试大的美女编辑们 氧化沟是传统活性污泥法的一种改型,污水和活性污泥混合液在其中循环流动,动力来自于转刷与水下推进器。一般不需要设置初沉池,并且经常采用延时曝气。其基本形式如图

第三章 城市污水处理典型工艺流程

第三章城市污水处理典型工艺流程 第一节传统活性污泥工艺 一、工艺原理 向生活污水中不断地注入空气,维持水中有足够的溶解氧,经过一段时间后,污水即生成一种絮凝体。这种絮凝体是由大量繁殖的微生物构成的,易于沉淀分离,使污水得到澄清,这就是“活性污泥”。活性污泥法就是以悬浮生长在水中的活性污泥为主题,在微生物生长有利的环境条件下和污水充分接触,使污水净化的一种方法。它的主要构筑物是曝气池和二次沉淀池。 活性污泥法关键在于要使曝气池保持高的反应速率,让曝气池中的活性污泥处于良好的状态,同时要使曝气池内保持足够高的活性污泥微生物浓度。为此,沉淀后的活性污泥又回流至曝气池前端,使之与进入曝气池的废水混合后充分接触,以重复吸附、氧化分解废水中的有机物。 在正常的连续生产(连续进水)条件下,活性污泥中微生物不断利用废水中的有机物进行新陈代谢,由于合成作用的结果,活性污泥大量增殖,曝气池中活性污泥的量愈积愈多,当超过一定的浓度时,应适当排放一部分,这部分被排出的活性污泥称作剩余污泥。 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/cm3,活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分占15%~25%。活性污泥中有机物成分主要由生长在活性污泥中的各种微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链,其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。 在活性污泥中,细菌含量一般在107~108个/mL之间,原生动物为103个/mL左右,而原生动物中则以纤毛虫为主,因此可以用其作为指示生物,通过镜检法判断活性污泥的活性。通常当活性污泥中有固着型纤毛虫,如钟虫、等枝虫、盖纤虫、独缩虫、聚缩虫等出现,且数量较多时,说明活性污泥经培养驯化后较为成熟而且活性较好。反之,如果在正常运行的曝气池中发现活性污泥中固着型纤毛虫减少,而游泳纤毛虫突然增多,说明活性污泥活性差,处理效果将变差。

污水处理工艺流程

污水处理工艺流程 工业废水处理理论 一、工业废水(Industrial Wastewater)的含义和分类 定义:指工业企业各行业生产过程中产生和排放的废水。 包括:生产污水(包括生活污水)和生产废水两大类。 二、工业废水的分类、种类、指标 1分类 按行业的产品加工对象:冶金、造纸、纺织、印染等。 按工业废水中主要污染物分:无机废水(电镀、矿物加工),有机废水(食品加工) 按废水中污染物的主要成分:酸性、碱性、含酚等 按处理难易程度和危害性分:易处理危害性小的废水,易生物降解无明显毒性的废水,难生物降解又有毒性的废水。 2工业废水造成环境污染的种类 1)含无毒物质的有机废水和无机废水的污染; 2)含有毒物质的有机废水和无机废水的污染; 3)含有大量不溶性悬浮物废水的污染; 4)含油废水产生的污染; 5)含高浊度和高色度废水产生的污染; 6)酸性和碱性废水产生的污染; 7)含有多种污染物质废水产生的污染; 8)含有氮、磷等工业废水产生的污染。 三、工业废水处理方法概述 1 工业废水的物理处理(Physical Treatment) 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法; 操作单元(Operating Units):调节(Adjust)、离心分离(CentrifugalSeparation)、除油(Oil Elimination)、过滤(Filtration)等。 废水经过物理处理过程后并没有改变污染物的化学本性,而仅使污染物和水分离。 2 工业废水的化学处理(Chemical Treatment) 定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法称为化学处理。 操作单元(Operating Units):中和( Neutralization)、化学沉淀( Chemical Precipitation)、药剂氧化还原(Chemical Oxidation Reduction)、臭氧氧化(Ozone Oxidation )、电解(Electrolysis)、光氧化法(Photo- Oxidation)等。 污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 3工业废水的物理化学处理(Physic-chemicalTreatment) 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理化学处理。 操作单元(Operating Units):混凝(Coagulation)、气浮(Floatation)、吸附(Adsorption)、离子交换(Ion Exchange)、电渗析(Electro-dialysis)、扩散渗析(Diffusion Dialysis)、反渗透(Reverse Osmosis)、超滤(Ultra Filtrate)等。 污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化学反应后再转移。

自来水厂原水处理自来水常用工艺流程

自来水厂原水处理自来水常用工艺流程 目前,自来水厂排泥水含有大量来自原水的污染物,排泥水直接排放,会对地表水体造成污染。随着经济的发展和人们环保意识的提高,我国自来水厂水处理日趋上升。就某自来水厂用源水处理成自来水的流程,华泉药剂总厂给大家做详细介绍。 某自来水厂用源水水处理流程: (1)加入活性炭的作用是吸附;在乡村没有活性炭,常加入明矾来净水。 (2)实验室中,静置、吸附、过滤、蒸馏等操作中可以降低水硬度的是蒸馏。 水处理药剂活性炭具有吸附性,净水时主要用于除去水有色素、异味;为加快水中小颗粒的固体不溶物,可加入明矾,明矾能使悬乳水中的小颗粒凝聚成大颗粒而加快沉降; 硬水是指含有较多钙、镁离子的水,降低水的硬度即减少水中钙、镁离子的量;蒸馏是通过蒸发、凝结后获得蒸馏水的过程,而静置、吸附、过滤等操作只能除去水中不溶性固体; 静置、吸附、过滤主要除去水中不溶性的固体,而对溶于水中的钙、镁离子无任何影响;蒸馏是把水加热变成水蒸气然后再把水蒸气降温凝结成纯净的水,通过蒸馏处理的水为蒸馏水,为不含其它物质的纯净物。 总之,吸附、沉降、过滤、蒸馏是常用的净化水的方法,其中蒸馏是净化程度最高的净化方法.河南省华泉自来水处理总厂是水处理药剂的专业生产基地,直销、、PAC、PAM、活性炭、、滤料等。 自来水厂工艺流程概述 现在人们谈到饮用自来水会“心有余悸”,主要是因为害怕自来水生产过程中未能除尽水中的杂质及微生物,又害怕净水过程中混入了一些有毒气体。基于此,我组成员先到自来水厂参观采访,了解自来水的生产过程。 1、自来水是如何生产的? 众所周知,由于自然因素和人为因素,原水里含有各种各样的杂质。从给水处理角度考虑,这些杂质可分为悬浮物、胶体、溶解物三大类。城市水厂净水处理的目的就是去除原水中这些会给人类健康和工业生产带来危害的悬浮物质、胶体物质、细菌及其他有害成分,使净化后的水能满足生活饮用及工业生产的需要。市自来水总公司水厂采用常规水处理工艺,它包括混合、反应、沉淀、过滤及消毒几个过程。 (1)混凝反应处理 原水经取水泵房提升后,首先经过混凝工艺处理,即: 原水+ 水处理剂→混合→反应→矾花水 自药剂与水均匀混合起直到大颗粒絮凝体形成为止,整个称混凝过程。常用的水处理剂有聚合氯化铝、硫酸铝、三氯化铁等。汕头市使用的是碱式氯化铝。根据铝元素的化学性质可知,投入药剂后水中存在电离出来的铝离子,它与水分子存在以下的可逆反应: Al3+ + 3H2O ←→Al(OH)3 + 3H+ 氢氧化铝具有吸附作用,可把水中不易沉淀的胶粒及微小悬浮物脱稳、相互聚结,再被吸附架桥,从而形成较大的絮粒,以利于从水中分离、沉降下来。 混合过程要求在加药后迅速完成。混合的目的是通过水力、机械的剧烈搅拌,使药剂迅速均匀地散于水中。

相关文档
相关文档 最新文档