文档库 最新最全的文档下载
当前位置:文档库 › 二极管的分类及选型

二极管的分类及选型

二极管的分类及选型
二极管的分类及选型

二极管的分类及选型 (2011-09-06 10:45)

分类:电源技术

一.半导体二极管的分类

半导体二极管按其用途可分为:普通二极管和特殊二极管。普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。

二.半导体二极管的主要参数

1.反向饱和漏电流IR

指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。在常温下,硅管的IR为纳安(10-9A)级,锗管的IR为微安(10-6A)级。

2.额定整流电流IF

指二极管长期运行时,根据允许温升折算出来的平均电流值。目前大功率整流二极管的IF值可达1000A。

3. 最大平均整流电流IO

在半波整流电路中,流过负载电阻的平均整流电流的最大值。这是设计时非常重要的值。

4. 最大浪涌电流IFSM

允许流过的过量的正向电流。它不是正常电流,而是瞬间电流,这个值相当大。

5.最大反向峰值电压VRM

即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。目前最高的VRM值可达几千伏。

6. 最大直流反向电压VR

上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的.

7.最高工作频率fM

由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。

8.反向恢复时间Trr

当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。实际上,一般要延迟一点点时间。决定电流截止延时的量,就是反向恢复时间。虽然它直接影响二极管的开关速度,但不一定说这个值小就好。也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。大功率开关管工作在高频开关状态时,此项指标至为重要。

9. 最大功率P

二极管中有电流流过,就会吸热,而使自身温度升高。最大功率P为功率的最大值。具体讲就是加在二极管两端的电压乘以流过的电流。这个极限参数对稳压二极管,可变电阻二极管显得特别重要。

三.几种常用二极管的特点

1.整流二极管

整流二极管结构主要是平面接触型,其特点是允许通过的电流比较大,反向击穿电压比较高,但PN结电容比较大,一般广泛应用于处理频率不高的电路中。例如整流电路、嵌位电路、保护电路等。整流二极管在使用中主要考虑的问题是最大整流电流和最高反向工作电压应大于实际工作中的值。

2.快速二极管

快速二极管的工作原理与普通二极管是相同的,但由于普通二极管工作在开关状态下的反向恢复时间较长,约4~5ms,不能适应高频开关电路的要求。快速二极管主要应用于高频整流电路、高频开关电源、高频阻容吸收电路、逆变电路等,其反向恢复时间可达10ns。快速二极管主要包括快恢复二极管和肖特基二极管。

快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。快恢复二极管在制造上采用掺金、单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压。快恢复二极管的内部结构与普通PN结二极管不同,它属于PIN结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片。因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,反向击穿电压(耐压值)较高。目前快恢复二极管主要应用在逆变电源中作整流元件,高频电路中的限幅、嵌位等。

肖特基(Schottky)二极管也称肖特基势垒二极管(简称SBD),是由金属与半导体接触形成的势垒层为基础制成的二极管,其主要特点是正向导通压降小(约0.45V),反向恢复时间短和开关损耗小,是一种低功耗、超高速半导体器件,广泛应用于开关电源、变频器、驱动器等电路,作高频、低压、大电流整流二极管、续流二极管、保护二极管使用,或在微波通信等电路中作整流二极管、小信号检波二极管使用。肖特基二极管在结构原理上与PN结二极管有很大区别,它的内部是由阳极金属(用钼或铝等材料制成的阻挡层)、二氧化硅(SiO2)电场消除材料、N-外延层(砷材料)、N型硅基片、N+阴极层及阴极金属等构成,如图所示。在N型基片和阳极金属之间形成肖特基势垒。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

肖特基二极管存在的问题是耐压比较低,反向漏电流比较大。目前应用在功率变换电路中的肖特基二极管的大体水平是耐压在150V以下,平均电流在100A 以下,反向恢复时间在10~40ns。肖特基二极管应用在高频低压电路中,是比较理想的。

3.稳压二极管

稳压二极管是利用PN结反向击穿特性所表现出的稳压性能制成的器件。稳压二极管也称齐纳二极管或反向击穿二极管,在电路中起稳定电压作用。它是利用二极管被反向击穿后,在一定反向电流范围内反向电压不随反向电流变化这一特点进行稳压的。稳压二极管通常由硅半导体材料采用合金法或扩散法制成。它既具有普通二极管的单向导电特性,又可工作于反向击穿状态。在反向电压较低时,稳压二极管截止;当反向电压达到一定数值时,反向电流突然增大,稳压二极管进入击穿区,此时即使反向电流在很大范围内变化时,稳压二极管两端的反向电压也能保持基本不变。但若反向电流增大到一定数值后,稳压二极管则会被彻底击穿而损坏。

稳压二极管根据其封装形式、电流容量、内部结构的不同可以分为多种类型。稳压二极管根据其封装形式可分为金属外壳封装稳压二极管、玻璃封装(简称玻封)稳压二极管和塑料封装(简称塑封)稳压二极管。塑封稳压二极管又分为有引线型和表面封装两种类型。

稳压管的主要参数有:①稳压值VZ 。指当流过稳压管的电流为某一规定值时,稳压管两端的压降。②电压温度系数。稳压管的稳压值VZ的温度系数在VZ低于4V时为负温度系数值;当VZ的值大于7V时,其温度系数为正值;而VZ的值在6V左右时,其温度系数近似为零。目前低温度系数的稳压管是由两只稳压管反向串联而成,利用两只稳压管处于正反向工作状态时具有正、负不同的温度系数,可得到很好的温度补偿。③动态电阻rZ。表示稳压管稳压性能的优劣,一般工作电流越大,rZ越小。④允许功耗PZ。由稳压管允许达到的温升决定,小功率稳压管的PZ值为100~1000mW,大功率的可达50W。⑤稳定电流IZ。测试稳压管参数时所加的电流。实际流过稳压管的电流低于IZ时仍能稳压,但rZ较大。

稳压管的最主要的用途是稳定电压。在要求精度不高、电流变化范围不大的情况下,可选与需要的稳压值最为接近的稳压管直接同负载并联。在稳压、稳流电源系统中一般作基准电源,也有在集成运放中作为直流电平平移。其存在的缺点是噪声系数较高,稳定性较差。

肖特基二极管常用参数大全分析

肖特基(势垒)二极管(简称SBD)整流二极管的基本原理?FCH10A15型号简称:10A15 ?主要参数:IF(AV)=10A, VRRM=150V ?产品封装:TO-220F ?脚位长度:6-12mm ?可测试参数:耐压VRRM 正向压降(正向直流电压)VF 漏电IR ?型号全名:FCH20A15 ?型号简称:20A15 ?主要参数:20A 150V ?产品封装:TO-220F ?可测试参数:耐压VRRM 正向压降(正向直流电压)VF 漏电IR ?在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。 其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极和低压大电流整流二极管。 肖特基整流二极管的主要参数 ?以下是部分常用肖特基二极管型号,以及耐压和整流电流值:

肖特基二极管 肖特基二极管常用参数大全 型号制造商封 装 If/A Vrrm/V 最大Vf/V 1SS294 TOS SC-59 0.1 40 0.60 BAT15-099 INF SOT143 0.11 4 0.32 BAT54A PS SOT23 0.20 30 0.50 10MQ060N IR SMA 0.77 90 0 .65 10MQ100N IR SMA 0.77 100 0.9 6

0.34 SS12 GS DO214 1.00 20 0.50 MBRS130LT3 ON - 1.00 30 0 .39 10BQ040 IR SMB 1.00 40 0 .53 RB060L-40 ROHM PMDS 1.00 40 0.55 RB160L-40 ROHM PMDS 1.00 40 0.55 SS14 GS DO214 1.00 40 0.50 MBRS140T3 ON - 1.00 40 0 .60 10BQ060 IR SMB 1.00 60 0 .57 SS16 GS DO214 1.00 60 0.75 10BQ100 IR SMB 1.00 100 0.7 8 MBRS1100T3 ON - 1.00 100 0.7 5 10MQ040N IR SMA 1.10 40 0 .51 15MQ040N IR SMA 1.70 40 0 .55 PBYR245CT PS SOT223 2.00 45 0.45

二极管种类及应用

二极管 一、二极管的种类 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。下面以用途为例,介绍不同种类二极管的特性。 1.整流二极管 整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。 因为整流二极管正向工作电流较大,工艺上多采用面接触结构。南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。 整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。 由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封 装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。常见整流二极管的外形如图2所示。 选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N 系列、2CZ系列、RLR系列等)即可。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、

TVS二极管选型指南及特性曲线教学教材

T V S二极管选型指南及特性曲线

TVS二极管选型指南 一、选用指南 1 、首先确定被保护电路的最大直流或连续工作电压,电路的额定标准电压 和“高端”容限。 2 、 TVS 的额定反向关断电压 V WM应大于或等于被保护电路的最大工作电压,若选用的 V WM太低,器件有可能进入雪崩状态或因反向漏电流太大影响电路的正常工作。 3 、 TVS 的最大箝位电压 V C应小于被保护电路的损坏电压。 4 、 TVS 的最大峰值脉冲功率 PW 必须大于被保护电路内可能出现的峰值脉冲功率。 5 、在确定了 TVS 的最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。 6 、对于数据接口电路的保护,必须注意选取尽可能小的电容值 C 的 TVS 器件。 7 、带 A 的 TVS 二极管比不带 A 的 TVS 二极管的离散性要好,在 TVS 二极管 A 前面加 C 的型号表示双向 TVS 二极管。 8 、直流保护一般选用单向 TVS 二极管,交流保护一般选用双向 TVS 二极管,多路保护选用 TVS 阵列器件,大功率保护选用 TVS 专用保护模块。特殊情况,如: RS-485 和 RS-232 保护可选用双向 TVS 二极管或 TVS 阵列。 9 、 TVS 二极管可以在 -55 ℃到 +150 ℃之间工作,如果需要 TVS 在一个变化的温度下工作,由于其反向漏电流 ID 是随温度的增加而增大;功耗 随 TVS 结温度增加而下降,故在选用 TVS 时应考虑温度变化对其特性的影响。 10 、 TVS 二极管可以串 / 并应用,串行连接分电压,并行连接分电流。但考虑到 TVS 的离散性,使用时应尽可能的减少串 / 并数量。 二、注解 1 、 V WM—是 TVS 最大连续工作的直流或脉冲电压,当这个反向电压加 于 TVS 两极时,它处于反向关断状态,流过它的电流小于或等于其最大反向漏电流 I D。 2 、 V BR—是 TVS 最小的雪崩电压。 25 ℃时,在这个电压之前,保 护 TVS 是不导通的。当 TVS 流过规定的 1mA 电流 I R时,加于TVS 两极间的电压为其最小击穿电压 V BR。 3 、 I T—-- 测试电流。 4 、 I D—-- 反向漏电流。

肖特基二极管特性详解(经典资料)

肖特基二极管特性详解 我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路

图2 导通压降与导通电流关系 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

二极管知识大全

二极管的结构特性 (1) 二极管的工作原理 (2) 二极管的分类………………………………………………………………………3-4 二极管的主要技术参数指标…………………………………………………………5. 二极管的主要作用 (6) 怎样选择合适的二极管 (7) 时间:2012-2-24

1 二极管的结构 半导体二极管主要由一个PN结加上电极、引出断线和管壳构成的。P型半导体引出的电极为二极管的正极,N型半导体引出的电极为负极。二极管的基本特性与PN结的基本特性相同。 , 图 1结构图(可双击该图用AUTOCAD软件观看) 2 二极管的特性 普通二极管最显著的特点是其单向导电性,根据此特性二极管常用于电子线路中,起到整流、

图 2典型二极管的特性曲线及其分区 3 工作原理 二极管的基本原理是根据二极管的伏安特性,正向导通反向截止,可将双向变化的交流电转换成单向脉动的直流电,此转换过程称为整流;利用PN结反向击穿时,电流在较大的范围内变化而端电压基本不变的特性,制成特殊二极管,称为稳压二极管。 2中1区为正向死区。PN结上加了正向偏压但仍无电流,该区宽度随材料而不同:硅管是,锗管是。 2中2区为正向导通区。PN结上加了正向偏压后,正向电流呈指数规律明显上升。 2中3区为反向截止区。PN结上加了较大的反向偏压后,在很大的电压范围内维持一个很小的固定的反向漏电流。 2中4区为反向击穿区。PN结上加了较大的反向偏压后,在某个电压值上,PN结被击穿引起迅速上升的反向电流。一般的整流、检波二极管一到此区就被加在其上的高压大电流烧毁。但是,专门设计用来工作在此区的二极管,只要设法将热量及时导出,同时在电路中限制电流的最大值,它就可以正常工作,一般应用该区的二极管是专门生产的稳压二极管。 4 二极管的分类 二极管按制造材料不同,分为硅和锗二极管。 表 1列出了两种材料的区别。 表 1 两种材料的区别

常用二极管的特点与选型

三分钟了解常用二极管的特点与选型 二极管(Diode)算是半导体家族中的元老了,其最明显的性质就是它的单向导电特性, 就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。本文从二极管的分类、命名方法,到常用二极管的特点及选用,纯干货! 根据材料的导电能力,我们将形形色色的材料划分为导体、绝缘体和半导体。半导体是一 种具有特殊性质的物质,它的导电能力介于导体和绝缘体之间,所以被称为半导体。常见的半导体材料有硅(Si)和锗(Ge)。 二极管(Diode)算是半导体家族中的元老了,其最明显的性质就是它的单向导电特性, 就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。 一、基础知识 1、二极管的分类 二极管的种类有很多,按照所用的半导体材料,可分为锗二极管(Ge 管)和硅二极管(Si 管);按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。 根据二极管的不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、肖 特基二极管、发光二极管等。 2、二极管的型号命名方法 (1)按照国产半导体器件型号命名方法:二极管的型号命名由五个部分组成:主称、材 料与极性、类别、序号和规格号(同一类产品的档次)。 (2)日本半导体器件命名型号由以下5 部分组成: 第一部分:用数字表示半导体器件有效数目和类型;“1”表示二极管,“2”表示三极管。 第二部分:用“S”表示已在日本电子工业协会登记的半导体器件; 第三部分:用字母表示该器件使用材料、极性和类型; 第四部分:表示该器件在日本电子工业协会的登记号; 第五部分:表示同一型号的改进型产品。

二极管选择设计说明

17.5.3 二极管选择设计说明 整流器在正常工作状态下每个整流臂2支ZP2000/32元件并联运行,每支元件的I T (V A ),I T (RMS )值,1支元件损坏后,完好元件的I ’T (A V ),I ’T (RMS )值见表1、表2 式中:I T (V A )--每支元件平均电流值 I T (RMS )--每支元件电流方均根值。 p dN AV T gqn I I 2)(= p dN RMS T n q g I I 2)(= 结合热阻为0.12的热管散热器,通过对整流二极管的结温计算可知,当整流二极管额定运行时,结温小于70℃;1.5倍电流运行时,结温小于80℃;3倍电流1分钟运行时结温小于120℃,而二极管的实际结温远大于120℃,故选择整流二极管ZP2000/32完全满足整流器的技术要求。 快速熔断器选择 RS8-800V/1900A-P106N 分断能力为100KA. 快熔的主要参数有:额定电流,额定电压,弧前焦耳积分I 2t ,分断能力。 目前,在整流柜的设计计算中,快熔的选择主要是根据整流器内部短路时,迅速切断故障桥臂来考虑,要求快熔在所保护的元件热击穿前断开电路,选用原则如下。 1) 快熔的短路分断能力远大于整流器内部短路的最大故障电流。 2) 快熔的额定电压应满足大于网侧电压电压峰值的1.2倍。 3) 快熔的额定电流选择应满足大于3倍负载运行时二极管的电流。

4)快熔的弧前焦耳积分I2t值曲线尽可能地小于或接近被保护二极管的I2t值曲 线。 我公司生产的整流器需要设置压仓电阻。 我公司生产的整流器采用二极管旁侧并联RC保护电路,防止二极管在关断的瞬间产生的高电压反向击穿二极管,这就不可避免的在电容两端产生充放电的过渡过程,由于整流二极管在反向关断的过程用,其中有一段时间反向电流迅速下降,在外电路电感(主要为整流变压器的漏感)的作用下会在二极管两端产生比外加反向电压大得多反向电压过冲,如果这部分电压被电容充电后不能及时放电,必然会抬高空载电压,同时对设备检修也带来不便,故我公司生产的整流器需要加压仓电阻。 压仓电阻的选取比较复杂,不能简单的用公式计算出准确数值,因为它与变压器漏感、电容大小、电阻大小、整流二极管本身的特性等都有关系,通过我公司多年的联机试验和经验可得出,压仓电阻选择在1.2KΩ-2.4KΩ的范围之内,方可做到12脉波空载电压控制在823V左右,功率损耗在1KW以下。

二极管的符号、判别、参数和分类

二极管符号 二极管(国标) 2.半导体二极管的极性判别及选用 (1) 半导体二极管的极性判别

一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP1 7等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。塑封二极管有圆环标志的是负极,如IN4000系列。 无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。 根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R ×100或R×1k挡。不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极相接,测出两个阻值。在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。在这两种情况下,管子就不能使用了。 (2) 半导体二极管的选用 通常小功率锗二极管的正向电阻值为300~500?,硅管为1k?或更大些。锗管反向电阻为几十千欧,硅管反向电阻在500k?以上(大功率二极管的数值要大得多)。正反向电阻差值越大越好。 点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。 选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

TVS二极管的选型和应用测试计算实例0

TVS二极管的选型和应用测试计算实例 很多工程师在电路设计时都会考虑到EMC,但是在ESD方面却是很少考虑或甚至不考虑。个人认为有些是产品特性或是成本 原因不考虑防雷防静电,但据了解,相当多的工程师特别是比较年轻的工程师都不知道TVS在电路保护中的重要性,有些工程师 甚至都没听说过TVS管。大家都知道卫星高频头的生产车间对静电要求不亚于手机的生产,但本人在做几年的LNB设计中都没 接触过TVS,也是后来的工作中才慢慢接触到一些。理论上,大部分有可能会接触静电的电路都应该要加TVS以保护,比如手机 等数码产品,秋天就很容易接触人体大量静电;比如交换机等通信产品,一个闪电就很容易会在它们连接的线缆形成很强的脉冲波, 这些都很容易对电路构成威胁。下面我们就对TVS的一些应用知识进行简单的了解,希望通过简单的例子让大家对TVS有比较 直观的认识。不同型号规格TVS的原理都是一样,大家在选型的时候根据需要去找一下内部结构合适自己产品的型号和规格就可 以了。以上观点如有不妥,请各位大侠包涵指点。 一、TVS二极管的选型步骤如下: 1.确定待保护电路的直流电压或持续工作电压。如果是交流电,应计算出最大值,即用有效值*1.414。 https://www.wendangku.net/doc/539207338.html,S的反向变位电压即工作电压(VRWM)--选择TVS的VRWM等于或大于上述步骤1所规定的操作电压。这就保证了在正 常工作条件下TVS吸收的电流可忽略不计,如果步骤1所规定的电压高于TVS的VRWM ,TVS将吸收大量的漏电流而处于雪崩击 穿状态,从而影响电路的工作。 3.最大峰值脉冲功率:确定电路的干扰脉冲情况,根据干扰脉冲的波形、脉冲持续时间,确定能够有效抑制该干扰的TVS峰值脉冲 功率。 4.所选TVS的最大箝位电压(VC)应低于被保护电路所允许的最大承受电压。 5.单极性还是双极性-常常会出现这样的误解即双向TVS用来抑制反向浪涌脉冲,其实并非如此。双向TVS用于交流电或来自正 负双向脉冲的场合。TVS有时也用于减少电容。如果电路只有正向电平信号,那麽单向TVS就足够了。TVS操作方式如下:正向 浪涌时,TVS处于反向雪崩击穿状态;反向浪涌时,TVS类似正向偏置二极管一样导通并吸收浪涌能量。在低电容电路里情况就不 是这样了。应选用双向TVS以保护电路中的低电容器件免受反向浪涌的损害。 6.如果知道比较准确的浪涌电流IPP,那么可以利用VC来确定其功率,如果无法确定功率的概范围,一般来说,选择功率大一些 比较好。 二、交流电路电源保护计算实例 图1为微机电源采用TVS管作线路保护的原理图。 图1 微机电源部分原理图 下面就图1中的线路保护加以说明。 ①在进线的交流220 V处加双向TVS管D1,以 抑制220 V交流电网中的尖峰干扰。双向TVS管 D1的 选取D1时根据上述参数,通过查表即可得到。 ②在变压器进线处加上抗干扰的电源线滤波器, 以消除小尖峰干扰。 ③在变压器输出端交流20 V处加上双向TVS管 D2,再一次抑制干扰。双向TVS管D2的 选取D2时根据上述参数,通过查表即可得到。 ④整流滤波输出直流10 V时,加上单向TVS管 D3抑制干扰。单向TVS管D3的 选取D3时根据上述参数,通过查表即可得到。 通过如上4次抑制,得到了所谓的“净化电源”。为了防雷 击等浪涌电压,还可在交流220 V进线端加上压敏电阻 器,以便更有效地防止干扰进入计算机的CPU及存储器 中,从而进一步提高系统的可靠性。

二极管的分类

二极管 二极管又称晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。它是一种具有1个零件号接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 二极管的特性与应用 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,发光二极管正向管压降为随不同发光颜色而不同。 二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。 二极管的应用 1、整流二极管 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。 2、开关元件 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅元件 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、继流二极管 在开关电源的电感中和继电器等感性负载中起继流作用。

5、检波二极管 在收音机中起检波作用。 6、变容二极管 使用于电视机的高频头中。 7、显示元件 用于VCD、DVD、计算器等显示器上。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管、硅功率开关二极管、旋转二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 一、根据构造分类 半导体二极管主要是依靠PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下: 1、点接触型二极管 点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。 2、键型二极管

肖特基二极管电路特性

万联芯城销售ST,ON,TI等多家国际品牌原装进口肖特基二极管。肖特基二极管价格优秀,质量有保证。万联芯城专为终端工厂企业提供一站式电子元器件报价业务,与全国近5000家企业达成战略合作伙伴关系。点击进入万联芯城 点击进入万联芯城

我们所熟知的二极管被广泛应用于各种电路中,但我们真正了解二极管的某些特性关系吗?如二极管导通电压和反向漏电流与导通电流、环境温度存在什么样的关系等,让我们来扒扒很多数据手册中很少提起的特性关系和正确合理的选型。下面就随半导体设计制造小编一起来了解一下相关内容吧。 我们都知道在选择二极管时,主要看它的正向导通压降、反向耐压、反向漏电流等。但我们却很少知道其在不同电流、不同反向电压、不同环境温度下的关系是怎样的,在电路设计中知道这些关系对选择合适的二极管显得极为重要,尤其是在功率电路中。接下来我将通过型号为SM360A(肖特基管)的实测数据来与大家分享二极管鲜为人知的特性关系。 1、正向导通压降与导通电流的关系 在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对

于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。 图1 二极管导通压降测试电路 2、正向导通压降与环境的温度的关系 在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A 的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。 表1 导通压降与导通电流测试数据

TVS二极管选型

TVS二极管选型 优恩半导体(UN) 在选用TVS二极管时,必须考虑电路的具体条件,一般应遵循以下原则: 一、大箝位电压VC(MAX)不大于电路的最大允许安全电压。 二、最大反向工作电压(变位电压)VRWM不低于电路的最大工作电压,一般可以选VRWM等于或略高于电路最大工作电压。 三、额定的最大脉冲功率,必须大于电路中出现的最大瞬态浪涌功率。 下面是TVS在电路应用中的典型例子:

TVS用于交流电路: 见图2-1,这是一个双向TVS在交流电路中的应用,可以有效地抑制电网带来的过载脉冲,从而起到保护整流桥及负载中所有元器件的作用。TVS的箝位电压不大于电路的最大允许电压。 图2-2所示,是用单向TVS并联于整流管旁侧,以保护整流管不被瞬时脉冲击穿,选用TVS必须是和整流管相匹配。 图2-3所示电路中,单向TVS1和TVS2反接并联于电源变压器输出端或选用一个双向TVS,用以保护整流电路及负载中的元器件。TVS3保护整流以后的线路元件,如电源变压器输出端电压为36伏时一般TVS1和TVS2的工作电压VR应根据36×来选择,其它参数依据电路中的具体条件而下。 TVS用于直流电路: 图2-4所示TVS并联于输出端,可有效地保护控制系统。TVS的反向工作电压应等于或略高于直流供电电压,其它参数根据电路的具体条件而定。 图2-5所示为两个单向TVS连接在电源线路中,用以防止直流电源反接或电源通、断时产生的瞬时脉冲使集成电路损坏。当电路连接有感性负载,如电机、断电器线圈、螺线管时,会产生很高的瞬时脉

冲电压。 图2-6中的TVS可以保护晶体管及逻辑电路,从而省去了较复杂的电阻/电容保护网络。图2-7电路中TVS起保护和电压限制的作用。 直流电中选用举例: 整机直流工作电压12V,最大允许安全电压25V(峰值),浪涌源的阻抗50MΩ,其干扰波形为方波,TP=1MS,最大峰值电流50A。 选择: 1、先从工作电压12V选取最大反向工作电压VRWM为13V,则击穿电压V(BR)==15.3V; 2、从击穿电压值选取最大箝位电压VC(MAX)=1.30× V(BR)=19.89V,取VC=20V; 3、再从箝位电压VC和最在峰值电流IP计算出方波脉冲功率:PPR=VC×IP=20×50=1000W 4、计算折合为TP=1MS指数波的峰值功率,折合系数K1=1.4,PPR=1000W÷1.4=715W 从手册中可查到1.5KE15A其中PPR=1500W,关断电压 VRWM=12.8V,击穿电压V(BR)=14.3~15.8V,最大箝位电压VC=21.2V,最大浪涌电流IP=1500/21.2=70.7A。可满足上述设计要求,而且留有一倍的余量,不论方波还是指数波都适用。 交流电路应用举例: 直流线路采用单向瞬变电压抑制二极管,交流则必须采用双向瞬变电压抑制二极管。交流是电网电压,这里产生的瞬变电压是随机的,

高考物理二极管是什么(二极管的类型)

二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性

二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过 简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V), 称为二极管的“正向压降”。 2. 反向特性。 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失 去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性 参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为 1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。 3、反向电流 反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极 管比锗二极管在高温下具有较好的稳定性。

肖特基二极管应用选择

肖特基(SCHOTTKY)系列二极管 本文主要介绍济南半导体所研制生产的肖特基二极管系列产品。介绍军品级、工业品级肖特基二极管的种类、性能特点、正反向电参数。对产品的正向直流参数、反向温度特性及正向、反向抗烧毁能力等进行了质量分析,并与国外公司制造的同类产品进行了比较。最后,着重介绍了2DK030高可靠肖特基二极管的性能特点用途,1N60超高速肖特基二极管的性能特点用途,以及功率肖特基二极管在开关电源方面的应用。 本文主要包括下面六个部分: 一.肖特基二极管简介 二.我所肖特基二极管生产状况 三.我所肖特基二极管种类 四.我所肖特基二极管的特点及性能质量分析 五.介绍我所生产的两种肖特基二极管 (1)2DK030高可靠肖特基二极管 (2)1N60超高速肖特基二极管 六.功率肖特基二极管在开关电源方面的应用 下面只对部分常用的参数加以说明 (1) V F正向压降Forward Voltage Drop (2) V FM最大正向压降Maximum Forward Voltage Drop (3) V BR反向击穿电压Breakdown Voltage (4) V RMS能承受的反向有效值电压RMS Input Voltage (5) V RWM 反向峰值工作电压Working Peak Reverse Voltage (6) V DC最大直流截止电压Maximum DC Blocking Voltage (7) T rr反向恢复时间Reverse Recovery Time (8) I F(AV)正向电流Forward Current (9) I FSM最大正向浪涌电流Maximum Forward Surge Current (10) I R反向电流Reverse Current (11) T A环境温度或自由空气温度Ambient Temperature (12) T J工作结温Operating Junction Temperature (13) T STG储存温度Storage Temperature Range (16) T C管子壳温Case Temperature 一.肖特基二极管简介:

二极管的分类

半导体二极管的分类 (一)按使用的半导体材料分类 二极管按其使用的半导体材料可分为锗(Ge)二极管、硅二极管和砷化镓(GaAs)二极管、磷化镓(GaP)二极管等。 (二)按结构分类 半导体二极管主要是依靠PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下: 1、点接触型二极管 点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。 2、键型二极管 键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。其特性介于点接触型二极管和合金型二极管之间。与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。多作开关用,有时也被应用于检波和电源整流(不大于50mA)。在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。 3、合金型二极管 在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。正向电压降小,适于大电流整流。因其PN结反向时静电容量大,所以不适于高频检波和高频整流。 4、扩散型二极管 在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。 5、台面型二极管 PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。初期生产的台面型,是对半导体材料使用扩散法而制成的。因此,又把这种台面型称为扩散台面型。对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用的产品型号却很多。 6、平面型二极管 在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。并且,PN结合的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。对平面型二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。 7、合金扩散型二极管 它是合金型的一种。合金材料是容易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。此法适用于制造高灵敏度的变容二极管。 8、外延型二极管 用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。

教你怎么做二极管的选型

1.二极管的认识 按二极管的功能可分为:开关、整流、稳压、电压基准、稳流、变容、瞬变电压抑制、 光电和微波等类别。 二极管最明显的性质就是它的单向导电特性,就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。我们用万用表来对常见的1N4001型硅整流二极管进行测量,红表笔接二极管的负极,黑表笔接二极管的正极时,表针会动,说明它能够导电;然后将黑表笔接二极管负极,红表笔接二极管正极,这时万用表的表针根本不动或者只偏转一点点,说明导电不良。(万用表里面,黑表笔接的是内部电池的正极) 利用二极管单向导电的特性,常用二极管作整流器,把交流电变为直流电,即只让交流电的正半周(或负半周)通过,再用电容器滤波形成平滑的直流。 常见的几种二极管如图所示。其中有玻璃封装的、塑料封装的和金属封装的等几种。图2是二极管的电路符号,像它的名字,二极管有两个电极,并且分为正负极,一般把极性标示在二极管的外壳上。大多数用一个不同颜色的环来表示负极,有的直接标上"-"号。大功率二极管多采用金属封装,并且有个螺帽以便固定在散热器上。 二极管符号:

2.二极管的规范叙述 1 DIODE ①②③④Ex. DIODE 100V 200mA SOD123 MMSD4148 ①REVERSE VOLTAGE ②FORWARD CURRENT ③PACKAGE TYPE ④VENDOR PART NUMBER 3.按参数选型 额定正向工作电流 额定正向工作电流指二极管长期连续工作时允许通过的最大正向电流值。 最大浪涌电流 最大浪涌电流,是允许流过的过量正向电流,它不是正常电流,而是瞬间电流。其值通常是 额定正向工作电流的20倍左右。 最高反向工作电压 加在二极管两端的反向工作电压高到一定值时,管子将会击穿,失去单向导电能力。为了保 证使用安全,规定了最高反向工作电值。 例如,lN4001二极管反向耐压为50V,lN4007的反向耐压为1000V 反向电流 是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。 反向电流越小,管子的单方向导电性能越好。 反向电流与温度密切相关,大约温度每升高10oC,反向电流增大一倍。 例如2APl型锗二极管, 在25℃时,反向电流为250 μA,温度升高到35℃,反向电流将上升 到500 μA,在75℃时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过 热而损坏。 硅二极管比锗二极管在高温下具有较好的稳定性。 反向恢复时间 从正向电压变成反向电压时,电流一般不能瞬时截止,要延迟一点点时间,这个时间就是反 向恢复时间。它直接影响二极管的开关速度。 最大功率 最大功率就是加在二极管两端的电压乘以流过的电流。这个极限参数对稳压二极管等显得特 别。

相关文档