文档库 最新最全的文档下载
当前位置:文档库 › 积分变换与场论试题及答案

积分变换与场论试题及答案

积分变换与场论试题及答案
积分变换与场论试题及答案

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

北京林业大学复变函数与积分变换结课论文

复变函数与积分变换 结课论文 题目:拉普拉斯变换及其在解微分方程(组)中的应用指导老师: 学号: 姓名: 班级: 学院:

拉普拉斯变换及其在解微分方程(组)中的应用 摘要 拉普拉斯变换是一种用来解线性微分方程的较简单的工具。它在电学、力学、控制论等很多工程技术与科学领域有着广泛的应用,由于它对像原函数f(t)要求的条件比傅氏变换要弱,故研究拉氏变换有极重要的意义。本文将简单介绍拉普拉斯变换的定义以及其性质,并对其在解微分方程(组)中的应用做了简单的归纳总结。 关键词:拉普拉斯变换,性质,微分方程

一、拉普拉斯变换的概念及其性质 1.1问题的提出 我们知道,一个函数当它除了满足狄氏条件外,还在(—∞,+∞)内满足绝对可积的条件时,就一定存在古典意义下的傅里叶变换。但绝对可积的条件是比较强的,许多函数(如单位阶跃函数、正弦、余弦函数等)都不满足这个条件;其次,可以进行傅里叶变换的函数必须在整个是数轴上有定义,但在物理、无线电技术等实际应用中,许多以时间t 作为自变量的函数往往在t<0时是无意义的或者不用考虑的,想这些函数都不能取傅里叶变换。 虽然在引入δ函数后,傅里叶变换的适用范围被拓宽了许多,使得“缓增”函数也能进行傅氏变换,但仍然无法解决以指数级增长的函数。[1] 对于任意一个函数φ(t ),若用单位阶跃函数u (t )乘φ(t ),则可以使积分区间由(—∞,+∞)换成[0,+∞),用指数衰减函数t β-e (β>0)乘φ(t )就有可能使其变得绝对可积,因 此只要β选的恰当,一般来说,任意函数φ(t )的傅氏变换是存在的,这样就产生了拉普拉斯变换。 1.2拉普拉斯变换的定义 当函数)(t f 满足条件:(1)当t<0时,)(t f =0;(2)当0≥t 时,函数)(t f 连续;(3)当∞→t 时,)( t f 的增长速度不超过某个指数函数,即存在常数M 及α,使得t Me t f α≤|)(|,则含参数s 的无穷积分 收敛。(s=β+jω)[2] 我们称F(s)为f(t)的拉普拉斯变换(或称为像函数),记为F(s)= )]( [t f L 。 相反的,从F(s)到f(t)的对应关系称为拉普拉斯逆变换(或称为像原函数)。即 )]([)(1s F L t f -=. 1.3拉普拉斯变换的性质 1、线性性质[3] 设α、β为常数,且)()]([),()]( [s G t g L s F t f L ==,则有 0 ()()st F s f t e dt +∞ -=?

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

复变函数与积分变换第五版习题解答

复变函数与积分变换第五版答案 目录 练 习 一...............................1 练 习 二...............................3 练 习 三...............................5 练 习 四...............................8 练 习 五..............................13 练 习 六..............................16 练 习 七..............................18 练 习 八..............................21 练 习 九 (24) 练 习 一 1.求下列各复数的实部、虚部、模与幅角。 (1)i i i i 524321-- --; 解:i i i i 524321---- = i 2582516+ z k k Argz z z z ∈+== = = π22 1 arctan 25 5825 8Im 25 16 Re (2)3 ) 231(i + 解: 3) 231(i + z k k Argz z z z e i i ∈+===-=-==+=π ππ π π 210Im 1Re 1 ][)3 sin 3(cos 333 2.将下列复数写成三角表示式。 1)i 31- 解:i 31-

)35sin 35(cos 2ππi += (2)i i +12 解:i i +12 )4 sin 4(cos 21π π i i +=+= 3.利用复数的三角表示计算下列各式。 (1)i i 2332++- 解:i i 2332++- 2sin 2 cos π π i i +== (2)4 22i +- 解:4 22i +-4 1 )]43sin 43(cos 22[ππi += 3,2,1,0] 1683sin 1683[cos 2]424/3sin ]424/3[cos 283 8 3 =+++=+++=k k i k k i k ππππππ 4..设 321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位 圆z =1的一个正三角形的项点。 证:因,1321===z z z 所以321,,z z z 都在圆周 32z z ++=0 则, 321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又 ,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量

复变函数与积分变换课后习题答案详解

复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππe cos isin 44-??????=-+- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+ ); 33 3;;;.n z i ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 322222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ (( )( ){ }3 3 2 3 2 111313188-+? ???== --?-?+?-????? ? ?? ?? ()1 80i 18 = += ∴Re 1=?? , Im 0=?? . ④解: ∵ () ( )(( )2 3 3 2 3 13131i 8 ??--?-?+?-???? =?? ()1 80i 18 = += ∴Re 1 =? ? , Im 0=? ? . ⑤解: ∵()()1,2i 211i, k n k n k k n k ?-=? =∈?=+-???¢. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i -+= 2i 2i -+=-- ②解:33-= 33-=- ③解:()( )2i 32i 2i 32i ++=++= ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 22++== ()1i 11i 222i ++-??== ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点 ()()x a F x f t dt =? 形如上式的积分,叫做变限积分。 注意点: 1、在求导时,是关于x 求导,用课本上的求导公式直接计算。 2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。 (即在积分内的x 作为常数,可以提到积分之外。) 关于积分上限函数的理论 定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则?=x a dt t f x F )()(在],[b a 上连续。 定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。 定理3如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[ b a 上可导,而且有 ).(])([)(x f dt t f dx d x F x a == '? ========================================== 注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。 (Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

复变函数与积分变换重要学习知识重点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换第六章测验题与答案

第六章 共形映射 一、选择题: 1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( ) (A )21< z (B )211<+z (C )21>z (D )2 11>+z 2.映射i z i z w +-= 3在i z 20=处的旋转角为( ) (A )0 (B ) 2 π (C )π (D )2 π - 3.映射2 iz e w =在点i z =0处的伸缩率为( ) (A )1 (B )2 (C)1-e (D )e 4.在映射i e iz w 4 π +=下,区域0)Im( w (B )22)Re(->w (C )22)Im(> z (D )2 2 )Im(->w 5.下列命题中,正确的是( ) (A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43 +=在0=z 处的伸缩率为零 (C ) 若)(1z f w =与)(2z f w =是同时把单位圆1w 的分式线性变换,那么)()(21z f z f = (D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(2 2 =-+-y x 的对称点是( )

(A )i +6 (B )i +4 (C )i +-2 (D )i 7.函数i z i z w +-=33将角形域3arg 0π<w (C ) 0)Im(>w (D )0)Im(z 映射为( ) (A )ππ <<- w arg 2 (B ) 0arg 2 <<- w π (C ) ππ <z 映射成圆域2

积分变换习题解答2-2

2-2 1.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2 132!1232132m m m t s s s s s t t +????==++=++???? 及有L L L . 2)()1e t f t t =-. 解 :[]() () 11 11 ,e e t t t t t s s s s --????= ==- ????2 2 2+1-1L L ,L 1-. 3)()()2 1e t f t t =-. 解: ()22-1e e 2e e t t t t t t t ????=-+???? L L () () () 2 3 2 3 2 2 145 .-1-1-1s s s s s s -+= - + = -1 5)()cos f t t at =. 解: 由微分性质有: [][]() 2 2 2 222 2 d d cos cos d d s s a t at at s s s a s a -?? =-=-= ? +?? +L L 6) ()5sin 23cos 2f t t t =- 解:已知[][]2 2 2 2 sin ,cos s t t s s ω ωωω ω= = ++L L ,则 []52 2 222103sin 23cos 25 34 4 4 s t t s s s --=-= +++L 8)()4e cos 4t f t t -=. 解: 由[]2 cos 416 t s +s = L 及位移性质有 42cos 4416 e t s t s -??=??++4(+)L . 3.若()()f t F s ??=??L ,证明(象函数的微分性质):

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

习题二 1. 求映射 1 w z z =+ 下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222 22 1i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++ =++=++-++++ 因为22 4x y +=,所以 53i 44u iv x y += + 所以 54u x =,34v y =+ 53 4 4 ,u v x y == 所以( ) ()2 25344 2 u v + =即( ) ()2 2 22531 u v + =,表示椭圆. 2. 在映射2 w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ? ρ=或 i w u v =+. 解:设222 i ()2i w u v x iy x y xy =+=+=-+ 所以22 ,2.u x y v xy =-= (1) 记e i w ? ρ=,则 π 02,4r θ<<= 映射成w 平面内虚轴上从O 到4i 的一段,即 π 04,. 2ρ?<<= (2) 记e i w ? ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即 π 04,0.2ρ?<<<<

(3) 记w u iv =+,则将直线x=a 映成了22,2.u a y v ay =-=即 222 4().v a a u =-是以原点为焦点,张口向左的抛物线将y=b 映成了22 ,2.u x b v xb =-= 即222 4()v b b u =+是以原点为焦点,张口向右抛物线如图所示 . 3. 求下列极限. 解:令 1z t = ,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z=x+yi ,则Re()i z x z x y =+有 000 Re()1 lim lim i 1i z x y kx z x z x kx k →→=→== ++ 显然当取不同的值时f(z)的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解: 2lim (1) z i z i z z →-+= 11 lim lim ()()()2 z i z i z i z i z z i z i z →→-==- +-+.

积分变换课后答案

1-1 1. 试证:若 ()f t 满足Fourier 积分定理中的条件,则有 ()()()d d 0 cos sin f t a t b t ωωωωωω+∞+∞ =+? ? 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞ -∞-∞ ==?? 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明. 证明:利用Fourier 积分的复数形式,有 ()()j j e e d π12t t f t f ωωτω+∞+∞--∞-∞??= ? ????? ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞??=-???? ?? ()()()j j d 1cos sin 2 a b t t ωωωωω+∞ -∞??= -+??? 由于()()()(),,a a b b ωωωω=-=--所以 ()()()d d 11cos sin 22 f t a t b t ωωωωωω+∞+∞-∞-∞= +?? ()()d d 0 cos sin a t b t ωωωωωω+∞+∞ =+? ? 2.求下列函数的Fourier 积分: 1)()22 21,10,1t t f t t ?-≤?=?>??; 2) ()0, 0;e sin 2,0 t t f t t t -???为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞ +∞?====-?-∞ ???F

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44 u iv x y +=+ 所以 54u x = ,34 v y =+ 5344 ,u v x y == 所以()()2 253442u v +=即()()222253221u v +=,表示椭圆. 2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ?ρ=或i w u v =+. (1)π02,4r θ<<= ; (2)π02,04 r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+ 所以22,2.u x y v xy =-= (1) 记e i w ?ρ=,则π02,4 r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2 ρ?<<= (2) 记e i w ?ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2 ρ?<<<<

(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-= 即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示. 3. 求下列极限. (1) 2 1lim 1z z →∞+; 解:令1z t =,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z =x +y i ,则Re()i z x z x y =+有 000 Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()()2 z i z i z i z i z z i z i z →→-==-+-+.

复变函数与积分变换总结

第一章小结 一、 复数及运算 1. 复数及代数运算 2. 复数的几何表示 复数与复平面上的点、向量一一对应;几何角度看唯一确定复数的两个概念为:模、辐 角;复数加减乘积运算后对应的复数在坐标面上可通过画图做出;几何运算:积(商)的模等于模的积(商),幅角等于幅角和(差);复数差的模表示两个点间的距离;复数的三角表示在计算复数的乘幂及方根时较方便 二、 复数集概念:邻域、内点、开集、区域、简单曲线、单联通与多联通区域 三、 复变函数 1. 对应于两个二元实变函数,因此对复变函数的研究有两种方法 (1). 参考一元实变函数的研究方法 例. 设函数()f z 在0z 连续,且0()0f z ≠,证明必存在0z 的一个邻域,使得在此邻域内()0f z ≠ 证明:设0 0lim ()()z z f z f z →=,则对任意的0(),2 f z ε= 存在0δ>使得当0z z δ-<时 00()()(),2f z f z f z -< 因此 00()()(),2 f z f z f z -< 所以 0()()0.2 f z f z >> (2). 转化为两个二元实变函数的研究,如复变函数的极限与连续性的讨论 四、几个特定的复数问题及求解的关键步骤 1. 证明复数模的不等式 关键步骤: (1). 证明原不等式两端平方后的不等式 (2). 利用2 z z z = 2. 确定平面曲线的复数方程 关键步骤:转化为求,x y 满足的方程 3. 确定复数方程对应图形 关键步骤:利用复数差模的几何意义;转化为关于,x y 的方程;转化为关于,r θ的方程 4. 确定映射()w f z =将z 平面上的图形映到w 平面上的图形 关键步骤: (1). 写出()w f z =对应的两个二元实变函数

积分变换主要公式超强总结 (1)

一、傅里叶变换 1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件: 1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞ -∞?收敛; 则傅氏积分公式存在,且有 ()()()()()(), 1[]11002,2 iw iwt f t t f t f e d e dw f t f t t f t τττπ +∞+∞--∞ -∞ ?? =-?++-? ??? 是的连续点是的第一类间断点 2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞ --∞==? 1-2 傅里叶逆变换定义式:()11 []()()2iwt F F w f t F w e dw π +∞--∞ == ? 1-3 3、常用函数的傅里叶变换公式()1 ()F F f t F ω-??→←?? 矩形脉冲函数1 ,22()sin 2 0,2 F F E t E f t t τ τωτω-?≤ ?? ??→=? ←???> ?? 1-4 单边指数衰减函数 ()()1,0110 ,0t F F e t e t F e t iw j t βββω--?≥??→=?=??? ←????++

(完整版)复变函数和积分变换重要知识点归纳

.WORD.格式. .专业资料.整理分享. 复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1)模:22z x y =+; 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ?≥=+??

复变函数与积分变换修订版-复旦大学课后的习题答案

习题 七 1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有 ?+∞ ?=0 d sin )()(ωωωt b t f 其中()?+∞ ?=0 tdt sin π2)(ωωt f b 当 f (t ) 为 偶 函 数 时 , 则 有 ?+∞?=0 cos )()(ωωtd w a t f 其中? +∞ ?=0 2 tdt c f(t))(ωωπ os a 证明: 因为ωωωd G t f t i ?+∞ ∞ -=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ()()()(cos sin )i t G f t e dt f t t i t dt ωωωω+∞ +∞ --∞-∞ ==?-? ? ()cos ()sin f t tdt i f t tdt ωω+∞ +∞ -∞ -∞ =?-?? ? 当f (t )为奇函数时,t cos f(t)ω?为奇函数,从而 ? +∞ ∞ -=?0tdt cos f(t)ω t sin f(t)ω?为偶函数,从而 ? ?+∞ ∞ -+∞ ?=?0 .sin f(t)2tdt sin f(t)tdt ωω 故.sin f(t)2)(0 tdt i G ωω?-=? +∞ 有 )()(ωωG G -=-为奇数。 ωωωωπ ωωπ ωd t i t G d e G t f t i )sin (cos )(21)(21)(+?= ?= ? ? +∞ ∞ -+∞ ∞ - =0 1()sin d ()sin d 2ππi G i t G t ωωωωωω+∞ +∞ -∞?=??? 所以,当f(t)为奇函数时,有 00 2()b()sin d .b()= ()sin dt.πf t t f t t ωωωωω+∞ +∞ =????其中同理,当f(t)为偶函数时,有 ()()cos d f t a t ωωω+∞ =??.其中 02()()cos π a f t tdt ωω+∞ = ?? 2.在上一题中,设()f t =21, 0, 1 t t t ?

相关文档
相关文档 最新文档