文档库 最新最全的文档下载
当前位置:文档库 › 数论50题

数论50题

数论50题
数论50题

数论50题

1.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?

【分析】各位数字和为1+3+4+5+7+8=28

所以偶数位和奇数位上数字和均为14

为了使得该数最大,首位必须是8,第2位是7,14-8=6

那么第3位一定是5,第5位为1

该数最大为875413。

2.请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个?

【分析】75=3×25

若被3整除,则各位数字和是3的倍数,1+2+5+7+8+9=32

所以应该去掉一个被3除余2的,因此要么去掉2要么去掉8

先任给一个去掉8的,17925即满足要求

1)若去掉8

则末2位要么是25要么是75,前3位则任意排,有3!=6种排法

因此若去掉8则有2*6=12个满足要求的数

2)若去掉2

则末2位只能是75,前3位任意排,有6种排法

所以有6个满足要求

综上所述,满足要求的五位数有18个。

3.已知道六位数20□279是13的倍数,求□中的数字是几?

【分析】根据被13整除的判别方法,用末三位减去前面的部分得到一个两位数,十位是7,个位是(9-□),它应该是13的倍数,因为13|78,所以9-□=8

□中的数字是1

4.某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?(2005全国小学数学奥赛)

【分析】可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除

因此该数是[9,5,11]=495,因此符合条件的最小自然数是495。

5.一次考试中,某班同学有考了优秀,考了良好,考了及格,剩下的人不及格,已知该班同学的人数不超过50,求有多少人不及格?

【分析】乍一看这应该是一个分数应用题,但实际上用到的却是数论的知识,由于人数必须是整数,所以该班同学的人数必须同时是2,3,7的倍数,也就是42的倍数,又因为人数不超过50,所以只能是42人,因此不及格的人数为(1---)×42=1人

6.(1)从1到3998这3998个自然数中,有多少个能被4整除?

(2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除?

(第14届迎春杯考题)

【分析】(1)3998/4=999….6所以1-3998中有996个能被4整除的

(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的

因此我们考虑分组的方法

我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位

然后对这4000个数做如下分组

(0000,1000,2000,3000)

(0001,1001,2001,3001)

(0002,1002,2002,3002)

…….

(0999,1999,2999,3999)

共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数

但注意到我们补充了一个0000进去。所以原来的3998个数里,有999个数字和是4的倍数。

7.是否可在下列各数之间添加加号或者减号,使得等式成立?

1 2 3 4 5 6 7 8 9 10=36

若可以,请写出符合条件的等式;若不可以,请说明理由。

【分析】无论是加还是减,对奇偶性没有影响,如果全是加号的话,那么算出的结果是55是个奇数,因此某些加号变成减号后所得结果仍然是奇数,不可能是36,因此不可能使等式成立。

8.黑板上写着两个数1和2,按下列规则增写新数,若黑板有两个数a和b,则增写a×b+a+b这个数,比如可增写5(因为1×2+1+2=5)增写11(因为1×5+1+5=11),一直写下去,问能否得到2008,若不能,说明理由,若能则说出最少需要写几次得到?(2001年同方杯试题改编)

【分析】开始是一奇数一个偶数,根据规则变成的新数是奇数×偶数+奇数+偶数,仍然是一个奇数,此时我们有2个奇数,一个偶数,如果还用奇数和偶数来进行运算的话我们新添的仍然是奇数,若用2个奇数进行运算,则新添的数是奇数×奇数+奇数+奇数,仍然是奇数。因此无论我们怎么算都只能增写奇数,不可能写出2008这个偶数。

9.从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有几种不同的选法?

【分析】3个数的和是偶数有2种可能

1)三个都是偶数,从2,4,6,8里选3个有4种可能

2)两个奇数一个偶数,从1,3,5,7,9里选2个有10种可能,从2,4,6,8里选一个有4种可能,根据乘法原理有40种选法

综上所述,共有44种不同的选法。

10.已知3个不同质数的和是最小的合数的完全平方,求这3个质数的乘积是多少?

【分析】最小的合数是4,其平方为16

我们知道奇数个奇数的和是奇数,所以这3个质数中必然有2

那么其余2个的和是14

只能一个是3一个是11

因此这3个质数的乘积是2×3×11=66

11.有1997个奇数,它们的和等于它们的乘积。其中有三个数不是1,而是三个不同的质数。那么,这样的三个质数是、、

【分析】设这3个不同的质数分别是a,b,c

根据题意 abc=1994+a+b+c

这3个质数不可能都很大,假如最小的是11的话,那么11*13*17=2431,太大了

所以a,b,c中一定有一个是3,5,7中的

若a=3,那么3bc=1997+b+c,c=(1997+b)/(3b-1)

试验一下发现b=5可以使c是整数,c=143,但143不是质数,b=7,11,13都不行

那么我们不妨再让a=5,那么5bc=1999+b+c

c=(1999+b)/(5b-1) b=7时算得c=59,是质数,符合要求

因此a=5,b=7,c=59为满足条件的三个质数。

12.利用约数个数公式

1)分别求12,35和420的约数个数

2)分别求4,6,和24的约数个数

问题1:对于1)的结果,你是否发现了什么规律?

问题2:对于2)该规律是否仍然成立?

问题3:该规律成立的条件是什么,并证明你的结论

【分析】1)d(12)=6 d(35)=4 d(420)=24

规律:12×35=420

d(12)×d(35)=d(420)

2) d(4)=3 d(6)=4 d(24)=8,规律不再成立

3)规律是若(a,b)=1,则d(a)×d(b)=d(ab)

证明用约数个数公式即可

13.一个数的完全平方有39个约数,求该数的约数个数是多少?

【分析】设该数为p1^a1×p2^a2×…pn^an

那么它的平方就是p1^(2a1)×p2^(2a2)…×pn(2an)

因此(2a1+1)(2a2+1)…(2an+1)=39

由于39=3×13=1×39

(1)所以2a1+1=3,2a2+1=13

a1=1,a2=6

故该数的约数个数为(1+1)×(6+1)=14

(2)或者:2a1+1=39

a1=19,那么19+1=20个

14.从1/2 1/4 1/6 1/8 1/10 1/12中去掉2个分数,可使得剩下4个分数之和为1,问去掉哪两个?(希望杯试题)

【分析】单纯试的方法当然可以,但本题如果我们对数论知识理解透彻并应用上的话不需要任何计算就可以“看出”去掉的是1/8和1/10

理由如下

1)因为分母里8是独一无二的有3个质因子2的,所以必须去掉

2)因为10是分母里独一无二的含有质因子5的,所以也必须去掉

15.甲乙两数最小公倍数是60,最大公约数是6,已知甲数是12,求乙数。

【分析】直接用公式[a,b]×(a,b)=ab,代入即得乙数=30

16.已知甲乙两数的和加上它们的最大公约数恰好等于它们的最小公倍数,求它们的最小公倍数除以它们的最大公约数所得的商是几?

【分析】设甲数为a,乙数为b,并设a=(a,b)×a’,b=(a,b)×b’,则[a,b]=(a,b)a’b’

根据题意得 (a,b)a’b’=(a,b)×a’+(a,b)×b’+(a,b)

两边同时约掉(a,b)得到 a’b’=a’+b’+1

所以a’b’-a’-b’+1=2 (a’-1)(b’-1)=2 得a’=3 b’=2

最小公倍数除以最大公约数得到的是a’b’=3×2=6

17.三个连续正整数,中间一个是完全平方数,将这样的连续三个正整数的乘积称为“美妙数”,问所有的“美妙数”的最大公约数是多少?(第九届华杯赛)

【分析】这样的数有3×4×5 8×9×10 15×16×17 24×25×26……

容易发现它们的最大公约数是3×4×5=60

下面给出证明,首先任意连续3个正整数中必然有一个是3的倍数,所以美妙数一定能被3整除,其次,任何一个完全平方数要么是4的倍数要么被8除余1,所以美妙数一定也能被4整除

最后,任何一个完全平方数的末位数字都是0,1,4,5,6,9,无论是哪一个,它们自己加上前后各一个数中必然有一个是0或5,因此美妙数一定也是5的倍数

综上所述,所有美妙数的最大公约数是60

18.10个非零自然数的和是1001,则它们的最大公约数的最大值是多少?(2002我爱数学少年夏令营)

【分析】设这10个非零自然数分别是a1,a2,a3,….a10,它们的最大公约数是a

那么a1,a2,…,a10都是a的倍数

因此1001是a的倍数,1001=7*11*13

a是1001的约数,显然a不能取1001,若a取143,则a1+a2+…+a10至少是1430也不可能

因此a最大是7*13=91

19.一个偶数,它的约数里最大的两个之和是120,求该数是多少?

【分析】设这个数是2a

那么它最大的两个约数显然是2a和a

2a+a=120

解得a=40

所以2a=2×40=80

所以这个数是80。

20.已知一个苹果重千克,一个梨重千克,且苹果和梨的总重量相同,求最少有几个苹果和几个梨?

【分析】本题实质上就是一个求分数得最小公倍数的问题,这类问题有固定的解法,一般地,对于两个分数,它们的最小公倍数是,这里[a,c]代表a,b的最小公倍数,(b,d)代表b,d的最大公约数。

解法一:根据上述分析本题实质上是求和的最小公倍数

由上面给出的结论知道这个数是=

所以苹果和梨的总重量都是千克

因此苹果个数是÷=25个

梨的个数是÷=32个。

解法二:设苹果有x个,梨有y个

所以x=y,推出x:y=25:32

故x最小是25,y最小是32。

x=×25=

所以总重量是千克。

21.一个正整数加上32和132后都等于完全平方数,求这个正整数是多少?

【分析】设该正整数为a,根据题意得

a+32=m2 a+132=n2

两式相减得(n+m)(n-m)=100,注意到n+m和n-m的奇偶性相同

所以n+m=50,n-m=2

解得n=26 m=24

因此a=26×26-132=544

所以这个正整数是544

22.一间屋子里有编号为1-100的100盏灯,全都是亮的,有编号为1-100的100名同学依次进入房间拉灯,规则如下:第一名同学把所有的灯都拉了一遍,第二名同学拉了所有号码是2的倍数的灯,第3名同学拉了所有号码是3的倍数的灯…第100名同学拉了所有号码是100的倍数的灯,问最后有几盏灯是灭的?

【分析】要考虑灯是亮的还是灭的,关键看灯被拉了奇数次还是偶数次,因为原来都亮,要我们求灭的灯的个数,那么也就是求那些被拉了奇数次的灯有几个

注意拉灯的规则我们不难发现,每盏灯被拉的次数恰好是它的约数的个数

又因为约数个数是奇数等价于该数是完全平方数,因为1-100中的完全平方数有10个

因此最后有10盏灯是灭的。

23.一间屋子里有100盏灯,全都是亮的,有编号为1-100的100名同学依次进入房间拉灯,规则如下:第一名同学先拉1号灯,然后隔一个拉一个;第2名同学先拉1号灯,然后隔两个拉一个;第3名同学先拉1号灯,然后隔3个拉一个;…第100名同学先拉1号灯,然后隔100个拉一个,问最后有几盏灯是灭的?

【分析】我们要求的仍然是被拉了奇数次的灯有几个

注意到规则已经产生变化,方便起见我们先举一个简单的例子个大家看

1号同学拉的都是被2除余1的

2号同学拉的都是被3除余1的

100号同学拉的是被100除余1的

我们来看7号灯,7被谁除余1呢,那么就要看7-1能被谁整除了,注意到6有4个约数,1,2,3,6,但被1除余1的并没被拉过,因此7号灯被3个同学拉过(2号,3号,6号)

由此可见,n号灯被拉的次数等于(n-1)的约数个数-1(特别的,1号灯被拉了100次)

我们要求的是被拉奇数次的,那么就要使n-1的约数个数是偶数,即不是完全平方数

0-99中的完全平方数有10个,所以不是完全平方数的就有90个,因此最后有90盏灯是灭的。

24.已知a,b,c都是整数,且(a,b,c)=1,满足ab+bc=ac,求证a-b是完全平方数

【分析】证明:ab+bc=ac,变形得ac-ab-bc=0,即ac-ab-bc+b^2=b^2

因此(a-b)(c-b)=b^2

任取a-b的一个质因子q(若无质因子那么a-b=1,是完全平方数)

那么b的平方就能被q整除,由于q是质数,所以b就能被q整除,又因为a-b可被q整除

那么a也能被q整除。

若c-b也有质因子q,那么c就也能被q整除了,和(a,b,c)=1矛盾

所以c-b里无因子q

由此可知b^2里所含的质因子q都在a-b中,必然是偶数个(完全平方数的每个质因子都是偶数个)

由q的任意性可知,a-b里每个质因子的指数都是偶数,因此a-b是完全平方数。

25.已知2008被一些自然数去除,得到的余数都是10.这些自然数共有几个?(15届迎春杯)

【分析】2008被这样的自然数除余数是10,那么1998就是这些自然数的倍数,换句话说

我们要求1998的约数有几个,但注意到除数比余数大,所以我们要求的是1998的约数中那些大于10的,枚举显然不可取,我们考虑用约数个数公式

1998=2*3^3*37,d(1998)=(1+1)*(3+1)(1+1)=16

其中小于10的约数有1,2,3,6,9

去掉它们还有11个

因此这样的自然数共有11个。

26.有一串数:1,3,8,22,60,164,448,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是

【分析】把这串数除以9的余数列出来如下

1,3,8,4,6,2,7,0,5,1,3,….

发现恰好每9个一循环

2000被9除余数是2,所以第2000个和第2个是一样的,除以9的余数是3

27.用自然数n去除63,91,129所得余数之和是25,求n

【分析】方便起见我们把3次除法的商和余数都设出来

63÷n=a…r1

91÷n=b…r2

129÷n=c…r3

r1+r2+r3=25

根据带余除法,(a+b+c)n+(r1+r2+r3)=63+91+129

即(a+b+c)n=258=2*3*43

试验后易知n=43

28.一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?

【分析】注意到7-2=8-3=5

也就是说该数加上5以后可被7和8整除,也就是56的倍数

因此这个数只可能是56-5 56*2-5 56*3-5

经检验发现只有56*3-5=163被9除余1符合要求,因此该数为163

29.一堆糖果,如果每2块分一堆剩1个,每3块分一堆剩1个….每10个分一堆也剩1个,且这堆糖果的个数在99-5000之间,求这堆糖果的个数?

【分析】糖果数减掉1的话就能同时被2,3,4,…10整除

[1,2,3,…10]=2520

因此糖果数被2520除余1,在题目要求的范围里这样的数只有2521,因此这堆糖果的个数是2521。

30.若有一数介于300与400之间,以3除剩1,以8除剩5,以11除剩4。问此数为何?

【分析】下面介绍一种通用的方法

第一步:先找一个被3除余1,被8和11同时整除的数,容易找到是88

第二步:找一个被8除余1,被3和11同时整除的数,容易找到是33

第三步:找一个被11除余1,被3和8同时整除的数,容易找到是144

最后一步,算出该数1*88+5*33+4*144=829

但该数不在300-400之间怎么办呢?我们只需要减去[3,8,11]=264

那么该数被3,8,11除的余数都不会改变,829-264-264=301

因此所求数为301,经检验的确符合要求

31.已知三个连续自然数,它们都小于2002,其中最小的一个自然数能被13整除,中间的一个自然数能被15整除,最大的一个自然数能被17整除。那么,最小的一个自然数是多少?

(第18届迎春杯)

【分析】假设中间一个是a,那么a被13除余1,被15整除,被17除余16

先满足前2个条件,被15整除且被13除余1

因为15除以13余2,2*7=14除以13余1,所以该数为15*7=105

如果加上[13,15]=195仍然符合前2条,因此该数形如105+195n

我们只需要满足该数被17除余16即可

105+195n=(102+187n)+(3+8n)

所以8n+3被17除余16即可,即8n被17除余13,n=8即可满足要求

因此a=105+195*8=1665

所以最小一个自然数是1664

32.红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字?

【分析】设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位数可以写成 1000a3+100a2+10a1+a0,它的各位数字之和的10倍是

10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,

这个四位数与它的各位数字之和的10倍的差是

990a3+90a2-9a0=1998,

110a3+10a2-a0=222。

比较上式等号两边个位、十位和百位,可得

a0=8,a2=1,a3=2。

所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。

33.筐里共有96个苹果,如果不一次全拿出,也不一个个地拿;要求每次拿出的个数同样多,拿完时又正好不多不少,有________种不同的拿法.

【分析】按题目的规定,每次拿的个数都是96的约数(除96和1之外),这样问题转化为求96的约数个数.将96分解质因数,得96=2×2×2×2×2×3.除去96和1之外,96的约数有10个:

答:有10种不同拿法. 2;3;4;6;8;12;16;24;32;48.

34.十二张扑克牌,2点、6点、10点各四张.你能从中选出七张牌,使上面点数之和等于52吗?说明理由. 【分析】每张牌的点数除以4,都余2,所以任取七张,点数之和被4除都余2,而52被4整除,所以不能使点数之和等于52。

35.现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?

【分析】只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。只能从唯一的条件“它们的和是1111”入手分析。三个数的和是1111,它们的公约数一定是1111的约数。因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。所以所求数是101。

36.如果N是1,2,3,…,1998,1999,2000的最小公倍数,那么N等于多少个2与1个奇数的积?

【分析】因为=1024,=2048>2000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=,所以,N等于10个2与某个奇数的积。

37.求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。

【分析】三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。设这个三位数的百位、十位、个位的数字分别为x,y,z。由于任何数除以11所得余数都不大于10,所以x2+y2+z2≤10,

从而1≤x≤3,0≤y≤3,0≤z≤3。所求三位数必在以下数中:

100,101,102,103,110,111,112,

120,121,122,130,200,201,202,

211,212,220,221,300,301,310。

不难验证只有100,101两个数符合要求。

38.在1-600中,恰好有3个约数的数有几个?

【分析】我们只需要注意到有3个约数的数一定是质数的完全平方

2,3,5,7,11,13,17,19,23这9个数的平方数在1-600之间

共有9个符合要求

39.有3张扑克牌,牌面数字都在10以内。把这3张牌洗好后,分别发给小明、小亮、小光3人。每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23。问:这3张牌的数字分别是多少?

【分析】13+15+23=51,51=3×17。因为17>13,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:

①1,6,10 ②1,7,9 ③1,8,8

④2,5,10 ⑤2,6,9 ⑥2,7,8

⑦3,4,10 ⑧3,5,9 ⑨3,6,8

⑩3,7,7 (11)4,4,9 (12)4,5,8

(13)4,6,7 (14)5,5,7 (15)5,6,6

只有第⑧种情况可以满足题目要求,即

3+5+5=13;3+3+9=15;5+9+9=23。

这3张牌的数字分别是3,5和9。

40.写出12个都是合数的连续自然数。

【分析】分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:

114,115,116,117,118,119,120,

121,122,123,124,125,126。

分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……第12个是13的倍数,那么这12个数就都是合数。

又m+2,m+3,…,m+13是12个连续整数,故只要m是2,3,…,13的公倍数,这12个连续整数就一定都是合数。解法2:设m为2,3,4,…,13这12个数的最小公倍数。m+2,m+3,m+4,…,m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数。

说明:我们还可以写出

13!+2,13!+3,…,13!+13

(其中n!=1×2×3×…×n)这12个连续合数来。

同样,(m+1)!+2,(m+1)!+3,…,(m+1)!+m+1是m个连续的合数。

41.将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:

(1)将左边第一个数码移到数字串的最右边;

(2)从左到右两位一节组成若干个两位数;

(3)划去这些两位数中的合数;

(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;

(5)所余的两位质数保持数码次序又组成一个新的数字串。

问:经过1999次操作,所得的数字串是什么?

【分析】第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。

不难看出,后面以4次为周期循环,1999=4×499+3,所以第1999次操作所得数字串与第7次相同,是3117。42.甲、乙两个代表团乘车去参观,每辆车可乘36人。两代表团坐满若干辆车后,甲代表团余下的11人与乙代表团余下的成员正好又坐满一辆车。参观完,甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片留念。

如果每个胶卷可拍36张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?

【分析】甲代表团坐满若干辆车后余11人,说明甲代表团的人数(简称甲数)除以36余11;两代表团余下的人正好坐满一辆车,说明乙代表团余36-11=25(人),即乙代表团的人数(简称乙数)除以36余25;甲代表团的每个成

员与乙代表团的每个成员两两合拍一张照片,共要拍“甲数×乙数”张照片,因为每个胶卷拍36张,所以最后一个胶卷拍的张数,等于“甲数×乙数”除以36的余数。因为甲数除以36余11,乙数除以36余25,所以“甲数×乙数”除以36的余数等于11×25除以36的余数。

(11×25)÷36=7……23,

即最后一个胶卷拍了23张,还可拍36-23=13(张)。

43.(第五届小学数学报竞赛决赛)用某自然数去除,得到商是,余数是,求和.

【分析】因为是的倍还多,得到,得,所以,.

44.一个两位数除以的商是,除以所得的余数是,求这个两位数.

【分析】因为一个两位数除以的商是,所以这个两位数一定大于,并且小于;又因为这个两位数除以余,而除以余,这个两位数为.

45.除以一个两位数,余数是.求出符合条件的所有的两位数.

【分析】,,那么符合条件的所有的两位数有,因为“余数

小于除数”,所以舍去,答案只有.

46.(年全国小学数学奥林匹克试题)两数相除,商余,被除数、除数、商数、余数四数之和等于,则被除数是_______.【分析】因为被除数减去后是除数的倍,所以根据和倍问题可知,除数为

,所以,被除数为.

47.有一个整数,除所得的余数都是,求这个数.

【分析】(法),,,的约数是,

因为余数为要小于除数,这个数是;

(法)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的

公约数.,,,所以这个数是.

48.有一个大于的整数,除所得的余数相同,求这个数.

【分析】,,,的约数有,所以这个数可能为.

49.甲、乙、丙三人打牌。第一局,甲输给了乙和丙,使得乙、丙手中的点数都翻了一番。第二局,甲和乙赢了,从而甲、乙手中的点数翻了一番。最后一局,甲、丙获胜,两人手中的点数翻了一番。这样,甲、乙、再三人每人都是二赢一输,并且每人手中的点数完全相等,可是甲发现自己输了100点。请问:开始时,甲手上有多少点?(每局三人的点数总和保持不变)

【分析】

甲乙丙

开始时 1.625 0.5 0.875

1 0.25 1 1.75

2 0.5 2 0.5

3 1 1 1

100÷(1.625-1)×1.625=260

50.两个数的最大公约数是21,最小公倍数是126。这两个数的和是________

【分析】126÷21=6 6=1×6=2×3

所以21×1+21×6=147 或21×2+21×3=105

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

小升初数学专项解析+习题-数论篇-通用版(附答案)

小升初重点中学真题之数论篇 数论篇一 1 (人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。 3(人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 4 (人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 预测 1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?

预测 2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日? 预测 3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______. 数论篇二 1 (清华附中考题) 有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____. 2 (三帆中学考题) 140,225,293被某大于1的自然数除,所得余数都相同。2002除以这个自然数的余数是 . 3 (人大附中考题)

奥数赠品数论50题

数论50题 1.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】各位数字和为1+3+4+5+7+8=28 所以偶数位和奇数位上数字和均为14 为了使得该数最大,首位必须是8,第2位是7,14-8=6 那么第3位一定是5,第5位为1 该数最大为875413。 2.请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个? 【分析】 75=3×25 若被3整除,则各位数字和是3的倍数,1+2+5+7+8+9=32 所以应该去掉一个被3除余2的,因此要么去掉2要么去掉8 先任给一个去掉8的,17925即满足要求 1)若去掉8 则末2位要么是25要么是75,前3位则任意排,有3!=6种排法 因此若去掉8则有2*6=12个满足要求的数 2)若去掉2 则末2位只能是75,前3位任意排,有6种排法 所以有6个满足要求 综上所述,满足要求的五位数有18个。 3.已知道六位数20□279是13的倍数,求□中的数字是几? 【分析】根据被13整除的判别方法,用末三位减去前面的部分得到一个两位数,十位是7,个位是(9-□),它应该是13的倍数,因为13|78,所以9-□=8 □中的数字是1 4.某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?(2005全国小学数学奥赛)【分析】可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除 因此该数是[9,5,11]=495,因此符合条件的最小自然数是495。 111考了优秀,一次考试中,某班同学有考了良好,考了及格,剩下的人不及格,已知该5.723班同学的人数不超过50,求有多少人不及格? 【分析】乍一看这应该是一个分数应用题,但实际上用到的却是数论的知识,由于人数必须是整数,所以该班同学的人数必须同时是2,3,7的倍数,也就是42的倍数,又因为人数不超过50,111--)×42=1人 1-所以只能是42人,因此不及格的人数为(7326.(1)从1到3998这3998个自然数中,有多少个能被4整除? (2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除? (第14届迎春杯考题) 【分析】(1)3998/4=999….6所以1-3998中有996个能被4整除的

ACM经典算法及配套练习题

POJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,p oj2255,poj3094) 初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj3295) (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法: (1)图的深度优先遍历和广度优先遍历. (2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra) (poj1860,poj3259,poj1062,poj2253,poj1125,poj2240) (3)最小生成树算法(prim,kruskal) (poj1789,poj2485,poj1258,poj3026) (4)拓扑排序(poj1094) (5)二分图的最大匹配(匈牙利算法) (poj3041,poj3020) (6)最大流的增广路算法(KM算法). (poj1459,poj3436) 三.数据结构. (1)串(poj1035,poj3080,poj1936) (2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299) (3)简单并查集的应用. (4)哈希表和二分查找等高效查找法(数的Hash,串的Hash) (poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503) (5)哈夫曼树(poj3253) (6)堆 (7)trie树(静态建树、动态建树) (poj2513) 四.简单搜索 (1)深度优先搜索(poj2488,poj3083,poj3009,poj1321,poj2251) (2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414) (3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129) 五.动态规划 (1)背包问题. (poj1837,poj1276) (2)型如下表的简单DP(可参考lrj的书page149): 1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533) 2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159) 3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题) 六.数学 (1)组合数学:

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

数论题目

浙江师范大学《初等数论》考试卷(A1卷) (2004——2005学年第一学期) 考试类别使用学生数学专业**本科 考试时间120分钟表出卷时间*年*月*日 说明:考生应有将全部答案写在答题纸上,否则作无效处理。 一、填空(30分) 1、d(1000)= 。φ(1000)= 。()=______ 。 2、ax+bY=c有解的充要条件是。 3、被3除后余数为。 4、[X]=3,[Y]=4,[Z]=2,则[X—2Y+3Z]可能的值为。 5、φ(1)+φ(P)+…φ()=。 6、高斯互反律是。 7、两个素数的和为31,则这两个素数是。 8、带余除法定理是。 答案 1、16.2340,1 2、(a,b)|c 3、1 4、3,4,5,6,7,8,9,10,11 5、 6、,p,q为奇素数 7、2,29 8、a,b是两个整数,b>0,则存在两个惟一的整数q,r使得 二、解同余方程组(12分) 答案 解:因为(12,10)|6-(-2),(10,15)|6-1,(12,15)|1-(-2) 所以同余式组有解 原方程等价于方程 即 由孙子定理得 三、A、叙述威尔逊定理。 B.证明若,则m为素数(10分)

答案 A.(威尔逊定理)整数是素数,则 证:若m不是素数,则m=ab,,则,则有 不可能,所以m是素数。 四.解方程≡0(mod27)(10分) 答案 解:由≡0(mod3)得得x=1+3t代入 ≡0 (mod9)有有代入x=1+3t得 代入≡0 (mod27)有代入有 , 即 设2P+1为素数,试证(10分) 答案 证:因n=2P+1为素数,由威尔逊定理即有 即证 六、设P=4n+3是素数,证明当q=2p+1也是素数时,梅森数不是素数。(10分) 答案 证:因q=8n+7,由性质2是q=8n+7的平方剩余,即 所以梅森数不是素数。 七、证无正整数解。(8分) 答案 证:假设有解,设(x,y,z)是一组正整数解,则有x是3的倍数,设x=3x1,又得到y为3的倍数,设,又有,则有解且z>z1 这样可以一直进行下去,z>z1>z2> z3>z4>… 但是自然数无穷递降是不可能的,于是产生了矛盾 八、设n是大于2的整数,证明为偶数(10分) 答案 证:因为(-1,n)=1,由欧拉定理有 ,因为n大于2,只有为偶数。

(2020年编辑)ACM必做50题的解题-数论

poj 1061 青蛙的约会 这题用的是解线性同余方程的方法,之前没接触到过,搜索资料后看到一个人的博客里面讲的很好就拷贝过来了。内容如下: 对于方程:ax≡b(mod m),a,b,m都是整数,求解x 的值,这个就是线性同余方程。符号说明: mod表示:取模运算 ax≡b(mod m)表示:(ax - b) mod m = 0,即同余 gcd(a,b)表示:a和b的最大公约数 求解ax≡b(mod n)的原理:对于方程ax≡b(mod n),存在ax + by = gcd(a,b),x,y是整数。而ax≡b(mod n)的解可以由x,y来堆砌。具体做法如下: 第一个问题:求解gcd(a,b) 定理一:gcd(a,b) = gcd(b,a mod b) 欧几里德算法 int Euclid(int a,int b) { if(b == 0) return a; else return Euclid(b,mod(a,b)); } 附:取模运算 int mod(int a,int b) { if(a >= 0) return a % b; else return a % b + b; } 第二个问题:求解ax + by = gcd(a,b) 定理二:ax + by = gcd(a,b)= gcd(b,a mod b) = b * x' + (a mod b) * y' = b * x' + (a - a / b * b) * y' = a * y' + b * (x' - a / b * y') = a * x + b * y 则:x = y' y = x' - a / b * y' 以上内容转自https://www.wendangku.net/doc/569007781.html,/redcastle/blog/item/934b232dbc40d336349bf7e4.html

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

数论考试题

数论考试题

————————————————————————————————作者:————————————————————————————————日期:

一、求同余式的解:111x 75(mod321)≡ 二、求高次同余式的解:)105(m od 0201132 ≡-+x x 。 三、求高次同余式的解: 27100x x ++≡(mod 13). 四、计算下列勒让德符号的值:105223-?? ???, 91563?? ??? 五、计算下列勒让德符号的值:)593438( ,)1847 365 ( 六、韩信点兵:有兵一队,若列成五行纵队,则末行一人;成六行纵队,则末行五人; 成七行纵队,则末行四人;成十一行纵队,则末行十人。求兵数。 七、设 b a ,是两个正整数,证明: b a ,的最大公因子00(,)a b ax by =+,其中00ax by + 是形如ax by +(,x y 是任意整数)的整数里的最小正数. 八、证明:存在无穷多个自然数n ,使得n 不能表示为 p a +2(a > 0是整数,p 为素数) 的形式。 九、证明: 若方程 1 1...0n n n x a x a -+++= (0,i n a > 是整数,1,...,i n =)有有理数解,则此 解必为整数. 十、证明: 若(,)1a b =, 则(,)12a b a b +-=或 十一、证明:设N ∈c b a ,,,c 无平方因子,c b a 22,证明:b a 。 十二、设p 是奇素数,1),(=p n , 证明: ??? ? ??≡-p n n p 2 1 (mod p ). 十三、设m > 1,模m 有原根,d 是)(m ?的任一个正因数,证明:在模m 的缩系中,恰有 )(d ? 个指数为d 的整数,并由此推出模m 的缩系中恰有))((m ??个原根。 十四、设g 是模m 的一个原根,证明:若γ通过模()m ?的最小非负完全剩余系, 则g γ 通过模m 的一个缩系。

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

第三讲 数论专题 - 学生版

第三讲数论专题 重点知识点: 一、整除性质 ①如果自然数a为M的倍数,则ka为M的倍数。(k为正整数) ②如果自然数a、b均为M的倍数,则a+b,a-b均为M的倍数。 ③如果a为M的倍数,p为M的约数,则a为p的倍数。 ④如果a为M的倍数,且a为N的倍数,则a为[M,N]的倍数。 二、整除特征 1.末位系列 (2,5)末位 (4,25)末两位 (8,125)末三位 2.数段和系列 3、9 各位数字之和——任意分段原则(无敌乱切法) 33,99 两位截断法——偶数位任意分段原则 3.数段差系列 11 整除判断:奇和与偶和之差 余数判断:奇和-偶和(不够减补十一,直到够减为止) 7、11、13—三位截断法:从右往左,三位一隔: 整除判断:奇段和与偶段和之差 余数判断:奇段和-偶段和(不够减则补,直到够减)三、整除技巧:

1.除数分拆:(互质分拆,要有特征) 2.除数合并:(结合试除,或有特征) 3.试除技巧:(末尾未知,除数较大) 4.同余划删:(从前往后,剩的纯粹) 5.断位技巧:(两不得罪,最小公倍) 四、约数三定律 约数个数定律:(指数+1)再连乘 约数和定律:(每个质因子不同次幂相加)再连乘约数积定律:自身n(n=约数个数÷2)

例题: 【例1】2025的百位数字为0,去掉0后是225,225×9=2025。这样的四位数称为“零巧数”,那么所有的零巧数是_____。 【巩固】某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么该校人数最多可以达到____人。 【例2】若两个自然数的平方和是637,最大公约数与最小公倍数的和为49,则这两个数是多少? 【巩固】两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是_______。【例3】一个两位数,数字和是质数。而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数。满足条件的两位数为_____。

100个著名初等数论问题

100个著名初等数学问题 https://www.wendangku.net/doc/569007781.html,/xyp 2003-10-26 数学园地 第01题阿基米德分牛问题Archimedes' Problema Bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成. 在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7. 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7. 问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物. 问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cows a头母牛将b块地上的牧草在c天内吃完了; a'头母牛将b'块地上的牧草在c'天内吃完了; a"头母牛将b"块地上的牧草在c"天内吃完了; 求出从a到c"9个数量之间的关系? 第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens 在下面除法例题中,被除数被除数除尽: * * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem

ACM必做50题——数学

1、POJ 2249 Binomial Showdown 组合数学。 高精度,也可把分子分母的数组进行两两约分 #include using namespace std; double c(int c,int k) { double a=1; int i,j=2; for(i=c;i>c-k;i--) a=a*i/(c-i+1); return a; } int main() { int n,k; while(scanf("%d%d",&n,&k)!=EOF && (n!=0 || k!=0)) { if(k>n/2 )k=n-k; printf("%.0lf\n",c(n,k)); } return 0; } 2、poj 1023 the fun number system (经典进位制) 题意:一种由2进制衍生出来的进制方法(我们暂且称为“类2进制”); 标明'n'的位置上原2进制该位的权重要乘上-1,才是现在进制方法该位的权重; 譬如说;pnp对于的能表示的数2来说就是110;即1*2^2+(-1)*1*2^1+1*2^0=2; 算法:这是数论中的进位制问题,我们可以仿照原来的求一个数二进制表示方法; 但首先,我们应该考虑几个问题; ①k位这种类2进制的表示范围; 显然,当给出的'p','n'序列中,我们将所有p的位置都置为1其余位是0,此时最大;当我们将所有n的位置置为1,其余为0,此时最小;不过当我们求最大限max和最小限min时会

有一个溢出问题;比如64位全是p的序列,那么max会溢出,值为-1;同理min在全是n 时也会溢出,为1;显然是max>=0,min<=1,溢出时产生异常,依次可以判断; ②是否是最大限和最小限之间的数都能表示呢? 都可以,而且能够表示的数是2^k个,这个原始2进制是一样的;因为每个位上要么是0,要么是1,而且每个位上的权重唯一的,不能通过其他位的01组合获得;最后,我们就可以仿照原始二进制来算在类2进制下的表示;不断求N的二进制最后一位和右移;如果取余是1,则该位上一定是1,如果该位对于字母为‘n’,则高位应该再加1;这里对2取余可能会出错,因为对于负数,补码的表示,最后一位一定是和原码一样的每次的右移后(有时需先加1)补码表示正好符合要求(可找实例验证); #include using namespace std; __int64 N,M; char s[100],res[100]={'\0'}; int main() { int T;scanf("%d",&T); int i,j; __int64 _max,_min; char ch; while(T--) { scanf("%I64d",&N); scanf("%s",s); _max=0;_min=0; for(i=0;i_max&&_max>=0)) puts("Impossible"); //注意防止64位数的溢出; else { memset(res,'\0',sizeof(res)); for(i=N-1;i>=0;i--) { int flag=0; if(M&1) //这里不能是平常的%2; { res[i]='1';

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

2018最新五年级奥数.数论.完全平方数(C级).学生版

完全平方数 知识框架 一、完全平方数常用性质 1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。不可能是2,3,7,8。 2.在两个连续正整数的平方数之间不存在完全平方数。 3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。 4.若质数p整除完全平方数2a,则p能被a整除。 2.性质 性质1:完全平方数的末位数字只可能是0,1,4,5,6,9. 性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数. 性质3:自然数N为完全平方数?自然数N约数的个数为奇数.因为完全平方数的质因数分解中每个质 -,因数出现的次数都是偶数次,所以,如果p是质数,n是自然数,N是完全平方数,且21|n p N 则2|n p N. 性质4:完全平方数的个位是6?它的十位是奇数. 性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个. 性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数. 二、一些重要的推论 1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一 定不是完全平方数。 2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。 3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49, 69,89,16,36,56,76,96。 4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。 5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。 6.完全平方数的个位数字为6时,其十位数字必为奇数。

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

ACM数论方面十道基础题目详解

1、公约数和公倍数 https://www.wendangku.net/doc/569007781.html,/JudgeOnline/problem.php?pid=40 这道题目是非常基础的题目,在学习了欧几里德算法之后,应该很好就能做的出来了。注意两个数的最小公倍数和最大公约数之间有关系为: a*b=gcd(a,b)*lcm(a,b); 代码如下: #include using namespace std; inline int Gcd(int m,int n) //求最大公约数 { if (m==0) return n; return Gcd(n%m,m); } int main() { int n,a,b,g; cin>>n; while(n--) { cin>>a>>b; g=Gcd(a,b); cout<

?????≡≡≡)33(mod ) 28(mod )23(mod d n e n p n 那么找到k1、k2、k3满足: k1:k1%23==0&&k1%28==0&&k1%33==1 k2:k2%33==0&&k2%28==0&&k2%23==1 k3:k3%33==0&&k3%23==0&&k3%28==1 则n=k2*p+k3*e+k1*i+k*21252; 代码如下: #include int main() { int n,a,b,c,t; while(scanf("%d%d%d%d",&a,&b,&c,&t),~a) { n=(5544*a+14421*b+1288*c)%21252-t; if(n<=0) n+=21252; printf("%d\n",n); } } 3、韩信点兵 https://www.wendangku.net/doc/569007781.html,/JudgeOnline/problem.php?pid=34 这个题目也是很经典的中国剩余问题类的题目,思路跟上面差不多这道题目因为数据范围很小实际上暴力就可以过,但是这个题目不失为练习中国剩余的很好题目,所以建议大家用中国剩余定理做一下。 直接给出代码: 暴力求解代码: #include main() { int a,b,c,n; scanf("%d%d%d",&a,&b,&c); for(n=11;n<100;n++) if(n%3==a&&n%5==b&&n%7==c) printf("%d\n",n); } 中国剩余定理思路代码:

小六数学第21讲:数论综合(学生版)

第二十一讲数论综合 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 基本公式 1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。 2.已知c|ab,(b,c)=1,则c|a。 3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即 n= p11a× p22a×...×p k k a(#) 其中p1

②约数:约数个数为奇数个的是完全平方数。约数个数为3的是质数的平方。 ③质因数分答案:把数字分答案,使他满足积是平方数。 ④立方和:A3+B3=(A+B)(A2-AB+B2)。 8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。 9.周期性数字:abab=ab×101 1.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。 2.牢记基本公式,并在解题中灵活运用公式。 例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这24个四位数中最大的一个。 例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数? 例3:由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少? 例4:从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米? 例5:一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米? 例6:某住宅区有12家住户,他们的门牌号分别是1,2,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?

小学奥数数论经典50题

优秀篇 奇偶性 1.(1984 年第1 届迎春杯试题)有6 个学生都面向南站成一行,每回只能有5 个学生向后转,则最 少要转回就能使这6 个学生都面向北. 2.是否可在下列各数之间添加加号或者减号,使得等式成立? 1 2 3 4 5 6 7 8 9 10 45 若可以,请写出符合条件的等式;若不可以,请说明理由。 位值原理 3.(2009 年第7 届希望杯5 年级2 试第4 题,5 分)一个十位数字是0 的三位数,等于它的各位数字 之和的67 倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍。

4. a ,b ,c 分别是三位数中的不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位 数之和是2234 ,那么另一个三位数是几? 数的整除 5.(2008 年西城实验数学水平测试)一个自然数的末两位数字为17,它的数字和为17,且能被17 整除.请你写出满足条件的最小五位自然数: 6. 300301302303304…998999 能否被11 整除?如果不能,那么余数是多少?

7. 已知一个五位回文数等于45 与一个四位回文数的乘积(即abcba = 45?deed ),那么这个五位回文 数最大的可能值是. 8. (2008 年第6 届走美杯4 年级决赛第6 题,10 分)207 ,2007 ,20007 ,等首位是2 ,个位 是7 ,中间数字全部是0 的数字中,能被27 整除而不被81整除的最小数是。 9. 六位数20□□08 能被99 整除,□□是. 10.在小于5000 的自然数中,能被11 整除,并且数字和为13 的数,共有个.

相关文档
相关文档 最新文档