文档库 最新最全的文档下载
当前位置:文档库 › 遗传学名词解释

遗传学名词解释

遗传学名词解释
遗传学名词解释

遗传学复习资料

1.遗传学:研究生物遗传和变异的科学,直接探索生命起源和进化机理

2.染色质:在细胞尚未分裂的核中,可见许多忧郁碱性染料而染色较深的,纤细的网状物

3.染色体:具有特定形态结构和一的那个数目,是遗传物质的主要载体

4.同源染色体:形态和结构相同的一对染色体

5.染色体组:单倍体细胞所含有的整套染色体

6.核型:细胞分裂中期染色体的数目、大小和形态特征的总汇

7.联会:减数分裂中,同源染色体的配对过程

8.性状:生物体所表现的形态特征和生理特征总称

9.显性性状:所有性状表现都是一致的,都只表现一个亲本性状

10.隐性性状:所有植株在性状表现上都是不同的,一部分植株表现出亲本性状,其他植株则表现出另一个亲本的相对性状,即显性性状和隐性性状都表现出来了

11.基因:遗传信息的基本单位。一般指位于染色体上编码一个特定功能产物(如蛋白质或RNA分子等)的一段核苷酸序列。

12.等位基因:在一对同源染色体的同一基因座上的两个不同形式的基因。

13.基因型:个体的基因组合,基因型是生物性状表现的内在遗传基础,只能通过杂交试验根据表现型来确定

14.表现型:生物体所表现的性状,是基因型和外界环境作用下的具体表现

15.测交:指被测验的个体与隐性纯合个体间的杂交

16.连锁遗传:在同一同源染色体上的非等位基因连在一起而遗传的现象

17.完全连锁:在同一同源染色体的两个非等位基因之间发生非姊妹染色单体之间的交换,则这两个非等位基因总是连在一起而遗传的现象

18.重组率:指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率,一般利用重新组合配子数占总配子数的百分率进行估算。

19.染色体组(基因组):把基数的7个染色体总起来称为一个染色体组,维持二倍体生物配子或配子体正常功能的最低数目的一套染色体

20.单倍体:具有和该物种配子染色体数相同的细胞或个体

21.二倍体:具有两套染色体组的细胞或个体

22.多倍体:三倍和多倍以上的整倍体统称为多倍体

23.非整倍体:染色体组中缺少或额外增加一条或若干条完整的染色体的细胞或二倍体生物。

24.单体:二体中缺少两条同源染色体中的一条的细胞或个体

25.缺体:牟个染色体的一个区段转移给同源的另一个染色体后,自己就是缺失染色体

26.三体:二体中某一对同源染色体增加了一条染色体的细胞或个体

27.同源多倍体:由同一物种的染色体组加倍所组成的多倍体

28.半保留复制:随着DNA分子双螺旋的完全拆开,就逐渐形成了两个新的DNA分子,与原来的完全一样,DNA的这种复制叫半保留复制

29.冈崎片段:在DNA复制叉中,后随链上合成的DNA不连续单链片段

30.转录:由DNA为模板合成RNA的过程。RNA的转录有三步:①RNA链的起始②RNA链的延长③RNA链的终止及新链的释放

31.翻译:以RNA为模板合成蛋白质的过程即称为遗传信息的翻译过程

32.遗传密码:是核酸中核苷酸序列中指定蛋白质中氨基酸序列的一种方式,是由三个核苷

酸组成的三联体密码

33.小核RNA:真核生物转录后加工过程中RNA剪接体的主要成分

34.不均一RNA:存在于真核生物细胞核中的不稳定,大小不均的一组高分子RNA

35.简并:两个或两个以上三联体决定一个氨基酸的现象

36.多聚核糖体:一条mRNA分子可以同时结合多个核糖体,形成一串核糖体

37.中心法则:蛋白质合成过程,也就是遗传信息从DNA-mRNA-蛋白质的转录和翻译的过程,以及遗传信息从DNA到DNA的复制过程

38.F-菌株:未携带F因子的大肠杆菌菌株

39.F+菌株:包括一个游离态F因子的大肠杆菌菌株

40.Hfr菌株:包括一个整合到大肠杆菌染色体组内的F因子菌株

41.F因子:大肠杆菌中的一种附加体,控制大肠杆菌结合过程而使其成为供体菌的一种致育因子

42.F'因子:整合在宿主细菌染色体上的F因子,在环出时不够准确而携带有染色体一些基因的一种治育因子

43.烈性噬菌体:侵染宿主细胞后,进入裂解途径,破坏宿主细胞原有遗传物质,合成大量的自身遗传物质和蛋白质并组装成子噬菌体,最后使宿主裂解的一类噬菌体

44.温和性噬菌体:侵染宿主细胞后,并不裂解宿主细胞,而使走溶源性生活周期的一类噬菌体

45.溶原性细菌:含有温和噬菌体的遗传物质而又找不到噬菌体形态上可见的噬菌体粒子的宿主细胞

46.部分二倍体:当F+和HFR的细菌染色体进入F—后,在一个短时期内,F—细胞中对某一些位点来说总有一段二倍体的DNA状态的细菌

47.基因突变(点突变):由于DNA碱基对的置换,增添或缺失而引起的基因结构的变化

48.转换:突变时一种嘌呤代替另一种嘌呤或者一种嘧啶代替另一种嘧啶

49.颠换:突变时一种嘌呤转换成一种嘧啶或嘧啶转换成嘌呤

50.移码突变:基因中插入或者缺失一个或者几个碱基对,会使DNA的读码器发生改变,导致插入或者缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链51.同义突变:有时一个碱基对的改变并不会影响它所编码的蛋白质氨基酸序列,这是因为改变后的密码子和改变前的密码子是简并密码子,他们编码同一种氨基酸52.错意突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变为决定另一种氨基酸的密码子的基因突变叫错意突变

53.无义突变:由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变成一个终止密码子的基因突变

54.遗传力:亲代传递某一性状给子代的能力

55.广义遗传率:通常定义为总的遗传方差占表现型方差的比率

56.狭义遗传率:通常定义为加性遗传方差占表现型方差的比率

57.孟德尔群体:通过个体间的相互交配结果,孟德尔遗传因子可以各种方式从一代传递给另一代的群体成为孟德尔群体

58.基因频率:在一群体内某种基因所占其同一位点基因总数的百分比

59.基因型频率:任何一个遗传群体都是由他所包含的各种基因型所组成的,在一个群体内牟特定基因型所占的比例就是基因型频率

60.基因迁移:外来品种或品系引入到本群体中,从而打开闭锁状态,导致基因频率的变化

61.遗传漂移:在一个小群体中,每代从基因库抽样形成下一代个体配子时,会产生较大的抽样误差,有这种误差引起群体等位基因频率偶然变化

62.地理隔离:由于某些地理阻碍而发生的,使许多生物不能自由迁移,相互之间不能自由交配,不同基因间不能彼此交流

63.生态隔离:由于所需要的植物,环境或其他生态条件的差异而发生的隔离

64.生殖隔离:防止不同物种的个体相互杂交的环境,行为,机械和生理障碍

有丝:前中后末

1.染色体的形态特征:着丝点主缢痕次缢痕染色体臂随体

着丝点即初级缢痕或主缢痕。中期时,着丝点不发生收缩,呈现出透明的缢缩状结构,是纺锤丝(Spindle)附着的部位。着丝点是染色体不可缺少的重要结构。一个染色体可以丢失一个臂或两个臂的大部分也能复制,但若无着丝点,便无着丝点:指两个染色单体保持连接在一起的初缢痕区。

着丝粒:只限于染色体上纺锤体微管附着的精细结构法复制而自然丢失

通常着丝点在每条染色体上只有一个,且位置恒定,常用作描述染色体的一个标记

典型的染色体通常由长臂和短臂、着丝点和着丝粒、次缢痕和随体、端粒等几部分组成。

2.染色体成分:是由DNA和蛋白质结合而成。而DNA的基本组成单位是脱氧核苷酸,一分子脱氧核苷酸由一分子脱氧核糖、一分子含氮碱基、一分子磷酸组成

3.减数分裂和有丝分裂的区别:(1)看子细胞数目。1)有丝分裂的结果产生2个子细胞;2)精原细胞经减数分裂产生4个精细胞;3)卵原细胞经减数分裂产生1个卵细胞和3个极体。

(2)看子细胞的形态变化。1)有丝分裂产生的子细胞,人小相同;2)精子形成过程需经变形阶段;3)卵细胞的形成不经变形阶段,但型体大。 减数分裂过程中细胞连续分裂两次,而有丝分裂过程中细胞只分裂一次;2减数分裂的结果是染色体数目减半,而有丝分裂的结果是染色体数目不变;3减数分裂后,一个细胞形成四个含有不同遗传物质组合的子细胞,而有丝分裂后,一个细胞只形成两个遗传物质相同的子细胞;4减数分裂过程中有其特有的同源染色体配对和同源非姐妹染色单体间的局部交换,而有丝分裂没有

4.有丝分裂的意义:在生物的亲代和子代之间保持了遗传性状的稳定性,对于生物的遗传有重要意义

5.减数分裂意义:1.保证了有性生殖生物个体世代之间染色体数目的稳定性。通过减数分裂导致了性细胞(配子)的染色体数目减半,即由体细胞的2n条染色体变为n条染色体的雌雄配子,再经过两性配子结合,合子的染色体数目又重新恢复到亲本的2n水平,使有性生殖的后代始终保持亲本固有的染色体数目,保证了遗传物质的相对稳定。 2.为有性生殖过程中创造变异提供了遗传的物质基础: (1)通过非同源染色体的随机组合;各对非同源染色体之间以自由组合进入配子,形成的配子可产生多种多样的遗传组合,雌雄配子结合后就可出现多种多样的变异个体,使物种得以繁衍和进化,为人工选择提供丰富的材料。 (2)通过非姐妹染色单体片段的交换:在减数分裂的粗线期,由于非姐妹染色单体上对应片段可能发生交换,使同源染色体上的遗传物质发生重组,形成不同于亲代的遗传变异。

6.性状分离?基因重组,染色体变异,突变等

7.孟德尔成功?①选择豌豆正是因为它可以保证严格的自花授粉,可以保证是纯种。那么,用人工手段对它们进行杂交②孟德尔每次只选择一对相对性状进行分析③孟德尔更注重对试验结果的分析和总结,严格地用数字进行记录④很善于提出理论,在提出了分离律之后,又设计了另外的实验来验证这一理论。

8.分离规律、独立分配规律联系?独立分配规律该定律是在分离规律基础上,进一步揭示了多对基因间自由组合的关系,解释了不同基因的独立分配是自然界生物发生变异的重要来源之一。 按照独立分配定律,在显性作用完全的条件下,亲本间有2对基因差异时,F2有22=4种表现型;4对基因差异,F2有24=16种表现型。设两个亲本有20对基因的判

别,这些基因都是独立遗传的,那么F2将有220=1048576种不同的表现型。这个规律说明通过杂交造成基因的重组,是生物界多样性的重要原因之一。 独立分配定律是指两对以上独立基因的分离和重组,是对分离规律的发展。因此分离定律的应用完全适用于独立分配规律。

9.连锁遗传意义:连锁遗传的研究证实了基因在染色体上是按一定顺序和距离排列的,通过基因的交换,丰富了亲本遗传物质重组的内容,为生物进化过程中的选择创造了条件。在杂交育种工作中,如果所涉及的基因具有连锁遗传的关系,可根据其交换值的大小预测重组基因型出现的频率。为使杂种后代中能出现较多的理想类型,必须根据重组率的大小,确定杂种群体的种植规模。还可利用性状连锁的关系,根据一个性状的表现,对另一些性状进行选择或淘汰。

10.染色体结构变异?在自然条件或人为因素的影响下,染色体发生的结构变异主要有4种:1.缺失染色体中某一片段的缺失例如,猫叫综合征是人的第5号染色体部分缺失引起的遗传病,因为患病儿童哭声轻,音调高,很像猫叫而得名。猫叫综合征患者的两眼距离较远,耳位低下,生长发育迟缓,而且存在严重的智力障碍;果蝇的缺刻翅的形成也是由于一段染色体缺失造成的 2.重复染色体增加了某一片段果蝇的棒眼现象就是X染色体上的部分重复引起的 3.倒位染色体某一片段的位置颠倒了180度,造成染色体内的重新排列如女性习惯性流产(第9号染色体长臂倒置) 4.易位染色体的某一片段移接到另一条非同源染色体上或同一条染色体上的不同区域如惯性粒白血病(第14号与第22号染色体部分易位,夜来香也经常发生这样的变异

11.产生多倍体的途径:1. 减数分裂不正常,形成比正常配子染色体数加倍的配子,受精后发育成多倍体。2. 受精方式造成多倍体,如被子植物的双受精,受精极核便是多倍体。3. 物理因素或生物因素等干扰有丝分裂过程,抑制纺锤体的形成,使染色体不能被拉向两极,形成了染色体加倍的细胞,其再通过正常的有丝分裂形成染色体加倍的组织和个体。

12.同源三倍体不育:三倍体在第一次减数分裂联会时,有一条是不能联会的。 它在一减时,会随机进入2个子细胞的,几率1/2。只有所有同源染色体的不能联会的单个染色体同时进入同一个细胞才能形成平衡的可育配子,这个几率计算染色体基组数x有关,p=(1/2)的x次方。染色体数目越多,几率越小,对于一个x=10的生物(三倍体则有3x=30个染色体)来说,形成可育配子的纪律是1/2的10次方。一般都很小,因此说是高度不育

13.单倍体育种意义:单倍体植株经染色体加倍后,在一个世代中即可出现纯合的二倍体,从中选出的优良纯合系后代不分离,表现整齐一致,可缩短育种年限。单倍体植株中由隐性基因控制的性状,虽经染色体加倍,但由于没有显性基因的掩盖而容易显现。这对诱变育种和突变遗传研究很有好处。在诱导频率较高时,单倍体能在植株上较充分地显现重组的配子类型,可提供新的遗传资源和选择材料

14.证明DNA是主要的遗传物质?DNA作为生物的主要遗传物质的间接证据:

⑴. 每个物种不论其大小功能如何,其DNA含量是恒定的。

⑵. DNA在代谢上比较稳定。

⑶. 基因突变是与DNA分子的变异密切相关的。

DNA作为生物的主要遗传物质的直接证据:

⑴. 细菌的转化已使几十种细菌和放线菌成功的获得了遗传性状的定向转化,证明起转化作用的是DNA;

⑵. 噬菌体的侵染与繁殖主要是由于DNA进入细胞才产生完整的噬菌体,所以DNA 是具有连续性的遗传物质。

⑶. 烟草花叶病毒的感染和繁殖说明在不含DNA的TMV中RNA就是遗传物质。

15.DNA双螺旋结构特点:根据碱基互补配对的规律,以及对DNA分子的X射线衍射研究的成果,提出了DNA双螺旋结构。

特点:⑴. 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行的环绕于同一轴上,很像一个扭曲起来的梯子。⑵. 两条核苷酸链走向为反向平行。⑶. 每条长链的内侧是扁平的盘状碱基。⑷. 每个螺旋为3.4nm长,刚好有10个碱基对,其直径为2nm。

⑸. 在双螺旋分子的表面有大沟和小沟交替出现。

14.A-DNA、B-DNA、Z-DNA的主要异同:A-DNA是DNA的脱水构型,也是右手螺旋,但每螺旋含有11个核苷酸对。比较短和密,其平均直径是2.3nm。大沟深而窄,小沟宽而浅。在活体内DNA并不以A构型存在,但细胞内DNA-RNA或RNA-RNA双螺旋结构,却与A-DNA非常相似。

B-DNA是DNA在生理状态下的构型。生活细胞中极大多数DNA以B-DNA形式存在。但当外界环境条件发生变化时,DNA的构型也会发生变化。

Z-DNA是某些DNA序列可以以左手螺旋的形式存在。当某些DNA序列富含G-C,并且在嘌呤和嘧啶交替出现时,可形成Z-DNA。其每螺旋含有12个核苷酸对,平均直径是1.8nm,并只有一个深沟。现在还不清楚Z-DNA在体内是否存在。

6.原核生物DNA聚合酶有哪几种?各有何特点?

答:原核生物DNA聚合酶有DNA聚合酶I、DNA聚合酶II和DNA聚合酶III。

DNA聚合酶I :具有5'-3'聚合酶功能外,还具有3'-5'核酸外切酶和5'-3'核酸外切酶的功能。

DNA聚合酶II :是一种起修复作用的DNA聚合酶,除具有5'-3'聚合酶功能外,还具有3' -5'核酸外切酶,但无5'-3'外切酶的功能。

DNA聚合酶III:除具有5'-3'聚合酶功能外,也有3'-5'核酸外切酶,但无3'-5'外切酶的功能。

7.真核生物与原核生物DNA合成过程有何不同?

答:⑴.真核生物DNA合成只是发生在细胞周期中的S期,原核生物DNA合成过程在整个细胞生长期中均可进行。

⑵.真核生物染色体复制则为多起点的,而原核生物DNA复制是单起点的。⑶.真核生物DNA合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物的要短。

⑷. 在真核生物中,有α、β、γ、δ和ε5种DNA聚合酶,δ是DNA合成的主要酶,由DNA聚合酶α控制后随链的合成,而由DNA聚合酶δ控制前导链的合成。既在真核生物中,有两种不同的DNA聚合酶分别控制前导链和后随链的合成。在原核生物DNA合成过程中,有DNA聚合酶I,DNA聚合酶II和DNA聚合酶III,并由DNA聚合酶III同时控制两条链的合成。⑸.真核生物的染色体为线状,有染色体端体的复制,而原核生物的染色体大多数为环状。

8.简述原核生物RNA的转录过程。

答:RNA的转录有三步:

⑴. RNA链的起始:首先是RNA聚合酶在δ因子的作用下结合于DNA的启动子部位,并在RNA聚合酶的作用下,使DNA双链解开,形成转录泡,为RNA合成提供单链模板,并按照碱基配对的原则,结合核苷酸,然后,在核苷酸之间形成磷酸二脂键,使其相连,形成RNA新链。δ因子在RNA链伸长到8-9个核苷酸后被释放,然后由核心酶催化RNA 链的延长。

⑵. RNA链的延长:RNA链的延长是在δ因子释放以后,在RNA聚合酶四聚体核心酶催化下进行。因RNA聚合酶同时具有解开DNA双链,并使其重新闭合的功能。随着RNA 链的延长,RNA聚合酶使DNA双链不断解开和闭合。RNA转录泡也不断前移,合成新的RNA链。⑶. RNA链的终止及新链的释放:当RNA链延伸到终止信号时,RNA转录复合体就发生解体,而使新合成的RNA链得以释放。

9.真核生物与原核生物相比,其转录过程有何特点?

答:真核生物转录的特点:

⑴. 在细胞核内进行。

⑵. mRNA分子一般只编码一个基因。

⑶. RNA聚合酶较多。

⑷. RNA聚合酶不能独立转录RNA。

原核生物转录的特点:

⑴. 原核生物中只有一种RNA聚合酶完成所有RNA转录。

⑵. 一个mRNA分子中通常含有多个基因

10.简述原核生物蛋白质合成的过程。

答:蛋白质的合成分为链的起始、延伸和终止阶段:

链的起始:不同种类的蛋白质合成主要决定于mRNA的差异。在原核生物中,蛋白质合成的起始密码子为AUG。编码甲酰化甲硫氨酸。蛋白质合成开始时,首先是决定蛋白质起始的甲酰化甲硫氨酰tRNA与起始因子IF2结合形成第一个复合体。同时,核糖体小亚基与起始因子IF3和mRNA结合形成第二个复合体。接着两个复合体在始因子IF1和一分子GDP的作用下,形成一个完整的30S起始复合体。此时,甲酰化甲硫氨酰tRNA通过tRNA 的反密码子识别起始密码AUG,而直接进入核糖体的P位(peptidyl,P)并释放出IF3。最后与50S大亚基结合,形成完整的70核糖体,此过程需要水解一分子GDP以提供能量,同时释放出IF1和IF2,完成肽链的起始。

链的延伸:根据反密码子与密码子配对的原则,第二个氨基酰tRNA进入A位。随后在转肽酶的催化下,在A位的氨基酰tRNA上的氨基酸残基与在P位上的氨基酸的碳末端间形成多肽键。此过程水解与EF-Tu结合的GTP而提供能量。最后是核糖体向前移一个三联体密码,原来在A位的多肽tRNA转入P位,而原在P的tRNA离开核糖体。此过程需要延伸因子G(EF-G)和水解GTP提供能量。这样空出的A位就可以接合另一个氨基酰tRNA,从而开始第二轮的肽链延伸。

链的终止:当多肽链的延伸遇到UAA UAG UGA等终止密码子进入核糖体的A位时,多肽链的延伸就不再进行。对终止密码子的识别,需要多肽释放因子的参与。在大肠杆菌中

有两类释放因子RF1和RF2,RF1识别UAA和UAG,RF2识别UAA和UGA。在真核生物中只有释放因子eRF,可以识别所有三种终止密码子。

经典遗传学和分子遗传学关于基因的概念有何不同?

答:孟德尔把控制性状的因子称为遗传因子;约翰生提出基因(gene)这个名词,取代遗传因子;摩尔根等对果蝇、玉米等的大量遗传研究,建立了以基因和染色体为主体的经典遗传学。

经典遗传学认为:基因是一个最小的单位,不能分割;既是结构单位,又是功能单位。具体指:⑴. 基因是化学实体:以念珠状直线排列在染色体上;⑵. 交换单位:基因间能进行重组,而且是交换的最小单位。⑶. 突变单位:一个基因能突变为另一个基因。⑷. 功能单位:控制有机体的性状。

分子遗传学认为:⑴. 将基因概念落实到具体的物质上,并给予具体内容:一个基因是DNA分子上的一定区段,携带有特殊的遗传信息。⑵. 基因不是最小遗传单位,而是更复杂的遗传和变异单位:例如在一个基因区域内,仍然可以划分出若干起作用的小单位。现代遗传学上认为:①.突变子:是在性状突变时,产生突变的最小单位。一个突变子可以小到只有一个碱基对,如移码突变。②.重组子:在性状重组时,可交换的最小单位称为重组子。一个交换子只包含一个碱基对。③.顺反子:表示一个作用的单位,基本上符合通常所描的基因大小或略小,包括的一段DNA与一个多链的合成相对应,即保留了基因是功能单位的解释。⑶. 分子遗传学对基因概念的新发展:结构基因:指可编码RNA或蛋白质的一段DNA 序列。调控基因:指其表达产物参与调控其它基因表达的基因。重叠基因:指在同一段DNA 顺序上,由于阅读框架不同或终止早晚不同,同时编码两个以上基因的现象。隔裂基因:指一个基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。跳跃基因:即转座因子,指染色体组上可以转移的基因。假基因:同已知的基因相似,处于不同的位点,因缺失或突变而不能转录或翻译,是没有功能的基因。

2.有一个双突变杂合二倍体,其基因型是 + a // b + ,如果有互补作用表示什么?如果无互补作用,表示什么?

答:有互补作用:表示该表现型为野生型,a、b两突变不是等位的,是代表两个不同的基因位点。

无互补作用:表示该表现型为突变型,a、b两突变是等位的,是代表同一个基因位点的两个基因座。

3.举例说明基因的微细结构是如何建立的。

答:以本泽尔利用经典的噬菌体突变和重组技术,对T4噬菌体rII区基因微细结构的分析为例。

原理:r+野生型T4噬菌体:侵染E. coli B株和K12株,形成的噬菌斑小而模糊;rII突变型T4噬菌体:只能侵染B株,不能侵染K12(λ)株,形成的噬菌斑大而清楚。

利用上述特点,让两个rII突变型杂交,接种K12(λ)株选择重组体r+,计算出两个r+ 突变座位间的重组频率,具体过程见右图。

6.试说明正调控与负调控的区别。

答:转录水平的调控通常可归为正调控与负调控两种。正调控与负调控并非互相排斥的两种机制,而是生物体适应环境的需要,有的系统既有正调控又有负

调控。

正调控是经诱导物诱导转录的调控机制。诱导物通常与蛋白质结合,形成一种激活子复合物,与基因启动子DNA序列结合,激活基因起始转录,使基因处于表达的状态;负调控是细胞中阻遏物阻止基因转录过程的调控机制。阻遏物与DNA分子的结合,阻碍RNA聚合酶转录,使基因处于关闭状态。

真核生物以正调控为主;原核生物以负调控为主。

降解代谢途径中既有正调控又有负调控;合成代谢途径中通常以负调控来控制产物自身的合成

7.试述乳糖操纵元模型。

答:1961年,Jacob F.和Monod J.的乳糖操纵元模型:乳糖操纵元阐述的是一个基因簇内结构基因及其调控位点的表达调控方式。包括编码乳糖代谢酶的3个结构基因及其邻近的调控位点,即一个启动子和1个操纵子,还有位于上游的抑制基因。大肠杆菌乳糖代谢的调控需要三种酶参加:①.β-半乳糖酶由结构基因lacZ编码,将乳糖分解成半乳糖和葡萄糖;②. 渗透酶由结构基因lacY 编码,增加糖的渗透,易于摄取乳糖和半乳糖;③. 转乙酰酶由结构基因lacA 编码,β-半乳糖转变成乙酰半乳糖。三个结构基因受控于同一个调控系统,大量乳糖时,大肠杆菌三种酶的数量急剧增加,几分钟内达到千倍以上,这三种酶能够成比例地增加;乳糖用完时,这三种酶的合成也即同时停止。

在乳糖操纵元中,lacI基因编码一种阻遏蛋白,该蛋白至少有两个结合位点,一个与DNA结合,另一个与乳糖结合。当没有乳糖时,lacI基因产生的阻遏蛋白,结合在操纵子位点的DNA序列上,阻止RNA聚合酶起始转录结构基因。在有乳糖时,乳糖与阻遏蛋白结合,使其空间构型发生改变,而不能与操纵子DNA结合,这样RNA聚合酶起始转录结构基因,产生乳糖代谢酶,开始代谢乳糖。因此乳糖操纵元是一种负调控机制。

遗传学名词解释

1 Chromosomal disorders:染色体结构和数目异常而导致的疾病。如Down’s综合征(+21),猫叫综合征(5p-)。 2 Single gene disorders: 由于控制某个性状的等位基因突变导致的疾病称之。 3 Polygenic disorders:一些常见病和多发病的发生由遗传因素和环境因素共同决定,遗传因素中不是一对等位基因,而是多对基因共同作用于同一个性状。 4 Mitochondrial disorders:是指线粒体DNA上的基因突变导致所编码线粒体蛋白质结构和数目异常,导致线粒体病。线粒体是位于细胞质中的细胞器,故随细胞质(母系)遗传。 4 Somatic cell disorders: 体细胞中遗传物质突变导致的疾病。 5 分离律 (Law of segregation)基因在体细胞内成对存在,在生殖细胞形成过程中,同源染色体分离,成对的基因彼此分离,分别进入不同的生殖细胞。细胞学基础:同源染色体的分离。 6 自由组合律(law of independent assortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到—个生殖细胞的规律性活动。 7 连锁与互换定律-(law of linkage and crossing over)位于同一染色体上的两个基因,在生殖细胞形成时,如果它们相距越近,一起进入同一生殖细胞的可能性越大;如果相距较远,它们之间可以发生交换。 8 Gene mutation: DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 9 Point mutation:指单个碱基被另一个碱基替代。转换(transition):嘧啶之间或嘌呤之间的替代。颠换(transversion):嘧啶和嘌呤之间的替代。 10 Same sense mutation:碱基替换后,所编码的氨基酸没有改变。多发生于密码子的第三个碱基。 11 Missense mutation:碱基替换后,改变了氨基酸序列。错义突变多发生于密码子的第一、二个碱基 12 Nonsense mutation:碱基替换后,编码氨基酸的密码子变为终止密码子(UAA、UGA、UAG),多肽链合成提前终止。 13 Frame shift mutation:在DNA编码序列中插入或丢失一个或几个碱基,造成插入或缺失点下游的DNA编码框架全部改变,其结果是突变点以后的氨基酸序列发生改变 14 dynamic mutation :人类基因组中的一些重复序列在传递过程中重复次数发生改变导致遗传病的发生,称动态突变。

遗传学名词解释大全

autoregulation 自我调节:基因通过自身的产物来调节转录。 autosome 常染色体:性染色体以外的任何染色体。 auxotroph 营养缺陷型:微生物的一种突变体,它不能合成生长所需的物质,培养时必须在培养基中加入此物质才能生长。 back mutation 回复突变:见reversion bacteriophage (phage) 一种感染细菌的病毒。 balance model 平衡模型:关于遗传变异比例的一种模型,它认为自然选择维持了群体中大量遗传变异的存在。 balanced polymorphism 平衡多态现象:稳定的遗传多态现象是由自然选择来维持的。 Barr body 巴氏小体:在正常雌性哺乳动物的核中有一个高度凝聚的染色质团,它是一个失活的X染色体。 base analog 碱基类似物:一种化学物质,其分子结构和DNA的碱基相似,在DNA的代谢过程中有时会取代正常碱基,结果使DNA的碱基发生突变。 bead theory 串珠学说:已被否定的学说,认为基因附着在染色体上,就象项链上的串珠。它既是突变单位又是重组单位。 binary fission 二分分裂:一个细胞分裂为大小相近的两个子细胞的过程。binomial distribution 二项分布:具有两种可能结果的 biparental zygote 双亲合子:又称双亲遗传(biparental inheriance),衣藻(chlamydomonas) 的合子含有来自双亲的DNA。这种细胞一般很少见。 biochemical mutation 生化突变,见自发突变(autotrophic mutation)。bivalent 二价体:在第一次减数分裂时彼此联合的一对同源染色体。bottleneck effect 瓶颈效应:一种类型的漂变。当群体很小时产生这种效应,结果使基因座中有的基因丢失了。 branch-point sequence 分支点顺序:在哺乳动物细胞中的保守顺序:YNCURAY(Y: 嘧啶,R:嘌呤, N:任何碱基),位于核mRNA内含子和II 类内含子3'端附近,其中的A可通过5'-2'连接的方式和内含子5'端相连接,在剪接时形成套马索状结构。 broad-sense heritability 广义遗传力:表型方差中所含遗传方差的百分比。cotplot 浓度时间乘积图:一个样本单位单链DNA分子复性动力学曲线。以结合为双链的量为纵坐标,以DNA浓度和时间的乘积为横坐标作出的DNA复性动力学曲线 C value C值:生物单倍体基因所含的DNA总量。 CAAT element CAAT元件:真核启动子上游元件之一,常位于上游-80bp附近,其功能是控制转录起始频率,保守顺序是 5'-GGCCAATCT-3'。 cancer 癌:恶性肿瘤,细胞失控,异常分裂且在生物体内可播散。 5'-capping -5'加帽:在 mRNA加工的过程中在前体 mRNA分子的5'端加上甲基核苷酸的“帽子”。 catabolite repression (glucose effect) 分解代谢物阻遏(糖效应):当糖存在时能诱发细菌操纵子的失活,即使操纵子的诱导物存在也是如此。 cDNA 互补DNA:以mRNA为模板,以反转录酶催化合成的DNA的拷贝。 cDNA clone cDNA分子克隆:将cDNA片段装在载体上转化细菌扩增出多克隆的过程,最终可建立cDNA文库。

遗传学名词解释

1、原核细胞:没有核膜包围的核细胞,其遗传物质分散于整个细胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2、真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物的细胞及真菌类。单细胞动物多属于这类细胞。 3、染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原核细胞内,是指裸露的环状DNA分子。 4、姊妹染色单体:一条染色体(或DNA)经复制形成的两个分子,仍由一个着丝粒相连的两条染色单体。 5、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 6、染色体组:在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体。或者说是指细胞内一套形态、结构、功能各不相同,但在个体发育时彼此协调一致,缺一不可的染色体。 7、一倍体:具有一个染色体组的细胞或个体,如,雄蜂。 8、单倍体:具有配子(精于或卵子)染色体数目的细胞或个体。如,植物中经花药培养形成的单倍体植物。 9、二倍体:具有两个染色体组的细胞或个体。绝大多数的动物和大多,数植物均属此类 10、二价体:一对同源染色体在减数分裂时联会配对的图象。 11、联会:在减数分裂过程中,同源染色体建立联系的配对过程。 12、染色质或染色体:指细胞间期核内能被碱性染料(洋红、苏木精等)染色的纤细网状物质,现在是指真核细胞间期核中DNA、组蛋白、非组蛋白、以及少量RNA组成的一串念珠状的复合体。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。 13、超数染色体:有些生物的细胞中出现的额外染色体。也称为B染色体。 14、联会复合体:是同源染色体联会过程中形成的非永久性的复合结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 15、姊妹染色单体:二价体中一条染色体的两条染色单体,互称为姊妹染色单体。 16、反应规范:遗传型对环境反应的幅度(某一基因型在不同环境条件下反应的范围。) 17、交叉的端化:交叉向二价体的两端移动,并且逐渐接近于末端的过程叫做交叉端化。 18、受精:雄配子(精子)与雌配子(卵细胞)融合为1个合子过程。 19、双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳的过程。 20、胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。 21、果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,则另称为果实直感。 22、无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认为是有性生殖的一种特殊方式或变态。 23、细胞周期:从一次有丝分裂结束到下一次有丝分裂开始的时期。 25、无性生殖:通过亲本营养体的分割而产生许多后代个体,这一方式也称为营养体生殖。例如,植物利用块茎、鳞茎、球茎、芽眼和枝条等营养体产生后代,后代与亲代具有相同的遗传组成。 26、性状:生物体所表现的形态特征和生理特性。 27、单位性状:把生物体所表现的性状总体区分为各个单位,这些分开来的性状称为。 28、显性性状:当两个具有相对性状的纯合亲本杂交时,子一代出现的一个亲本性状。

遗传学名词解释

Explaining of genetics nouns 一、Explain the following terms and concepts. 1、heredity;(遗传)transmission of traits from one generation to another 2、transmission genetics;(传递遗传学)is the brand dealing with the transmission of genes and genetic traits from generation to generation,and how genes recombine 3、centromeres; (着丝点)each chromosome often has a constriction along its length 4、zygote;(合子)the cell produced by the fusion of male are female gametes 5、autosomes; (常染色体)chromosomes other than sex chromosome 6、sister chromatid; (姐妹染色单体)a chromatud denved from replication of one chromosome during interphase of the cell cycle 7、chromatin; (染色质)the mixture of DNA and protein 8、semiconservative replication;(半保留复制)a model of DNA replication in which a double-stranded molecule replocates in such a way that the daughter moleculars are composed of one parental(dd)and one nemly synthesized serand 9、the replication fork; (复制叉)the region where the helix unwinds and new DNA 10、replicon; (复制子)DNA replicated from a single origin 11、codon; (密码子)the DNA sequence of a gene is divided into a series of units of three bases 12、degeneracy; (简并)the number of codons is greater,all of the amino acids,with the exception of methionine and typtophan,are encodoned by more that one codon 13、hereditary traits; (遗传性状)the characteristics of an individual that one transmitted from one generation to another 14、Genotype; (基因型)the genetic constitution of an organism 15、phenotype; (表现型)is the observable properties(structural and functional)of organism produced by the interaction between its genotype and the environment 16、pure-breeding lines; (纯种品系)this refers to organisms which have been inbred for many generations in which a certain phenotype remains the same 17、dominance;(显性)in hybrids between two individuals with different phenotypes only ine phenotype may be observed 18、testcross; (测交)is a cross of an individual of unknown genetype (usually expressing the dominant phenotype)with a known homozygous recessive individual in order to determine the unknown genetype 19、the dihybrid cross;(双因子杂交)a cross involving two pairs of contrasting traits 20、complete dominance; (完全显性)is the phenoment in which one alleles is dominant to another,so that the neterozygote(F1)is the same as that of the homozygous dominant 21、incomplete dominance; (不完全显性)expression of heterozygous(F1)phenotype which is distinct from and often intermediate to that of either parent 22、multiple alleles; (复等位基因)three or more alleles of the same gene 23、epistasis; (上位作用)is a from of gene interaction in which one gene masks the phenotypic expression of another 24、linkage; (连锁)is the tendency of for alleles of two or more genes to be passed together from one generation to the next

遗传学名词解释

遗传学名词解释 11、性状:生物体或其组成部分所表现的形态、生理或行为特征称为性状(character/trait) 13、相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异 称为相对性状 14、显性(dominate)性状:在子一代中出现来的某一亲本的性状。 15、隐性 (recessive)性状:在子一代中未出现来的某一亲本的性状。 17、基因型(genotype):指生物个体基因组合,表示生物个体的遗传组成,又称遗传型; 18、表现型(phenotype):指生物个体的性状表现,简称表型。 19、纯合基因型:具有一对相同基因的基因型称为纯合基因型(homozygous genotype),如 CC和cc;这类生物个体称为纯合体(homozygote)。 ●显性纯合体(dominant homozygote), 如:CC. ●隐性纯合体(recessive homozygote), 如:cc. 21、基因的分离定律:一对等位基因在杂合体中各自保持其独立性,在配子形成时,彼此分 开,随机地进入不同的配子,在一般情况下:F1杂合体的配子分离比 为1:1,F2表型分离比是3:1,F2基因型分离比为1:2:1 22、测交(test cross)法:即把被测验的个体与隐性纯合亲本杂交,根据侧交子代(Ft)的 表现型和比例测知该个体的基因型。 23、独立分配定律:支配两对(或两对以上)不同性状的等位基因,在杂合状态时保持其独 立性。配子形成时,各等位基因彼此独立分离,不同对的基因自由组合。 24、系谱分析法:用图解表明一个家族中某种性状(或遗传疾病)发生的情况,进而判断该 性状(或遗传疾病)的遗传方式。 27、外显率(penetrance):指在特定环境中,某一基因型(常指杂合子)个体显示出预期表型 的频率(以百分比表示)。就是说同样的基因型在一定的环境中有的 个体表达了,而有的个体可能没有表达,这样外显率就小于100% ——不完全外显。外显率为100%——完全外显 28、表现度(expressivity):是指具有相同基因型的个体之间基因表达的变化程度。 29、共显性/并显性:一对等位基因的两个成员在杂合体中都表达的遗传现象。 30、镶嵌显性:由于等位基因的相互作用,双亲的性状在子代同一个体的不同部位表现的镶 嵌图式。 31、隐性致死基因:在杂合时不影响个体的生活力,但在纯合时有致死效应的基因。 32、显性致死基因(dominant lethal gene):在杂合状态下即表现致死作用的致死基因 33、复等位基因:在群体中占据某同源染色体同一座位的两个以上的决定同一性状的基因 34、基因互作:基因在决定同一生物性状表现时,所表现出来的相互作用。 35、互补基因:两对非等位的显性基因同时存在并影响生物的某同一性状时才使之表现该性 状,其中任一基因发生突变都会导致同一突变性状出现,这类基因称为互补基因。 37、叠加效应:不同基因对性状产生相同影响,只要两对等位基因中存在一个显性基因,表 现为一种性状;双隐性个体表现另一种性状;F2产生15:1的性状分离比例。 这类作用相同的非等位基因叫做叠加基因 38、上位效应:影响同一性状的两对非等位基因中的一对基因(显性或隐性)掩盖另一对显 性基因的作用时,所表现的遗传效应称为上位效应,其中的掩盖者称为上位 基因,被掩盖者称为下位基因。 39、显性上位:在上位效应中,起掩盖作用的是一个显性基因,使另一个显性基因的表型被 抑制,孟德尔F2表型比率被修饰为12:3:1

遗传学名词解释

一、名词解释:(每小题3分,共18分) 1、外显子:把基因内部的转译部分即在成熟mRNA中出现的序列叫外显子。 2、复等位基因:在种群中,同源染色体的相同座位上,可以存在两个以上的等位基因,构成一个等位基因系列,称为复等位基因。 3、F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子,大约为大肠杆菌全长的2%,F因子在大肠杆菌中又叫F质粒。 4、F'因子:把带有部分细菌染色体基因的F因子叫F∕因子。 5、母性影响:把子一代的表型受母本基因型控制的现象叫母性影响。 6、伴性遗传:在性染色体上的基因所控制的性状与性别相连锁,这种遗传方式叫伴性遗传。 7、杂种优势:指两个遗传组成不同的亲本杂交产生的杂种一代在生长势、生活力、繁殖力、抗逆性以及产量和品质等性状上比双亲优越的现象。 8、隔裂基因:真核类基因的编码顺序由若干非编码区域隔开,使阅读框不连续,这种基因称为隔裂基因,或者说真核类基因的外显子被不能表达的内含子一一隔开,这样的基因称为隔裂基因。 9、细胞质遗传:在核外遗传中,其中由细胞质成分如质体、线粒体引起的遗传现象叫细胞质遗传。 10、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 11、跳跃基因(转座因子):指细胞中能改变自身位置的一段DNA序列。 12、基因工程:狭义的遗传工程专指基因工程,更确切的讲是重组DNA技术,它是指在体外将不同来源的DNA进行剪切和重组,形成镶嵌DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。 13、性导:利用F∕因子形成部分二倍体叫做性导(sex-duction)。 14、转导:以噬菌体为媒介,将细菌的小片断染色体或基因从一个细菌转移到另一细菌的过程叫转导。 15、假显性:(pseudo-dominant):一个显性基因的缺失致使原来不应显现出来的一个隐性等位基因的效应显现了出来,这种现象叫假显性。 16、核外遗传:由核外的一些遗传物质决定的遗传方式称核外遗传或非染色体遗传。 17、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态. 18、等显性(并显性,共显性):指在F1杂种中,两个亲本的性状都表现出来的现象。 19、限性遗传与从性遗传:限性遗传:是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。从性遗传:指常染色体上的基因控制的性状在表型上受个体性别影响的现象。 20、连锁群:存在于一个染色体上的各个基因经常表现相互联系,并同时遗传于后代,这种存在于一个染色体上在遗传上表现一定程度连锁关系的一群基因叫连锁群。 21、核型与核型分析:通常把有丝分裂中期染色体的形态、大小和数目称为核型,通过细胞学观察,取得分散良好的细胞分裂照片,就可测定染色体数目、长度、着丝粒位置、臂比、随体有无等特征,对染色体进行分类和编号,这种测定和分析称为核型分析。 22、位置效应:基因由于变换了在染色体上的位置而带来的表型效应改变的现象。 23、平衡致死品系:两个连锁的隐性致死基因,以相斥相的形式存在于一对同源染色体上,由于倒位抑制交换作用,永远以杂合状态保存下来,表型不发生分离的品系叫做平衡致死品系,也叫永久杂种。24、基因突变:是染色体上一个座位内的遗传物质的变化,从一个基因变成它的等位基因。也称点突变。从分子水平上看,基因突变则为DNA分子上具有一定遗传功能的特定区段内碱基或碱基顺序的变化所引起的突变,最小突变单位是一个碱基对的变化,是产生新基因的源泉,生物进化的重要基础,诱变育种的理论依据。 25、部分二倍体:含一个亲本的全部基因组和另一亲本部分基因组的合子叫部分二倍体或部分合子。 26、移码突变:在DNA复制中发生增加或减少一个或几个碱基对所造成的突变。 27、镶嵌显性:指在杂种的身体不同部位分别显示出显性来的现象. 28、表型模写(拟表型):有时环境因子引起的表型改变和某基因突变引起的表现型改变很相似,这叫表型模拟或拟表型。 29、等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。

遗传学名词解释

名词解释: 1、遗传与变异:生物通过繁殖的方式来繁衍种族,保持生命在世代间的连续,保持子代与亲代的相似与类同,这种现象叫遗传,遗传的本质就是遗传物质通过不断地复制和传递,保持亲代与子代间的相似与类同,与此同时,亲代与子代之间,子代个体之间总存在着不同程度的差异,包括环境差异与遗传物质差异,这种差异就是变异。 2、遗传变异:变异不一定都能遗传,只有由遗传物质改变导致的变异可以传递给后代,这种变异叫遗传变异。 3、遗传学: 经典定义:研究生物的遗传和变异现象及其规律的一门学科。 现代定义: (1)在生物的群体、个体、细胞和基因等层次上研究生命信息(基因)的结构、组成、功能、变异、传递(复制)和表达规律与调控机制的一门科学--基因学。 (2)研究基因和基因组的结构与功能的学科。 名词解释: 1、性状:在遗传学上,把生物表现出来的形态特征和生理特征统称为性状。 2、相对性状:同一性状的两种不同表现形式叫相对性状。 3、显性性状:孟德尔把F1表现出来的性状叫显性性状,F1不表现出来的性状叫隐性性状。 4、性状分离现象:孟德尔把F2中显现性状与隐性性状同时表现出来的现象叫做性状分离现象。 5、等位基因与非等位基因:等位基因是指位于同源染色体上,占有同一位点,但以不同的方式影响同一性状发育的两个基因。非等位基因指位于不同位点上,控制非相对性状的基因。 6、自交:F1代个体之间的相互交配叫自交。 7、回交:F1代与亲本之一的交配叫回交。 8、侧交:F1代与双隐性个体之间的交配叫侧交。 9、基因型和表型 基因型是生物体的遗传组成,是性状得以表现的内在物质基础,是肉眼看不到的,要通过杂交试验才能检定。如cc,CC,Cc。 表型是生物体所表现出来的性状,是基因型和内外环境相互作用的结果,是肉眼可以看到的。如花的颜色性状。 10、纯合体、杂合体 由两个同是显性或同是隐性的基因结合的个体,叫纯合体,如CC,cc。由一个显性基因与一个隐性基因结合而成的个体,叫杂合体,如Cc。 11、真实遗传 指纯合体的物种所产生的子代表型与亲本表型相同的现象。纯合体所产生的后代性状不发生分离,能真实遗传,杂合体自交产生的后代性状要发生分离,它不能真实遗传。 名词解释: 1、染色体与染色质:是指核内易于被碱性染料着色的无定形物质,是由DNA、组蛋白、非组蛋白及少量RNA组成的复合体,以纤丝状存在于核膜内面。当细胞分裂时,核内的染色质便螺旋化形成一定数目和形状的染色体。两者是同一物质在细胞分裂过程中表现的不同形态。核内遗传物质就集中在这染色体上。 2、常染色质与异染色质:着色较浅,呈松散状,分布在靠近核的中心部分,是遗传的活性部位。着色较深,呈致密状,分布在靠近核内膜处,是遗传的惰性部位。又分结构异染色质或组成型异染色质和兼性异染色质。前者存在于染色体的着丝点区及核仁组织区,后者在间期时仍处于浓缩状态, 3、核小体:是染色质的基本结构单位,直径10nm,其核心是由四种组蛋白(H2A、H2B、H3、H4各2分子共8分子)构成的扁球体。 4、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 5、联会:分别来自父母本的同源染色体逐渐成对靠拢配对,这种同源染色体的配对称为联会。

遗传学名词解释及复习解答(部分)

名词解释 染色体chromosome是指细胞分裂过程中,由染色质聚缩而呈现为一定数目和形态的复合结构 细胞周期cell cycle是细胞分裂增殖的周期,细胞从上一次分裂结束到下一次分裂结束所经历的时期减数分裂miosis是性母细胞成熟时,配子形成过程中发生的一种特殊形式的有丝分裂,所形成的配子染色体数减半。 生活周期life cycle即个体发育过程或称生活史,有性生殖的动植物生活周期是指从合子到个体成熟再到死亡所经历的一系列发育阶段 半保留复制semiconservative replicationDNA复制时,形成的新链DNA分子一链来自原来的亲本DNA分子,一链来自于新合成的DNA分子,这种复制方式称为半保留复制 性状character是指生物体所表现的形态特征和生理特征的总称 测交test cross是指被测验个体与隐性纯合个体间的杂交 等位基因allele控制一对相对性状位于同源染色体上对应位点的两个基因 基因互作interaction of gene不同对基因间相互作用共同决定同一单位性状表现结果的现象 连锁遗传linkage指在统一同源染色体上的非等位基因连在一起而遗传的现象 连锁群linkage group存在于同一染色体上的基因群 基因突变gene mutation指基因内部发生了化学性质的变化,与原来的基因形成对性关系 野生型wild type自然群体中最常见的类型 整倍体euploid 染色体数目是x整数倍的个体或细胞 非整倍体aneuploid正常染色体数(2n)的基础上增加或减少1条或若干染色体的个体或细胞 基因组genome指一个生物单倍体的染色体的数目即生物体全部遗传物质的总和 数量性状quantitative trait表现连续变异的性状 遗传率heritability指遗传方差在总方差(表型方差)中所占的比值,可以作为杂种后代进行选择的一个指标。 近亲繁殖inbreeding指血统或亲缘关系相近的两个个体间的交配,其极端类型为自交 轮回亲本recurrent parent被用来连续回交的亲本 杂种优势heterosis指两个遗传组成不同的亲本杂交产生的杂种一代,在生长势、生活力、繁殖力、产量和品质上比其亲本优越的现象 细胞质遗传cytoplasmic inheritance由细胞内的基因即细胞质基因所决定的遗传现象和遗传规律 干细胞stem cell是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞 孟德尔群体mendelian group在一个的群体内,个体间随机交配,遗传因子以各种不同的方式从一代传递到下一代,这种群体称为孟德尔群体 遗传漂变genetic drift在一个小群体内由于抽样误差造成的群体金银频率随机波动的现象 交换值crossing-over value指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率 简答题: 1、有丝分裂和减数分裂的过程,遗传学意义。 有丝分裂的遗传学意义:P20 减数分裂的遗传学意义:P23-24 细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目

遗传学名词解释

遗传学名词解释 1.变异:指亲代与子代之间、子代个体之间存在的差异。 2.突变:DNA分子某些部分的基因能够发生改变,使生物产生性状 的差异。 3.原核细胞:指一类结构简单、没有细胞核(仅有拟核)以及没有 膜包被细胞器的细胞。 4.真核细胞:指一类结构复杂、具有细胞核和细胞器的细胞。 5.核仁:是真核细胞间期核中最明显的呈中圆形或椭圆形的颗粒状 结构,其组成成分有rRNA、rDNA和核糖核蛋白。 6.染色体:指细胞分裂过程中,由染色质聚缩而呈现为一定数目和 形态的复合结构。 7.染色质:指间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA 组成的线性复合结构,因其易被碱性染料染色而得名,是间期细胞遗传物质存在的主要形式。 8.常染色体:与性别决定无关的染色体,是成对存在的,称为常染 色体。 9.性染色体:与性别决定有关的染色体。 10.常染色质:指间期细胞核内纤细处于伸展状态,并对碱性染料着 色浅的染色质。 11.异染色质:指间期核内聚缩程度高,并对碱性染料着色深的染色 质。 12.组成性染色质:指除复制期外均处聚缩状态的染色质。它是由相

对简单、高度重复DNA序列构成。 13.兼性染色质:指在某细胞外,或其发育的某阶段,原来的常染色 质卷缩、丧失转录活性而变为异染色质。 14.着丝粒:也叫着丝点。染色体的特定部位,细胞分裂时出现的纺 锤丝所附着的位置,此部位染色较浅。 15.端粒:存在于真核细胞线状染色体末端的一小段DNA-蛋白质复 合体,它与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。 16.复制原点:在基因组上复制起始的一段序列。 17.主缢痕:中期染色体上一个染色较浅而缢缩的部位,主缢痕处有 着丝粒,所以亦称着丝粒区,由于这一区域染色线的螺旋化程序低,DNA含量少,所以染色很浅或不着色。 18.次缢痕:指某些染色体臂上除主缢痕外还常含有另外缢缩区域。 19.随体:是位于染色体末端的、圆形或圆柱形的染色体片段,通过 次缢痕与染色体主要部分相连。 20.核仁组织中心:在细胞分裂时,次缢痕紧密相连核仁,也称为核 仁组织中心。 21.同源染色体:形态、结构、功能相同的一对染色体。 22.核型分析:又叫染色体组型分析,按照染色体的数目、大小和着 丝粒位置、臂比次缢痕、随体等形态特征,对生物核内的染色体进行配对、分组、归类、编号,这样进行分析过程称为核型分析。 23.染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两

遗传学名词解释94257

遗传学名词解释 amitosis无丝分裂:细胞核拉长呈哑铃状分裂,中部缢缩形成2个相似的子细胞。分裂中无染色体和纺锤体形成。如:纤毛虫、原生生物、特化的动物组织。 mitosis有丝分裂:即体细胞分裂,通过分裂产生同样染色体数目的子细胞。在分裂中出现纺锤体。 a sexual reproduction无性生殖:通过有丝分裂,从一共同的细胞或生物繁殖得到的基因型完全相同的细胞 或生物。也即克隆(clone)。 sexual reproduction有性生殖:减数分裂和受精有规则地交替进行,产生子代的生殖方式。 endomitosis内源有丝分裂:即间期细胞的染色体复制后,但不发生核分裂,着丝点也不分裂。结果形成多线染色体。或染色体复制后着丝点分裂,但细胞核未分裂,则核内染色体成倍性增加,成为内源多倍体。 meiosis减数分裂:是一种特殊方式的细胞分裂,是在配子形成过程中发生的,包括两次连续的核分裂,但染色体只复制一次,因而在形成的四个子细胞核中,每个核只含有单倍数的染色体,即染色体数减少一半,所以把它叫做减数分裂。 alternation of generations世代交替:生活周期包括一个有性世代和一个无性世代,这样二者交替发生就称为世代交替。 allele等位基因:载荷在同源染色体对等的位点上的二个基因,这二个成对的基因称为等位基因。additive effect加性效应:是指各个基因位点上纯合基因型对基因型总效应的贡献的大小,这部分效应一般是累加性的。 dominant effect显性效应:是指同一基因位点内相对等位基因间的交互作用对基因型总效应的贡献。autopolyploid同源多倍体:指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍得到。allopolyploid 异源多倍体:指增加的染色体组来自不同物种,一般是由不同种、属间的杂交种染色体加倍形成的。 apomixis无融合生殖:不经过雌雄配子融合而能产生种子的一种生殖方式,根据无融合生殖最后形成胚。aneuploid非整倍体:指体细胞核内的染色体不是染色体组的完整倍数,比该物种正常合子(2n)多或少一个以至若干个的现象。 atavism返祖遗传:在杂种后代重现祖先的某些性状,即为返祖遗传。 complementary effect互补作用:两对独立基因分别处纯合显性或杂合状态时,共同决定一种性状的发育。 当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状,这种作用称为互补作用。(9:7)

普通遗传学名词解释(英文)

遗传(heredity):指亲代与子代之间相似的现象。 变异(variation):指亲代与子代之间、子代个体之间存在的差异。 染色体(chromosome):指细胞分裂过程中,由染色质聚缩而呈现为一定数目和形态的复合结构。 有丝分裂(mitosis):又称间接分裂,是高等植物细胞分裂的主要方式,包含细胞核分裂和细胞质分裂两个紧密相连的过程。 减数分裂(meiosis):又称成熟分裂,是性母细胞成熟时,配子形成过程中发生的一种特殊的有丝分裂方式。由于形成子细胞内染色体数目比性母细胞减少一半,因此称为减数分裂。 联会(synapsis):减数分裂偶线期开始出现同源染色体配对现象,即联会。 姊妹染色单体(sister chromatid):二价体中一条染色体的两条染色单体,互称为姊妹染色单体。 同源染色体(homologous chromosome):指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 性状(character):生物体所表现的形态特征和生理特性的总称。 单位性状(unit character):把生物体所表现的性状总体区分为各个单位,这些分开来的性状称为单位性状。 相对性状(contrasting character) 等位基因(allele):位于同源染色体上,位点相同,控制着同一性状的基因。 测交(test cross):是指被测验的个体与隐性纯合体间的杂交。 基因型(genotype):也称遗传型,生物体全部遗传物质的组成,是性状发育的内因。表现型(phenotype):生物体在基因型的控制下,加上环境条件的影响所表现性状的总和。 染色单体(Chromatid)又称染色分体,是染色体的一部分。在减数分裂或有丝分裂过程中,复制了的染色体中的两条子染色体。 非姐妹染色单体(non-sister chromatid):两个同源染色体中由不同着丝点相连的染色单体,就叫非姐妹染色单体。 着丝粒(centromere):在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点粒,少数物种中染色体有多个着丝粒,着丝粒在染色体的位置决定了染色体的形态。 基因(gene):指携带有遗传信息的DNA序列,是控制性状的基本遗传单位,亦即一段具有功能性的DNA序列。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 相对性状(contrasting character):是指同种生物的各个体间同一性状的不同表现类型。 突变型基因(Mutant gene)为DNA分子中发生碱基对的增添、缺失或改变,而引起的基因结构的改变 端粒(Telomeres)是线状染色体末端的DNA重复序列。端粒是线状染色体末端的一种特殊结构,在正常人体细胞中,可随着细胞分裂而逐渐缩短。 动粒(Kinetochore)是真核细胞染色体中位于着丝粒两侧的3层盘状特化结构,其化学本质为蛋白质,是非染色体性质物质附加物,与染色体的移动有关。 野生型基因(wild type gene):在自然群体中往往有一种占多数座位的等位基因,称为野生型基因。 自交(selfing):指来自同一个体的雌雄配子的结合或具有相同基因型个体间的交 配或来自同一无性繁殖系的个体间的交配。 纯合子(Homozygote) :是指同一位点 (locus) 上的两个等位基因相同的基因型个体 , 如AA,aa。相同的纯合子间交配所生后代不出现性状的分离。分为隐性纯合子和显性纯合子。 杂合子(heterozygote) :是指同一位点上的两个等位基因不相同的基因型个 体 , 如Aa。杂合子间交配所生后代会出现性状的分离。 分离定律(law of segregation):为孟德尔遗传定律之一。决定相对性状的一对等位基因同时存在于杂种一代(F1)的个体中,但仍维持它们各自的个体性,在配子形成时互相分开,分别进入一个配子细胞中去。 相引相(coupling phase)两个显性性状连接在一起遗传,而两个隐性性状连接在一起遗传的杂交组合。 相斥相(repulsion phase)两个性状分别为甲和乙,甲显性性状与乙隐性性状连接在一起遗传,而乙显性性状和甲隐性性状连接在一起遗传的杂交组合。 选择(select):改变基因频率的最重要因素,也是生物进化的驱动力量。包括自然选择和人工选择。 宋体的是在汉语的遗传学书上的;黑体的是老师说的;华文新魏的是百度的。 遗传距离(genetic distance):两个基因在同一染色体上的相对距离,通常以交换值来表示。 两点测验(two-point testcross):是基因定位最基本的方法。首先通过一次杂交和一次用隐性亲本来测交来确定两对基因是否连锁,然后再根据其交换值来确定它们在同一染色体上的位置。 三点测验(three-point testcross):是基因定位最常用的方法,它是通过1次杂交和1次用隐性亲本测交,同时确定3对基因在染色体上的位置。 常染色体(autosome):生物多对染色体中,除性染色体外的其余各对染色体统称为常染色体。 性染色体(sex chromosome):在生物多对染色体中,直接与性别决定有关的一条或一对染色体。 常染色质(euchromatin):常染色质是指间期核内染色质纤维折叠压缩程度低,处于伸展状态,用碱性染料染色时着色浅的那些染色质。 异染色质(heterochromatin):在细胞周期中,间期、早期或中、晚期,某些染色体或染色体的某些部分的固缩常较其他的染色质早些或晚些,其染色较深或较浅,具有这种固缩特性的染色体称为异染色质。 限性遗传(sex-limited inheritance):指位于Y染色体(XY型)或W染色体(ZW 型)上的基因所控制的遗传性状只局限于雄性或雌性上表现的现象。 性别影响遗传(sex-influenced inheritance,又称从性遗传sex-controlled inheritance):与限性遗传不同,它是位于常染色体上的基因所控制的性状,是由于内分泌及其他关系使某些性状或只出现于雌雄一方;或在一方为显性,另一方为隐性的现象。 连锁强度 数量性状(quantitative trait):表现连续变异的遗传性状。(指在一个群体内的各个体间表现为连续变异的性状) 质量性状(qualitative trait/discrete characters):表现不连续变异的遗传性状。(指属性性状,即能观察而不能量测的性状,是指同一种性状的不同表现型之间不存在连续性的数量变化,而呈现质的中断性变化的那些性状。) 基因座(locus):一个特定的基因在染色体上的特定位置。 遗传率(又叫遗传力,heritability):指遗传方差在总方差(表型方差)中所占的比值,可以作为杂种后代进行选择的一个指标。 广义遗传率h2B(heritability in the broad sense):指遗传方差占总方差(表型方差)的比值。 狭义遗传率h2N(heritability in the narrow sense):指基因加性方差占总方差的比值。现实(选择)遗传率(Reality(select) heritability):通过选择结果也可以估算群体的遗传率,这个遗传率叫做现实遗传率,用hR表示。 选择反响(Select response)the degree of respond to mating the selected parent 选择差(selection difference):选择强度即标准化的选择差)指的是要留种的个体表型均值与畜群表型平均数之差。 杂种优势(heterosis):指两个遗传组成不同的亲本杂交产生的杂种一代,在生长势、生活力、繁殖力、产量和品质上比其双亲优越的现象。 超亲遗传(transgressive inheritance):指在数量性状的遗传中,杂种第二代及以后的分离世代群体中,出现超越双亲性状的新表型的现象。 复等位基因(multiple allele):同一位点的基因可能有两种以上的形式,遗传学把同源染色体相同位点上存在的3个或3个以上的等位基因称为复等位基因。 连锁群(linkage group):存在于同一染色体上的基因群。(位于同一条染色体上的所有基因座) 互补群(Complementation group):能与其它的互补群发生互补反应、同一个野生型基因产生的一系列(所有的)突变基因。除野生型外其它位点统称为一个互补群。整倍体(euploid):染色体数是x整倍数的个体或细胞称为整倍体。 非常整体(?) 非整倍体(aneuploid):在正常合子染色体数(2n)的基础上增加或减少1条或若干条染色体的个体或细胞。 单倍体(haploid):指具有配子染色体数(n)的个体或细胞。 多倍体(polyploid):三倍和三倍以上的整倍体统称为多倍体。 同源多倍体(autopolyploid):染色体组相同的多倍体叫做同源多倍体。所有染色体组来自同一物种,一般是由二倍体经染色体数目加倍形成的。 异源多倍体(allopolyploid):染色体组不同的多倍体叫做异源多倍体,其染色体组来自不同物种,一般是由不同种、属间的杂交种经染色体数目加倍形成的。 双二倍体(amphidiploid):异源四倍体中,由于两个种的染色体各具有两套,因而又叫做双二倍体。 单体(monosomic);在亚倍体中,染色体数比正常2n少一条的个体或细胞叫做单体,其染色体组成为2n-1=(n-1)II+I。 单倍体(haploid);单倍体是指具有配子染色体数(n)的个体或细胞。 单价体(univalent);本应联会而未联会的染色体。 二价体(bivalent);一对配对的同源染色体称二价体 三价体(trivalent);在减数分裂中,发生联会的三个染色体配成一组的多价体,称为三价体或三价染色体 缺体(nullisomic);对染色体的两条全部丢失了的个体或细胞成为缺体,其染色体组成为2n-2=(n-1)II。 四体(tetrasomic);在正常2n基础上,某一对染色体多了两个成员的个体或细胞称为四体,其染色体组成为2n+2=(n-1)II+IV。 双单体(double monosomic);两对染色体各缺少一条的个体或细胞称为双单体。 三体(trisomic);在正常2n的基础上,增加一条染色体的个体或细胞称为三体,其染色体组成为2n+1=(n-1)II+III。 双三体(double trisomic):在正常2n基础上,有两对染色体各自都增加一条的个体或细胞称为双三体。 超倍体(hyperploid);染色体数多于2n的非整倍体称为超倍体。 亚倍体(hypoploid);染色体数少于2n的非整倍体称为亚倍体。 缺失(deficiency);缺失是指染色体的某一片段丢失了。 重复(duplication);重复是指染色体多了自身的某一区段。 易位(translocation);异位是指染色体上某一区段移接到其非同源染色体上。 倒位(inversion);倒位指染色体中发生了某一区段倒转。 缺失圈(deficiency loop);中间缺失杂合体在偶线期和粗线期可能观察到二价体上形成环状或瘤状突起——缺失圈或缺失环 重复圈(duplication loop);重复杂合体在减数分裂联会时,如果重复区段较长,重复区段会被排挤出来,成为二价体的一个突出的环或瘤——重复圈或重复环。 感受态(competence);细胞处于能够吸收外源DNA的状态称感受态,处于感受态的细胞称作感受态细胞。 原养型(prototroph);能在矿物培养基上合成自身必需的有机化合物的细菌。 辅养型(auxotroph);一个细菌失去了合成一种至数种有机化合物的能力从而导致其不能再矿物培养基上生长。 接合(conjugation);接合是指遗传物质从供体——“雄性”转移到受体——“雌性”的过程。 转化(transformation);转化是指某些细菌(或其他生物)通过其细胞膜摄取周围供体的DNA片段,并将此外源DNA片段通过重组整合到自己染色体组的过程。 性导(sexduction);性导是指接合时由F’因子所携带的外源DNA转移到细菌染色体的过程。 转导(transduction);转导是指以噬菌体为媒介所进行的细菌遗传物质重组的过程。 质粒(plasmid);质粒是指存在于细胞中能独立进行自主复制的染色体外遗传因子。F细胞(F cells);F因子为致育因子,含有F因子的细胞即为F细胞。 F+细胞(F+cell);含有自主状态的F因子的细胞。 高频率重组(hfr)细胞(high frequency recombination);带有一个整合的F因子的细胞叫做高频重组细胞,即hfr细胞。 群体遗传学(population genetics);群体遗传学是研究群体的遗传结构及其变化规律的遗传学分支学科。应用数学和统计学方法研究群体中基因频率和基因型频率以及影响这些频率的选择效应和突变作用。 基因型频率(genotype frequency);指某一特定基因型的个体占群体的百分率。基因频率(gene frequency)。某一特定基因占该基因座基因总数的百分率。 隐性性状(recessive character):孟德尔把在子一代未表现出来的性状称为隐性性状。 显性作用() 不完全显性(incomplete dominance):杂种F1的性状表现是双亲性状的中间型。 共显性(codominance)一对等位基因的两个成员在杂合体中都表达的遗传现象。 加性(additive allelic effect) 在多基因决定的数量性状中,各基因独自产生的效应。 干扰(interference,I)一个单交换发生后,在它邻近再发生第二次单交换的机会就会减少的现象。 正干扰(positive interference):一个单交换发生后,对它临近位置再发生第二个单交换有抑制或减弱的作用为正干扰。 负干扰(negative interference) 一个单交换发生后,对它临近位置再发生第二个单交换有促进或增强的作用为正干扰。 连锁遗传(linkage inheritance)在同一同源染色体上的非等位基因连在一起而遗传的现象。 连锁(linkage)指位于同一对染色体上的非等位基因总是联系在一起遗传的现象。

相关文档