文档库 最新最全的文档下载
当前位置:文档库 › 钢铁冶金学(炼钢部分)

钢铁冶金学(炼钢部分)

钢铁冶金学(炼钢部分)
钢铁冶金学(炼钢部分)

钢铁冶金学(炼钢部分)

第一部分炼钢的基本任务

1、钢和生铁的区别?

答:C < 2.11%的Fe-C合金为钢;C > 1.2%的钢很少实用;还含Si、Mn等合金元素及杂质。生铁硬而脆,冷热加工性能差,必须经再次冶炼才能得到良好的金属特性;钢的韧性、塑性均优于生铁,硬度小于生铁。

2、炼钢的基本任务?

答:钢铁冶金的任务是由生产过程碳、氧位变化决定的。炼钢的基本任务分为脱碳,脱磷,脱硫,脱氧,脱氮、氢等,去除非金属夹杂物,合金化,升温(1200°C→1700°C),凝固成型,废钢、炉渣返回利用,回收煤气、蒸汽等。3、钢中合金元素的作用?

答:C:控制钢材强度、硬度的重要元素,每1%[C]可增加抗拉强度约980MPa;Si:增大强度、硬度的元素,每1%[Si]可增加抗拉强度约98MPa;Mn:增加淬透性,提高韧性,降低S的危害等;Al:细化钢材组织,控制冷轧钢板退火织构;Nb:细化钢材组织,增加强度、韧性等;V:细化钢材组织,增加强度、韧性等;Cr:增加强度、硬度、耐腐蚀性能。

4、钢中非金属夹杂物来源?

答:

5、主要炼钢工艺流程?

答:炒钢→坩埚熔炼等→平炉炼钢→电弧炉炼钢→氧气顶吹转炉炼钢→氧气底吹转炉和顶底复吹炼钢。主要生产工艺为转炉炼钢工艺和电炉炼钢工艺。与电炉相比,氧气顶吹转炉炼钢生产率高,对铁水成分适应性强,废钢使用量高,可生产低S、低P、低N的杂质钢,可生产几乎所有主要钢品种。顶底复吹工艺过氧化程度低,熔池搅拌好,金属-渣反应快,控制灵活,成渣快。

现代炼钢流程:炼铁,炼钢(铁水预处理、炼钢、炉外精炼),连铸,轧钢,主要产品。

第二部分炼钢的基本反应

1、铁的氧化和熔池的基本传氧方式?

答:火点区:氧流穿入熔池某一深度并构成火焰状作用区(火点区)。

吹氧炼钢的特点:熔池在氧流作用下形成的强烈运动和高度弥散的气体-熔渣-金属乳化相,是吹氧炼钢的特点。乳化可以极大地增加渣-铁间接触面积,因而可以加快渣-铁间反应。

乳化:在氧流强冲击和熔池沸腾作用下,部分金属微小液滴弥散在熔渣中;乳化的程度和熔渣粘度、表面张力等性质有关。乳化可极大增加渣-铁接触面积,因而可加快渣-铁间反应。

杂质的氧化方式:分为直接氧化和间接氧化。

直接氧化:气体氧直接同铁液中的杂质进行反应。

间接氧化:气体氧优先同铁发生反应,待生成FexO以后再同其他杂质进行反应。

氧气转炉炼钢以间接氧化为主:氧流是集中于作用区附近而不是高度分散在熔池中;氧流直接作用区附近温度高,Si和Mn对氧的亲和力减弱;从反应动力学角度来看,C向氧气泡表面传质的速度比反应速度慢,在氧气同熔池接触的表面上大量存在的是铁原子,所以首先应当同Fe结合成FeO。

2、脱碳反应?

答:脱碳的重要性:反应热升温钢水;影响生产率;影响炉渣氧化性;影响钢[O]含量。

脱碳产物CO的作用:从熔池排出CO气体产生沸腾现象,使熔池受到激烈地搅动,起到均匀熔池成分和温度的作用;大量的CO气体通过渣层是产生泡沫渣和气一渣一金属三相乳化的重要原因;上浮的CO气体有利于清除钢中气体和夹杂物;在氧气转炉中,排出CO气体的不均匀性和由它造成的熔池上涨往往是产生喷溅的主要原因。

“C-O”关系:

热力学条件:增大f[C]有利于脱碳;增加[O]有利于脱碳;降低气相PCO有利于脱碳;提高温度有利于脱碳。

3、脱碳反应动力学?

答:限制性环节:C高O低时,O的扩散为限制性环节;C低O高时,C的扩散为限制性环节。

脱碳过程:1.吹炼初期以硅的氧化为主,脱碳速度较小;

2.吹炼中期,脱碳速度几乎为定值;

3.吹炼后期,随金属中含碳量的减少,脱碳速度降低。

4、硅的氧化反应?

答:脱硅的作用:硅高,增加渣量,需多加石灰提高炉渣碱度,影响前期脱磷,影响炉龄,增加氧气消耗,降低金属收得率;硅低,渣量少,石灰用量少,氧气消耗低,金属收得率提高。

有利于[Si]氧化反应因素:

[Si]的氧化反应对炼钢过程的影响:热效应;影响脱碳、脱磷反应;影响渣量。

5、锰的氧化与还原?

答:有利于[Mn]氧化反应因素:

温度对脱锰反应的影响:初期温度低,渣中MnO活度低,大量Mn氧化;中后期温度升高、渣中FeO含量降低,碱度提高,炉渣中部分MnO被还原;末期炉渣FeO含量增高,Mn重新被氧化。

6、脱磷反应?

答:有利于脱磷的工艺条件:降低温度;提高炉渣碱度;增加炉渣氧化铁活度;增加渣量;增加[P]活度系数。

炉渣的重要性:通过造碱性炉渣能够降低P2O5的活度系数,同时,碱度CaO/SiO2越高,磷分配比越大,有利于脱磷;渣量增大有利于脱磷。

回磷的原因:吹炼中期炉渣“反干”,炉渣FexO含量减少(炼钢过程);出钢带渣量多,炉渣碱度降低,[O]含氧量降低(脱氧过程)。

回磷的解决措施:高磷铁水吹炼过程中采用“倒包”方法。

吹炼高磷铁水技术:利用“后吹”脱磷;“双渣”工艺。

超低磷冶炼工艺技术:采用铁水“三脱”预处理;采用氧气转炉进行脱磷预处理;转炉铁水脱磷工艺。

7、脱硫反应?

答:脱硫的方法及工艺:

方法:KR(机械搅拌)脱硫;喷粉脱硫。

工艺:LF炉精炼脱硫渣系;真空喷粉钢水脱硫(铁水预处理-BOF-LF-RH-CC工艺;铁水预处理-BOF-真空喷粉精炼-CC工艺);V-KIP工艺;RH 喷粉脱硫;RH-PB工艺;RH顶喷粉脱硫;IR-UT工艺。

有利于脱硫的因素:

硫容量:

炉渣的作用:FexO过高不利于脱硫,碱性还原渣有利于脱硫,增大渣量有利于脱硫。

金属脱硫及气相脱硫:

回硫的原因及控制:回硫主要来自废钢和铁水脱硫渣;石灰带入的硫量很少。转炉炼钢工艺抑制回硫。

衡量脱硫渣能力的方法:炉渣碱度、还原性、[O]活度、[S]活度、(O2-)活度、(S2-)活度的高低。

第三部分脱氧反应与钢中非金属夹杂物

1、脱氧方式?

答:脱氧的重要性:氧气炼钢冶炼临近结束时,钢液实际上处于“过度氧化”状态。钢中原溶解的绝大部分氧以铁氧化物、氧硫化物等微细夹杂物形式在奥氏体或铁素体晶界处富集存在;在钢的加工和使用过程容易成为晶界开裂的起点,导致钢材发生脆性破坏;钢中氧含量增加降低钢材的延性、冲击韧性和抗疲劳破坏性能,提高钢材的韧-脆转换温度,降低钢材的耐腐蚀性能等。

总氧:包括自由氧(a0)以及固定氧(夹杂物所含的氧)。总氧T[O]表示钢的洁净度,值越低表示钢越“干净”。

终点氧:炼钢终点时钢液中总的溶解氧量。

挡渣技术:转炉炼钢终点炉渣FeO通常在15~25%。如出钢带入钢包内的炉渣过多,由于钢包内钢水的对流作用,造成Al2O3夹杂物量的增多。必须高度重视出钢的防下渣操作,主要的挡渣方法有挡渣球、机械挡渣塞、气动挡渣。为转炉炼钢生产特殊钢的关键技术。主要包括转炉下渣检测系统、滑动水口控制系统、转炉留钢留渣操作工艺、无渣出钢转炉自动开浇技术、无渣出钢转炉溅渣护炉技术、无渣出钢转炉冶炼低磷钢系统技术等。

脱氧方式:沉淀脱氧、扩散脱氧、真空脱氧法。

沉淀脱氧:是用与氧亲和力较铁与氧亲和力强的元素作脱氧剂,脱氧剂与钢液中的氧直接作用,发生脱氧反应,反应产物由钢液上浮排除,从而达到脱氧目

的。

脱氧时将各种脱氧剂以铁合金形式直接加入到钢液中;某些比重较轻或较易气化的脱氧剂则多采用向钢液喂丝或喂包芯线方法加入至钢液中。

沉淀脱氧反应速度快,操作简便,成本较低。部分脱氧产物会滞留在钢中,从而程度不同地造成钢水污染,降低钢的纯净度。

扩散脱氧:扩散脱氧是向炉渣中加入碳粉、硅铁粉、铝粉等脱氧剂,降低炉渣的FeO含量;当渣中FeO含量不断降低时,钢中的氧即会向炉渣中扩散,以维持氧在渣-钢间的分配平衡,从而达到钢液脱氧的目的;扩散脱氧方法目前主要应用于钢水炉外精炼;扩散脱氧的优点是脱氧产物不玷污钢液,缺点是脱氧速度较慢。

真空脱氧:真空脱氧是指将钢液置于真空条件下,通过降低CO气体分压,促使钢液内[C]-[O]反应继续进行,利用[C]-[O]反应达到脱氧的目的;真空脱氧方法的最大特点是脱氧产物CO几乎全部可由钢液排除,不玷污钢液;钢液温度降低较大,且投资和生产成本较高。

2、元素的脱氧能力?

答:Ca>Ba>Zr>Al>Ti>B>Ta>Si>C>V>Nb>Cr>Mn。

3、脱氧的产物?

答:

复合脱氧:用含有两种或两种以上脱氧元素的铁合金对钢液进行的脱氧称为复合脱氧;复合脱氧的实质是用两种或两种以上的脱氧元素同时同钢液中溶解的氧发生反应,并使它们的脱氧产物彼此结合成互溶体或化合物以降低脱氧产物的活度;由于脱氧产物活度降低,使钢液[O]含量降低;与单独元素脱氧相比,多数情况下,复合脱氧能够提高脱氧元素的脱氧能力。

常用脱氧剂:硅-锰复合脱氧剂;钙-硅复合脱氧剂。

脱氧动力学:包括以下几个环节,即脱氧元素的溶解和均匀化;脱氧化学反应;脱氧产物的形核;脱氧产物的长大;脱氧产物的去除。

脱氧产物长大的方式:扩散长大;不同尺寸脱氧产物间的扩散长大;由于上浮速度差而碰撞凝集长大;由于钢液运动而碰撞凝集长大。

影响脱氧颗粒长大的因素:

Stokes公式:

4、非金属夹杂物?

答:非金属夹杂物的分类:氧化物、硫化物、氮化物夹杂。

非金属夹杂物的危害和所造成的缺陷:

铸坯缺陷:表面夹渣;裂纹(表面纵裂纹、表面横裂纹、内部裂纹)。

钢材缺陷:热轧钢板(夹渣、翘皮、分层、超声波检查不合等);冷轧钢板(裂纹、灰白线带、起皮、鼓包等)。

钢材性能:加工性能(冲压、拉丝、各向异性等);机械性能(延性、韧性、抗疲劳破坏性能等);耐腐蚀性能、焊接性能、抗HIC性能等。

内生类非金属夹杂物:脱氧产物;钢-渣反应、钙处理等化学反应生成的夹杂物;二次氧化产物;钢液冷却和凝固过程生成的夹杂物。

外来类非金属夹杂物:炉渣卷入形成的夹杂物;耐火材料浸蚀形成的夹杂物。

非金属夹杂物的控制:炼钢出钢挡渣;低碳、超低碳钢RH精炼效率;超低氧钢水的LF精炼技术;增强搅拌,夹杂物上浮。

第四部分转炉炼钢工艺

1、发展?

答:发展历程:酸性底吹空气转炉炼钢法;碱性底吹空气转炉炼钢法;顶吹氧气转炉;碱性顶吹氧气转炉;顶底复合吹炼转炉。

转炉炼钢技术发展可划分为三个时代,即转炉大型化时代,转炉复合吹炼时代,洁净钢冶炼时代。

分类:氧气顶吹转炉,氧气底吹转炉(或氧气侧吹转炉),氧气顶底复合转炉。

工艺特点:完全依靠铁水氧化带来的化学热及物理热;生产率高(冶炼时间在20分钟以内);质量好(CO的反应搅拌,将N、H除去,气体含量少),可以生产超纯净钢,有害成份(S、P、N、H、O)〈80ppm;冶炼成本低,耐火材料用量比平炉及电炉用量低;原材料适应性强,高P、低P都可以。

2、转炉设备?

答:转炉本体系统包括转炉炉体及其支撑系统——托圈、耳轴、耳轴轴承和支撑座,以及倾动装置;氧枪及其升降、换枪装置;副枪装置;散状料系统;烟气净化系统。

3、炉型设计?

转炉炉容比:是指转炉腔内的自由空间的容积V(单位m3)与金属装入量(铁水+废钢+生铁块,单位t)之比。

装入量过大,则炉容比相对就小,在吹炼过程中可能导致喷溅增加、金属损耗增加、易烧枪粘钢;

装入量过小,则熔池变浅,炉底会因氧气射流对金属液的强烈冲击而过早损坏,甚至造成漏钢。

转炉高径比:是指转炉腔内的自由空间的高度(单位m)与熔池直径之比。决定转炉氧枪的吹炼强度,冶炼时间等;同时影响溅渣的好坏;决定氧枪喷头的设

计参数。

4、氧气射流?

答:概念:转炉炼钢通过向熔池供氧来去除金属液中的杂质元素,同时向熔池中吹气以强化搅拌,实现快速炼钢。供氧是通过氧枪喷头向熔池吹入超音速氧气射流来实现的,即氧气射流。

物理作用:氧流作用下熔池的循环运动,动量传递,氧压或氧速越高,凹坑越深,搅拌加剧。

化学作用:直接氧化,-氧气射流直接与杂质元素产生氧化反应;间接氧化---氧气射流先与Fe反应生成后FeO ,FeO传氧给杂质元素。间接氧化为主,因氧流是集中于作用区附近(4%的面积),而不是高度分散在熔池中。

熔池冲击深度:氧气射流深入熔池的深度(即冲击深度)对吹炼工艺影响很大,必须保证氧流对熔池具有合适的冲击深度,使熔池得到均匀而强烈的搅拌,即有较大的脱碳速度,同时又具有一定的化渣能力。

当h/L(池深)<0.3时,即冲击深度过浅,则脱碳速度和氧的利用率会大为降低,增加渣中FeO;当h/L(池深)>0.7时,即冲击深度过深,有可能损坏炉底和金属喷溅严重。

5、炼钢中原辅材料:

合金:合金加入量(kg) =(钢种规格中限%-终点残余成分%)/A,A=(铁合金中合金元素含量%×合金元素收得率%)(每100Kg)。

原辅材料:铁水温度要适中,铁水温度的高低是带入转炉物理热多少的标志,这部分热量是转炉热量的重要来源之一,因此,铁水温度不能过低,否则热量不足,影响熔池的温升速度和元素氧化过程,还容易导致喷溅。要保证转炉铁水温度大于1250℃;废钢是转炉主要金属料之一,是冷却效果稳定的冷却剂,适当的增加废钢比,可以降低转炉炼钢成本、能耗、和炼钢辅助材料消耗;生铁是调温及配碳;烧结矿可提高金属收得率,造渣等;对铁合金总的要求是合金元素的含量要高,以减少熔化时的热量消耗,有确切而稳定的化学成分,入炉块度应适当,以便控制钢的成分和合金的收得率,含非金属夹杂和有害杂质硫、磷及气体要少。石灰的渣化速度是转炉炼钢成渣速度的关键,因此炼钢用石灰除了有效CaO含量要高,SiO2和S含量低,适当的块度要求之外,对其活性度也要提出要求;炼钢用萤石的wCaF2应大于85%,wSiO2≤5.0%,wS≤0.10%,块度在5-40mn,并要干燥清洁。

6、转炉耐火材料及护炉技术:

耐材:耐火度、荷重软化温度、耐压强度、抗热震性、热膨胀性、导热性、抗渣性、气孔率等。

溅渣护炉技术:是利用高速氮气把成分调整后的剩余炉渣(或改质炉渣)喷溅在炉衬表面形成溅渣层。溅渣层固化了镁碳砖表层的脱碳层,抑制了炉衬表层的氧化,并减轻了高温炉渣对砖表面的冲刷侵蚀。

7、转炉炼钢的操作制度?

答:转炉冶炼五大制度,即装料制度,供氧制度,造渣制度,温度制度,重点控制及合金化制度。

装料制度:合理的装入量,需考虑炉容比和炉池深度两个参数。定量装入、定深装入;分阶段定量装入。

供氧制度:软吹,低压、高枪位,吹入的氧在渣层中,渣中FeO升高、有利于脱磷;硬吹,高压低枪位(与软吹相反),脱P不好,但脱C好,穿透能力强,

脱C反应激烈。

造渣制度:炼钢就是炼渣。通过造渣,脱P、减少喷溅、保护炉衬(目的)。确定合适的造渣方式、渣料的加入数量和时间、成渣速度(造渣制度)。要求一定碱度、良好的流动性、合适的FeO及MgO、正常泡沫化的熔渣(特点)。

渣料(石灰)加入量的计算:

造渣与脱磷的关系:通过造碱性炉渣能够降低P2O5的活度系数,同时,碱度CaO/SiO2越高,磷分配比越大,有利于脱磷;渣量增大有利于脱磷。

温度及成分终点控制方法:一次拉碳法、增碳法、高拉补吹法。

温度的确定:所炼钢种熔点T=1538-Σ△T×j,△T为钢中某元素含量增加1%时使铁的熔点降低值,j为钢中某元素%含量。考虑到钢包运行、镇静吹氩、连铸等要求。

拉碳及增碳法:

拉碳:就是在吹炼时判定已达终点而停止吹氧。由于在中、高碳钢种的含碳范围内,脱碳速度较快,一次判别终点不太容易,所以采用高拉补吹的办法。

一次拉碳法:按出钢要求的终点碳和温度进行吹炼,当达到要求时提枪。操作要求较高。

优点:终点渣FeO低,钢中有害气体少,不加增碳剂,钢水洁净。氧耗较小,节约增碳剂。

增碳法:所有钢种均将碳吹到0.05%左右,按钢种加增碳剂。增碳法就是终点按低碳钢控制(在为数不少的厂家和场合,甚至采取“一吹到底”的操作方法),然后在出钢过程中增碳,使钢水中的含碳量达到所炼钢种的要求范围之间。在增碳法中,要求所用增碳剂纯度高,硫含量低,以免对钢水造成污染。

优点:操作简单,生产率高,易实现自动控制,废钢比高。

高拉补吹法:当冶炼中,高碳钢种时,终点按钢种规格略高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。

负能炼钢:当炉气回收的总热量>转炉生产消耗的能量时,实现了转炉工序“负能炼钢”。

8、复合吹炼?

答:复吹特点:保持顶吹转炉成渣速度快和底吹转炉吹炼平稳的双重优点;反应速度快,热效率高,可实现炉内二次燃烧;吹炼后期强化熔池搅拌,使钢渣反应接近平衡;进一步提高了熔池脱磷脱硫的冶金效果;冶炼低碳钢(C=0.01~

0.02%),避免了钢渣过氧化。

搅拌功概念:由顶吹及底吹带入转炉内钢液的搅拌能的供给速率(也称比搅拌功率)(W/t)。

9、除尘、余热回收及环境保护。

答:除尘方式:烟气净化系统主要有三种:采用未燃法回收煤气的文氏管湿法净化系统(湿式);采用燃烧法的文氏管湿法净化系统;采用静电除尘的干式净化系统(干式)。

其中,采用未燃法回收煤气的文氏管湿法净化系统的方法,既可以回收煤气又可以回收余热。

除尘指标:煤气回收量通常为60~110m3/t钢。热值为1400-1800×4.18KJ/m3。CO含量为60-90%左右。

余热回收方法:未燃法回收煤气的文氏管湿法净化系统。

烟尘及渣的利用:

烟尘利用:转炉煤气可以做燃料或化工原料。

转炉煤气的含氢量少,燃烧时不产生水汽,而且煤气中不含硫,可用于混铁炉加热、钢包及铁合金的烘烤、均热炉的燃料等,同时也可送入厂区煤气管网,作为生活煤气使用。

转炉煤气中可以合成化工原料。制甲酸钠,甲酸钠是染料工业中生产保险粉的一种重要原料,代替了锌粉,节约了金属。制合成氨。是我国农业普遍需要的化学肥料。转炉煤气中CO含量较高,所含P、S等杂质少,利于生产合成氨。

炉渣利用:用于烧结;作熔剂用;提取稀有元素;用于水泥生产。

第五部分电炉炼钢工艺

1、发展?

答:1905年第一台5吨工业炼钢电炉建成;1936年制造了可炉盖旋转的炼钢电炉;1936年建成了当时最大的100吨炼钢电炉;1964年提出电炉超高功率概念,电炉工业开始走向辉煌,开始与转炉竞争;1990年后,电炉炼钢技术取得了重大进展。炼钢技术的进步主要进步集中在电炉炼钢领域。

优势:矿石经高炉/转炉流程而成粗钢的单位能耗高于700kgce/t,虽氧气转炉炼钢能耗仅为“零”,但高炉和炼焦工序能耗高。同时也是污染环境的大户;废钢经电炉熔炼所生产的粗钢吨钢能耗仅为270kgce/t,而污染的产生及其治理更远优于高炉/转炉流程;采用废钢作原料的电炉炼钢,流程短,生产率高,全员劳动生产率高达4000 t /(人·a),几乎是高炉/转炉流程的3-4倍;社会大量废钢的积累,废品的再循环利用。

2、能量来源及热平衡?

答:电能;化学热(包括元素氧化及炉气燃烧带来的化学热、输入燃料带来的外来化学热);物理热(铁水或预热废钢带入的)。

3、原料及耐材?

答:原料:传统的电弧炉炼钢是全废钢工艺以冷废钢为主,配加10-30%左右的生铁块;现代电弧炉炼钢使用的其它原料还有除冷生铁外的直接还原铁(DRI,HBI)、热铁水、碳化铁等。辅料白云石、石灰、碳粉等。

对炉料的要求及加入原则:

对废钢的要求:不允许有有色金属;不允许有封闭器皿、易爆炸物;入炉

的钢铁料块度要合适,不能太大。

加入原则:重型废钢,炉渣,炉渣处理废钢要装在料篮底部及渣门口;助熔剂类的配加物要加在料篮底部;篷轻及螺旋状料要求加在料篮偏下部位,短小及平直料用以填充空隙(车削料);粉碎料用以填充空隙。

原料可导致的问题:成分,不导电,罐体的爆炸,水分,垃圾,放射性原料,体积过大。

对耐材的要求:高耐火度、高荷重软化温度、良好的热稳定性、抗渣性、高耐压强度、低导热性等。

配碳方法:配碳有利于废钢铁氧化、氧化期去气(N、H)、去夹杂。配C 量%=0.50%(熔化期损失)+0.2-0.3%(氧化需要)+氧化终了碳含量。原则为大、中、小料配合;重料在下、轻料在上;大块在中、轻料在边。

熔化期特点:熔化期是电炉工艺中能源消耗的70-80%,冶炼时间的50-80%电炉的节能降耗主要在熔化期。废钢熔化过程为从中心向四周、从热区向冷区、从下向上。

氧化期特点:熔化废钢与氧化期脱碳结合,提前造渣脱磷。

脱磷方法:强化吹氧提高初渣氧化性;提前造高碱度渣;流渣造新渣;喷粉技术的应用。

氧化期造渣特点:氧化期的造渣要根据脱磷及脱碳的要求、具有合适的炉渣成分及流动性。渣中ΣFeO含量一般控制在10-20%,碱度控制在2.5-3.0,总渣量在3-8%。

无渣出钢技术:偏心炉底出钢。(P253)

4、电炉冶炼工艺?

答:传统冶炼工艺(熔化期,氧化期,还原期);现代冶炼工艺(熔化期,氧化期,炉外精炼)。

操作步骤:补炉、装料(配料)、熔化期、氧化期、精炼(或还原期)、出钢。

补炉的重点是:渣线(渣的浸蚀);距电极近的地方(最容易跑钢的地方),电弧的辐射;炉门两侧。

配碳的重要性:废钢铁氧化、氧化期去气(N、H)、去夹杂。

最低配C计算:配C量%=0.50%(熔化期损失)+0.2-0.3%(氧化需要)+氧化终了碳含量。

装料原则:大、中、小料配合;重料在下、轻料在上;大块在中、轻料在边。

废钢熔化过程:从中心向四周、从热区向冷区、从下向上。

熔化期操作原则:合理供电、合适吹氧、提前造渣。

吹氧方式:自耗式(可切割、可吹渣钢界面);水冷式(只能吹渣钢界面)。

氧化期的任务:继续脱P、脱C;去气(N、H)、去夹杂;钢液升温。熔化废钢与氧化期脱碳结合,提前造渣脱磷。

温度控制:

氧化终点特别情况处理:

5、泡沫渣的作用?

答:泡沫渣是指在不增大渣量的情况下,使炉渣呈很厚的泡沫状。采用长弧泡沫渣操作可以增加电炉输入功率,提高功率因数及热效率;降低电炉冶炼电耗,缩短了冶炼时间;减少了电弧热辐射对炉壁及炉盖的热损失;泡沫渣有利于炉内化学反应,特别有利于脱P、C及去气(N、H)。

影响泡沫渣的因素:吹氧量;熔池含碳量;炉渣的物理性能(粘度、表面张力);炉渣的化学性能(FeO、碱度);熔池温度;渣量。

6、还原期的主要任务?

答:去除钢液中的氧;去除钢液中的硫;调整钢液的温度、成份到规定成分;合金化。

残余氧化渣的危害:降低脱硫脱氧能力;降低合金收得率;降低钢包搅拌强度;降低包衬寿命。

7、电炉预热技术?

答:竖炉技术:竖炉电弧炉有一个废钢预热系统,竖炉电弧炉可以是单竖炉或双竖炉,也可以是直流的或交流的。它用废气(1000℃以上)的潜热和化学热,加上在竖炉底部的氧燃烧嘴预热装在水冷竖炉内的废钢料柱。与普通的炉子比较,其氧—燃烧嘴的热效更高。竖炉里至少可装全炉废钢的40%,剩下的废钢在开始熔化前直接加入炉内。

双炉壳技术:双壳炉内有两个炉壳,共用一套电源。双壳炉的技术特点是将废钢预热和节省非通电时间相结合,当一个炉壳内在熔化炉料时,另一炉壳就加入第一篮炉料。当第一个炉壳要出钢时电极就转向另一个炉壳,开始送电。这样停电时间可缩短6~10分钟,生产率大大提高。预热炉料的优点是缩短给电时间和节电。

Consteel电炉技术:废钢原料预热和加料过程的连续化,对电弧炉炼钢过程非常有利。电弧非常平稳,闪烁、谐波和噪音很低;过程连续进行,非通电操作时间减至最少;不必周期性加料,热损失和排放大大减少;便于稳定控制生产过程和产品质量。

第六部分炉外精炼工艺

1、炉外精炼的内容及功能?

答:包括炼钢之前的铁水预处理和炼钢之后的钢的二次精炼(钢的二次精炼是指二次还原精炼,也称为二次冶金)。

内容:脱氧、脱硫;去气、去除夹杂;调整钢液成分及温度。

功能(手段):渣洗,最简单的精炼手段;真空,目前应用的高质量钢的精炼手段;搅拌,最基本的精炼手段;喷吹,将反应剂直接加入熔体的手段;调温,加热是调节温度的一项常用手段。

脱气的主要方法:提高真空度可将钢中C、H、O降低。

升温的方法:LF加热;CAS化学加热。

主要的精炼工艺:LF、AOD、VOD、RH、CAS-OB、喂线、钢包吹氩搅拌、喷粉。

2、LF、AOD、VOD、RH、CAS-OB工艺特点、功能及冶金效果?

答:LF炉:最常用的精炼方法;取代电炉还原期;解决了转炉冶炼优钢问题;具有加热及搅拌功能;能够进行精炼轴承钢、脱氧、脱硫、合金化。

工艺特点:(1)还原气氛。LF炉本身不具备真空系统,但由于钢包与炉盖密封,隔离空气,加热时石墨电极与渣中FeO、MnO、Cr2O3等反应生成CO气体,使LF炉内气氛中氧含量减少。精炼过程通过扩散脱氧和沉淀脱氧造成钢液的还原条件,可以进一步脱氧、脱硫及去除非金属夹杂。

(2)氩气搅拌。氩气搅拌加速钢—渣之间物质传递,有利于钢液脱氧、脱硫反应。吹氩可以加速Al2O3夹杂物上浮速度,在密封的LF炉,吹氩15min 后,可使钢中大于20μm的Al2O3夹杂基本清除。

(3)埋弧加热。LF炉三根电极插入渣层中进行埋弧加热,这种方法辐射热小,对炉衬有保护作用,热效率高,浸入渣中石墨与渣中氧化物反应为:C+FeO=Fe+CO,C+MnO=Mn+CO,2C+WO2=W+2CO,5C+V2O5=2V+5CO。上述反应不仅提高了渣的还原性,而且还提高合金回收率,生成CO使LF炉内气氛更具还原性。

(4)白渣精炼。LF炉操作中通过对炉渣强化脱氧形成白渣,由于渣对钢液中氧化物的吸附和溶解,达到钢液脱氧效果。(无污染脱氧方法) LF炉由于有温度补偿,吹氩强烈搅拌,随渣中碱度提高,硫的分配比增大,可炼出低硫钢或超低硫钢。目前国内外冶炼低硫钢和超低硫钢时渣中(FeO+MnO)的理想控制范围是小于0.5%。

泡沫渣的作用:提高功率因素,降低吨钢电耗;减少热损失,提高热效率(从30%提高到60%);减少电弧对炉衬的侵蚀,提高炉衬使用寿命;泡沫渣操作能改善冶炼条件,提高钢液洁净度。

影响LF炉埋弧渣操作的因素:电弧长度;炉渣气泡性能;气源。

炉渣脱硫:通过炉外精炼的有关操作已可将钢中的硫降到2ppm的水平。脱硫应保证炉渣的高碱度、强还原性即渣中自由CaO含量要高;渣中(FeO+MnO)%要充分低,一般小于0.5%是十分必要的。从热力学的角度讲,温度高有利于脱硫反应的。而且较高的温度可以造成更好的动力学条件而加快脱硫反应。要使钢水脱硫,首先必须使钢水充分脱氧。此时钢中的铝含量应当高于0.02%。这时可以保证溶解氧不高于2-4ppm。经常使用的脱硫合成渣是45-50% CaO,10-20% CaF2,5-15% Al2O3,0-5% SiO2。过多的SiO2会降低炉渣的脱硫能力,但是它却可以降低炉渣的熔点,使炉渣尽快参加反应,起到对脱硫有利的作用。只要不超过5%就不会对脱硫造成不利影响。

冶炼超低硫钢的工艺条件:

(1)控制炉渣成分,提高炉渣碱度;

(2)强化对炉渣和钢水的脱氧;

(3)较高的精炼温度和良好的底吹氩搅拌工艺也是重要脱硫工艺条件;

(4)对炉渣和钢水的原始硫含量进行限制,同时也保证相应的渣量,必要时可进行换渣操作。

高效精炼:

(1)初炼炉适当提高出钢温度、加强钢包烘烤、周转和保温;

(2)出钢时加炉渣改质剂、预熔渣和底吹使精炼过程前移;

(3)优化供电、造好埋弧渣,提高升温速度;

(4)提高自动化水平,缩短取样分析时间,提高成分与温度的控制命中率;

(5)1座初炼炉配2座LF;或2座初炼炉配3座LF。

LF炉快速成渣和高效精炼:LF炉存在的主要缺点是精炼时间长,特别在BOF-LF-CC流程中,LF 炉已成为实现多炉连浇的瓶颈。

原因:LF炉存在的主要缺点是精炼时间长,特别在BOF-LF-CC流程中,LF 炉已成为实现多炉连浇的瓶颈。

措施:出钢时炉渣改质或同时随钢流加入精炼渣,实现LF炉造渣和脱氧前移;采用低熔点的预熔渣实现快速造渣;高的钢包温度、良好的保温和大功率供电。

白渣:是用C粉和Si粉还原的炉渣,冷却后呈白色,过一会儿会粉化。

电石渣:过量的C粉(或加CaC2),在渣中有大量存在,冷却后呈灰色。

白渣与电石渣的比较:①电石渣的脱氧、脱S能力强(在S、O高时,采用)②电石渣增C。增Si ③电石渣和钢液性湿润性较好,钢水,中易产生夹杂,所以,不能电石渣出钢。

如何破电石渣:①加渣料②炉盖留一条线。

AOD炉:主要是冶炼高质量的不锈钢(C<20ppm,S,P<50ppm);使用更廉价的原料(采用高碳铬代低碳铬)。

工艺特点:AOD可与电弧炉双联,也可与转炉双联,也可与感应炉双联。其中以与电弧炉双联为主;电弧炉熔化-熔清碳范围较宽,为1.0-3.0%C,可使用廉价的高碳铬铁;出钢温度≥ 1550℃。

VD/VOD炉:VD的功能仅是真空加搅拌;VD主要应用于轴承钢脱氧;VOD主要用于不锈钢冶炼。

VD工艺特点:UHP+LF+VD(或RH)+CC。

LF出钢后,扒渣(倒渣)2/3,渣层厚度应保持40-70mm,扒渣时间<3min。扒渣完毕LF钢包入VD处理工位,接通氩气,调节流量50-80NL/min,同时测温、取样,加入硅石2 kg/mm,调整炉渣碱度R=1 .2-1 .5。测温、取样后VD加盖密封,抽真空。真空泵启动期间,调整氩气流量保持30 -40NL/min。真空启动后,工作压力达到67 Pa时,保持时间≥15min(真空保持时间)。真空保持期间调整氩气流量70NL/min左右,并通过观察孔观察钢水沸腾情况,及时调整,保持均匀沸腾。终脱氧后解除真空、开盖、测温,软吹15-25min,氩气流量70-100NL/min左右,控制渣面微动为宜。软吹结束后,测温、取样,加保温剂出钢,出钢温度1530-1540℃。(轴承钢)

VOD工艺特点:VOD可与电弧炉双联,也可与转炉双联;为了更多地使用廉价的高碳铬铁,配碳可提高至1.5%C,熔清后吹氧脱碳至0.3-0.4% C,然后在电弧炉内加含Si合金预还原;VOD是将钢包放入真空罐内从顶部的氧枪向钢包内吹氧脱碳,同时从钢包底部向上吹氩搅拌(真空以降低C-O反应产物CO的浓度和分压,促使反应继续进行。因此,真空度越高,反应越深度,碳含量可降得越低。)。

初炼炉将碳控制在0.2-0.5%,P<0.03%以下;钢液温度为1630℃;初炼炉除渣后,将VOD钢包吊入真空室,接底吹氩,开始抽真空,此时温度

1550-1580℃;当真空度达到13-20kpa时,开始吹氧脱碳;碳含量降低的同时,提高真空度,保铬不氧化;当碳合格时,停止吹氧,加大真空到100Pa以下,并加大搅拌,进一步脱碳,钢液温度达到1670-1750℃;加合金、微调成分、加铝吹氩搅拌几分钟后,破真空浇铸。(超低碳不锈钢)

RH工艺特点:反应速度快,表观脱碳速度常数kC可达到3.5min-1。处理周期短,生产效率高,常与转炉配套使用;反应效率高,钢水直接在真空室内进行反应,可生产H≤0.5×10-6,N≤25×10-6,C≤10×10-6的超纯净钢;可进行吹氧脱碳和二次燃烧进行热补偿,减少处理温降;可进行喷粉脱硫,生产[S]≤5×10-6的超低硫钢。

CAS工艺特点:钢液升温和精确控制钢水温度;促进夹杂物上浮,提高钢水纯净度,可控制酸溶铝 0.005%,钢水T[O]降低20%-40%;精确控制钢液成分,实现窄成分控制,可提高合金收得率20%-50%;均匀钢水成分和温度;与喂线配合,可进行夹杂物的变性处理;冶炼节奏快,适合转炉的冶炼节奏。

CAS-OB工艺特点:CAS-OB在原CAS站增设吹氩提稳功能,增设的氧枪安装在隔离罩的中心,采用顶吹自消耗型氧枪,铝及其它合金由加料口直接投到钢水面;放热剂主要是铝,提温时采用连续供铝方式;升温速度快,热效率高;6-12℃/min,升幅可达100℃,终点温度波动≤±5℃;设备投资少,操作成本低和控制过程简便、快速、准确;OB后续的CAS处理,保证了吹氧后大量细小Al2O3夹杂的上浮和快速去除,保证了钢水质量不受吹氩的影响;当温度较高时可不作OB处理。

CAS-OB冶炼效果:加热,升温速度5-6℃/min;钢液成分,吹氧前后变化不大;钢水洁净度,[O]基本不变,可降低[N]含量。

3、喂线、吹氩、喷粉工艺的特点、功能及冶金效果?

答:喂线:进行夹杂物变性处理。

吹氩:搅拌效果。

喷粉:效果最好、投资及使用成本最低,也是最不好掌握的技术。可脱硫、脱磷、合金化、进行夹杂物变性。

4、不锈钢、轴承钢、IF钢、管线钢、电工钢?

答:不锈钢:不锈钢是一系列在空气、水、盐的水溶液、酸以及其他腐蚀介质中具有高度化学稳定性的钢种。它是不锈钢和耐酸钢的总称。不锈钢系指耐大气、蒸汽和水等弱介质腐蚀的钢;耐酸钢则指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢不一定耐酸,而耐酸钢一般均具有不锈性。

轴承钢:评价轴承钢质量好坏的指标有两个,一是夹杂物,二是碳化物。一般来说,作内轴承材料使用时,要求钢的质量比较高,特别是对非金属夹杂物和碳化物的均匀性要求高。

电炉冶炼轴承钢,一是控制钢水原始氧含量;二是建立合理的脱氧制度;三是选择合适的精炼渣系;四是控制适当的残铝含量。

加强脱氧和去除夹杂的措施:降低渣中(FeO+MnO)含量;采用降低脱氧产物活度的造渣制度;加入更强的脱氧剂;采用复合脱氧法;增大比搅拌功率或延长精炼时间;使用比较稳定的钢包衬材料。

IF钢:要求钢中C+N<50×10-6,进而C+N<20×10-6;为了保证良好的表面质量,要求钢中T.O含量<30×10-6;为了提高深冲性能,要求严格控制钢中微合金化元素Ti、Nb、B 的含量。

采用强脱碳技术,以提高RH的脱碳速度和降低处理终点碳含量;进一步降

低含碳量可在RH吹氧脱碳期吹入H2,增加钢液中的氢含量;为提高IF钢的表面质量,要求在转炉出钢过程中对炉渣进行改质处理,降低炉渣的氧化性。

管线钢:采用转炉铁水“三脱”预处理工艺;采用少渣吹炼技术;采用多功能RH精炼技术。新流程在保证同样钢水洁净度的条件下,精炼周期缩短50%,生产能力大幅度提高,生产成本降低60%。

电工钢:在RH操作后期采用喷粉工艺可实现同时脱硫、脱氮。

5、铁水预处理?

答:内容:分为普通铁水预处理和特殊铁水预处理两大类。普通铁水预处理包括铁水脱硫、铁水脱硅和铁水脱P。特殊铁水预处理一般是针对铁水中含有的特殊元素进行提纯精炼或资源综合利用,如铁水提钒、提铌、脱铬等预处理工艺。

意义:创造最佳的冶金反应环境;优化钢铁冶金工艺。

优越性:满足用户对超低硫、磷钢的需求,发展高附加值钢种;减轻高炉脱硫负担,放宽对硫的限制,提高产量,降低焦比;炼钢采用低硫铁水冶炼,可获得巨大的经济效益。

脱硫工艺:混铁车喷吹法;铁水罐法;铁水包法。发展趋势为采用铁水包作为铁水脱硫预处理的容器。

脱硫方法:投掷法,将脱硫剂投入铁水中脱硫;喷吹法,将脱硫剂喷入铁水中脱硫;搅拌法(KR法),通过中空机械搅拌器向铁水内加入脱硫剂,搅拌脱硫。

四大系列以及复合脱硫剂:苏打系、电石系、石灰系、Mg系。

元素的脱硫能力,由高到低依次为:CaC2、NaO2、Mg、BaO、CaO、MnO、MgO

工业中常用的脱硫剂有:CaO系、CaO+CaC2系、CaC2、CaO+Mg系、

Mg等。

铁水脱Si的重要意义:是铁水脱磷的必要条件;利于减少石灰加入量和渣量;可在低碱度下实现脱Si,成本低。

铁水预处理脱磷:喷吹法。在喷枪附近,氧位较高(Po2=10 12~10 11kPa),进行着氧化脱磷反应;在铁水罐壁和顶渣与铁水界面处,氧位较低(Po2 10 13kPa),进行着还原脱硫反应。因此,喷吹预处理工艺是在实行了熔池的氧位再分布后,才达到同时脱除磷、硫的,即是“同时不同位”。脱磷同时脱硫的化学原理为电化学反应,即阳极[P] + 4(O2-) == (PO43-) + 5e,阴极[S] + 2e == (S2-)。

脱磷前的铁水预脱硅:脱磷过程中硅比磷优先氧化。这样形成的SiO2势必会大大降低脱磷渣的碱度。因此,为了减少脱磷剂用量、提高脱磷效率,脱磷前必须优先将铁水[Si]氧化脱除至0.10%~0.15%。

脱磷工艺:铁水预处理脱磷,反应温度低,热力学条件好,易于脱磷;铁水中C、Si含量高提高了铁水中磷的活度,有利于脱磷;由于铁水预处理脱磷具备良好的化学热力学条件,渣钢间磷的分配系数是炼钢脱磷的5~10倍,因而渣量小,可以控制较低的渣中FeO含量,脱磷成本低;和炼钢相比,不会因脱磷造成钢水过氧化,影响钢质量。

两类脱磷剂:

6、铁水预处理对纯净钢生产的意义:

答:

第七部分凝固理论

1、对凝固的要求是:有良好的凝固结构;合金元素分布均匀;能去除钢中气体和非金属夹杂物;凝固产品表面和内部质量良好;钢水收得率高。

2、偏析:钢在凝固过程中会产生溶质元素的再分布,偏析就是溶质再分布的必然结果。由于溶质元素在液相和固相中溶解度的差异以及凝固过程中选分结晶现象的存在,在凝固结构中会产生溶质元素分布的不均匀性,这被称为偏析。一般把偏析分为显微偏析和宏观偏析两类。偏析会使连铸坯局部的机械性能降低,特别是会引起韧性、塑性和抗腐蚀性能的下降。

3、影响显微偏析的因素:

①冷却速率(凝固时间):缩短凝固时间或加快冷却速率,不给溶质以足够的时间析出,树枝晶间距就会变小,这有利于减轻铸坯的树枝偏析;

②溶质元素的偏析倾向:一种元素的偏析倾向可用该元素在固相和液相中的浓度

比值K来确定。K值越小,则先后结晶出的固相成分差别越大,偏析也就越大;

③溶质元素在固相中的扩散速率。

4、宏观偏析的控制:控制凝固结构;控制冷却速率;调整合金元素;外加添加剂;应用电磁搅拌;防止鼓肚;应用轻压下技术;改进操作工艺;加强对设备的维护。

第八部分连续铸钢

1、优越性:简化了生产工序;增加了金属收得率;减少了能源消耗;改善了劳动条件,易于实现自动化;提高了铸坯质量。

2、连铸工艺原理:连铸运动过程是将钢水转变为固态钢的过程,这一转变伴随着固态钢成型、固态相变、液-固态相变、铜板与铸坯表面的换热以及冷却水与铸坯表面间复杂换热的过程,钢水要经历钢水包,中间包,结晶器,二次冷却,空冷区,切割,铸坯的工序。

3、连铸机的主要设备:钢水包;钢包回转台;中间包及其运载设备;连铸结晶器;二次冷却装置;拉坯矫直装置;引锭装置;铸坯的切割设备。

4、中间包作用:稳定钢流;减少钢液对结晶器内凝固坯壳的冲刷;使钢水在中间包内有合理的流动状态;适当增加中间包内钢水的停留时间会有利于钢水中夹杂物的上浮;分流作用;在钢水换包时起到衔接作用。

5、连铸坯的质量要求:连铸坯的几何形状、表面质量、内部质量和钢的纯净度。

6、连铸坯的缺陷分类:

①内部缺陷:内部裂纹(中间裂纹,对角线裂纹,矫直弯曲裂纹,中心裂纹,角部裂纹);中心偏析,中心疏松,宏观非金属夹杂物。

②表面缺陷:震动痕迹;表面裂纹(表面纵裂纹,角部纵裂纹,表面横裂纹,角部横裂纹);表面夹渣(皮下夹渣);表面气泡(皮下气泡);表面增碳和偏析;凹坑和重皮。

③形状缺陷:菱形变形;铸坯鼓肚。

7、影响连铸坯纯净度的若干因素:机型对铸坯中夹杂物的影响;连珠操作对铸坯中夹杂物的影响;耐火材料质量对铸坯中夹杂物的影响。

8、提高连铸坯纯净度的途径:钢液的净化处理;防止连铸过程中的二次氧化;利用中间包冶金去除钢中夹杂物;在结晶器中采取促使夹杂物上浮的措施。

9、连铸保护渣的冶金功能:结晶器内钢水上表面与空气隔绝,隔热保温,防止钢液过氧化;吸收钢液表面的非金属夹杂物;改善钢锭与模壁间的传热条件,减少钢锭凝固时过热产生的内应力,有利于减少钢锭裂纹;润滑。

冶金工程专业炼钢考试题

试题 一、填空题 1、钢是指以铁为主要元素,含碳量一般在2% 以下,并含有其它元素的可变形的铁碳合金。 2、为了去除钢液中的磷、硫,需向炉内加入石灰,造高碱度炉渣,往往使炉渣变粘稠,加入萤石就可以稀释炉渣,但不降低炉渣碱度。 3.电炉耐材喷补的原则是快补,热补薄补)。 4、炼钢造渣的目的:去除磷硫、减少喷溅、保护炉衬、减少终点氧。 5、真空脱气过程的限制性环节是:气体在钢液中的扩散。 6、渣洗的最大缺点是:效果不稳定。 7、炼钢工艺分为:熔化期,氧化期和还原期。 8、夹杂物变性处理中,使用Ca 处理Al2O3夹杂物 9、LF炉吹氩制度中,钢包到位后,采用中等吹氩量均匀钢液成分和温度,化渣和加合金采用:大吹氩量,通电加热时采用小吹氩量。 10、炉外精炼中,气液界的主要来源包括:吹氩、CO 汽泡、吹氧和熔体表面。 11、向镇静钢中加Al是为了保证完全脱氧和细化晶粒。 12、为了向连铸提供合格钢水,炼钢要严格控制钢水成份,特别是钢中硫、磷和气体及非金属夹杂物一定要尽可能控制到最底水平,以提高钢水的清洁度。 13、工业用钢按化学成分可分为碳素钢和合金钢二大类。; 14、钢中产生白点缺陷的内在原因是钢中含氢。 15、Mn/Si比大于 3.0时,钢水的脱氧生成物为液态的硅酸锰,可改善钢水流动性,保证连铸进行。

16、氧化期的主要任务是去磷、脱碳去气去夹杂、升温,同时为放钢做好准备。 17、影响炉料熔化的因素有钢液温度、造渣制度、布料情况、钢中溶解等。 18、CaO% 和SiO2% 之比称为炉渣的碱度。 19、电弧炉冶炼的主要方法有氧化法、不氧化法和返回吹氧法。 20、废钢中不得混有密闭容器、易燃物和毒品,以保证生产安全。 21、金属材料的化学性能是指金属材料抵抗周围介质侵蚀的能力,包括耐腐蚀性和热稳定性等。 22、炉底自下而上由:绝热层、保护层、工作层、三部分组成。 23、炉壁结构由里向外:绝热层、保温层、工作层三部分组成。 24、泡沫渣的控制,良好的泡沫渣是通过控制CO气体的发生量,渣中FeO含量和炉渣碱度来实现的。 25、影响炉衬寿命的主要因数有高温作用的影响、化学侵蚀的影响,弧光辐射或反射的影响、机械碰撞与震动、操作水平的影响。 26、常用脱氧方法沉淀脱氧、扩散脱氧、真空脱氧。 27、炼钢的基本任务可归纳为“四脱”、“二去”、“二调整”,其中“四脱”指脱C、O、S、P,“二去”指去气、去夹杂,二调整指调成份、调温度。 28、电弧炉炉衬指电弧熔炼室的内衬,包括炉底、炉壁、炉盖三部分。 29、炉料熔化时的物理反应:元素的挥发、元素的氧化、钢液的吸收。 30、电炉冶炼中,氧化前期的主要任务是去磷,温度应稍低些;氧化后期主要任务是脱碳,温度应偏高些。 二、判断题 1、配料中将生铁放在料篮中间层次且分布均匀,这句话对吗?(√)2.抽引比是单位体积流量的气体,可以提升钢液的体积。(√)

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

钢铁冶金学试卷题-炉外处理部分

一填空题(每空1分,共20分) 目前铁水预处理“三脱”包括:(1),(2),(3)。2015A 目前铁水预处理生产中用量最大、使用最广泛的脱硫剂是(4)。2015A 脱硅渣起泡的原因有两方面:一是(1);二是(2)。2015B 常用铁水脱磷剂的组成为:(8)。 常用脱磷剂体系有(3)和(4)系。2015B 铁水脱硫有______、______、______系脱硫剂。 采用石灰(CaO)进行铁水预处理脱磷,可选择______、______、______作助熔剂。 炉外精炼采用的基本手段包括渣洗、(5)、(6)、(7)、(8)等五种。2015A 表征渣洗用合成渣性能指标包括(4)、(5)、(6)、(7)等。2015B VD的英文全称是,VOD的英文全称是。 LF的英文全称是,LFV的英文全称是。 吹氩搅拌效果有______、______、______。 转炉终点碳含量越______、钢水氧化性越______、下渣量越______,则出钢过程中的渣洗脱硫效果越差。 二名词解释(每题2分,共20分) 铁水预处理2015A KR搅拌法2015A 铁水脱硫喷吹法铁水预处理脱硅 专用转炉脱磷2015B铁水深度预处理 炉外精炼2015A 渣洗脱碳保铬2015B VOD2015B AOD炉喷射冶金搅拌 真空循环脱气法(RH)钢包炉精炼法(LF) CAS-OB 二次燃烧洁净钢同化 三单项选择题(每题2分,共20分) (1-1)铁水喷吹纯镁脱硫时,镁脱硫的主要反应是:(1)镁蒸气与铁水中的硫反应(2)铁水中的溶解镁与硫反应。2015A (1-2)铁水喷吹脱硫能力最高的脱硫剂是:(1)单独喷吹纯镁(2)Mg/CaO复合喷吹(3)单独喷吹CaO。2015B (1-3)铁水罐中加入固体氧化剂脱硅,会使铁水温度。A、升高B、降低C、不变(1-4)铁水罐中加入吹氧气脱硅,会使铁水温度。A、升高B、降低C、不变 (2-1)同时具有加热、真空功能的炉外精炼装置是:(1)CAS-OB (2)RH-OB (3)VD。2015A (2-2)钢包精炼喂CaSi线的主要冶金目的是:(1)脱氧(2)夹杂物变性(3)成分微调2015A (2-3)对钢的成分和洁净度影响最小的钢水精炼加热方法:(1)CAS化学热法(2)电弧加热法(3)RH-OB法。2015B (2-4)LF炉脱硫最佳的热力学条件是:(1)顶渣碱度越高、顶渣氧化性越低,底吹氩越小,效果越好(2)炉渣氧化性越低,底吹氩越大,效果越好(3)顶渣碱度高、顶渣氧化性越低及合适的搅拌功率,效果越好。2015B (2-5)法不适合加热钢包中的钢水。A、电弧加热B、化学热法C、燃料燃烧(2-6)采用钢水脱硫效果最好。A、RH-PB B、LF C、RH-PTB (2-7)不具有真空功能的炉外精炼装置是。A、AOD B、RH C、DH。 (2-8)采用钢水的升温速度最快。A、CAS B、CAS-OB C、LF。 铁水预脱硅后最佳硅含量确定的主要因素是:(1)转炉少渣冶炼(2)优化铁水预脱磷(3)

精益制造理论知识

精益制造理论知识 1. 精益制造的发展历史 1.1. 早期发展阶段 精益制造的早期发展,可以追溯到18世纪。这一阶段的重要人物是惠特尼(Eli Whitney),他是互换技术的创始人。当时惠特尼因发明了轧棉机而功成名就,但现在来看,这和他提出的互换技术概念相比,是极其次要的。惠特尼在1799年第一次提出互换技术,当时他和美国军方签订了一项供货合同,生产毛瑟枪10,000枝,每枝单价在当时低得不可思义,仅为13.4美金。在其他供应商望而却步的时候,他成功了,靠的是他在制造技术上的革新-互换技术,这为惠特尼大大降低了制造成本。 在随后得100年中,制造商关注的重心始终是一些单项的制造技术。在这一阶段中,工程制图、现代化的机器开始逐步推广开来,具有标志性的技术是以英国工程师贝西墨(Bessemer)命名的贝西墨酸性转炉炼钢技术。而对于生产过程中,工件从一个离散流程流转到下一个离散流程等一些物流的问题,多个生产流程在工厂中如何合理安排的问题,每个员工工作量的问题,在那时并没有什么人关心。直到1890年,弗雷德里克﹒泰勒(Frederick W. Taylor,1856-1915,美国)的出现才改变了这种状况。 泰勒是第一个关注员工个人工作状态和方法的人,这体现在他首先提出的时间研究和标准化作业。基于30多年的生产现场劳动和管理经验,指出工人和管理者都凭经验来工作是很不科学的,应该对工

人的工作进行研究,将高效率的、先进的工作方法变成标准,并通过培训使工人能够按照标准工作方式去劳动。而管理者的责任就是专门进行工作研究,通过制定工作条例、标准、定额和计划等使科学的工作方式文字化、制度化。吉尔布雷斯夫妇(Frank Gilbreth,1868-1924, Lilian Gilbreth,1878-1972,美国)在许多行业进行了广泛细致的动作研究,提出了各种工作作业的标准方法。泰勒科学管理思想和方法的推广应用,带来了企业高效率、低成本、高工资、高利润的新局面,使物质生产在上世纪末本世纪初获得了很大的发展,并使美国的经济实力超过英国。现代科学技术和生产力的发展还没有对泰勒的科学管理方法提出挑战。在当时,泰勒是一个有争议的人物,他的观点引起了各方面不同的反应,尤其是工会,认为他在帮助资本家榨取工人的血汗。从今天的角度来看,泰勒的成就是伟大的,开创了制造业科学管理的先河。当然他的理论中缺少了对人的行为科学方面的考虑。 1.2. 阶段2: 大批量流水线生产阶段 美国企业家亨利﹒福特(Henry Ford, 1863-1947)等人将泰勒的单工序工作研究方法推广应用到多工序工作研究,提出使整个产品(汽车)的生产工序标准化、连续化的设想,并通过作业专门化、零部件规格化、工器具专用化、工厂专业化,于1913建成了世界上第一条流水生产线。流水生产方法大大提高了生产的专业化水平,使产品能够以非常低的成本大批量生产出来。流水生产技术目前仍然是制造业生产的基础,是向我们提供丰富的日常用品的技术保证。但是,

液态金属成型原理作业

液态金属成型原理 一、简述普通金属材料特点及熔配工艺 1 普通金属材料的特点 1.1铸铁材料 铸铁是含碳量大于2.11%或者组织中具有共晶组织的铁碳合金,其成分范围为:2.4%~ 4.0%C,0.6%~3.0%Si,0.2%~1.2%Mn,0.1%~1.2%P,0.08%~0.15%S。依据碳在铸铁中的形态可将铸铁分为白口铸铁、灰口铸铁及麻口铸铁,其中灰口铸铁依据石墨形态的不同分为普通灰铸铁、蠕虫状石墨铸铁、球墨铸铁和可锻铸铁。 (1)白口铸铁 白口铸铁中的碳少量溶于铁素体,大部分以碳化物的形式存在于铸铁中,断口呈银白色。白口铸铁硬而脆,很难加工。我们可以利用它的硬度高和抗磨性好的特点制造一些高耐磨的零件和工具。 (2)灰铸铁 碳主要结晶成片状石墨存在于铸铁中,断口为暗灰色。灰口铸铁不能承受加工变形,但是却具有特别优良的铸造性能,同时切削加工性能也很好,低熔点、良好的流动性和填充性以及小的凝固收缩。 (3)麻口铸铁 麻口铸铁具有灰口和白口的混合组织,断口呈灰白交错。麻口铸铁不利于机械加工,也无特殊优异的使用性能。 (4)可锻铸铁 可锻铸铁是由白口铸铁经过石墨化退火后制成的。具有较高的强度、塑性和韧性,与球墨铸铁相比具有质量稳定、处理铁水简便以及易于组织流水线生产等优点,适用于形状复杂薄壁小件的大批量生产。 (5)球墨铸铁 球墨铸铁中的碳主要以球状石墨形态存在于铸铁中。球墨铸铁具有比灰口铸铁高得多的强度、塑性和韧性,同时仍保持着灰口铸铁所具有的耐磨、消震、易切削加工、容易铸造等一系列优异性能。 1.2 铸钢材料 铸钢具有良好的综合机械性能和物理化学性能,比铸铁具有更高的强度、塑性和良好的焊接性。按化学成分可以分为碳素钢和合金钢,其中碳素钢又分为低碳钢、中碳钢和高碳钢。(1)低碳钢 低碳钢的含碳量小于0.20%,它的塑性和韧性较高,但是强度较低,通常要经过渗碳后进行淬火、回火处理来提高强度和耐磨性。低碳钢的铸造性能差,熔点高,钢液流动性差,

炼钢厂设计原理复习提纲

1. 工艺设计的主要任务是确定主体工艺流程选定工艺设备和解决工艺布置问题 2. 关于转炉炉型设计炉容比 炉型:筒球型 锥球型 截锥型 炉容比系指转炉有效容积Vt 与公称容量G 之比值 Vt/G(m 3/t) 主要与供氧强度有关,与炉容量关系不大,一般在0.9~1.05之间。另外,炉容比也与原材料有关,当使用的铁水Si 含量或P 含量较高时,形成的炉渣量较多,易于喷溅,为此炉容比也需要相应增大。 3. 顶底复吹和顶吹转炉炉型设计的特点 ● 吹炼的平稳和喷溅程度优于顶吹转炉,而不及底吹转炉,故炉子的高宽比略小于顶吹转 炉,却大于底吹转炉,即略呈矮胖型。 ● 炉底一般为平底,以便设置喷口,所以熔池常为截锥型。 ● 熔池深度主要取决于底部喷口直径和供气压力,同时兼顾顶吹氧流的穿透深度,力求保 持吹炼平稳。 筒球型,熔池由球缺体和圆柱体两部分组成。形状简单,砌砖方便,炉壳容易制造。 锥球型,熔池由球缺体和倒截锥体两部分组成。锥球型熔池较深,有利于保护炉底。 截锥型,熔池为一个倒截锥体。炉型构造较为简单,平的熔池底较球形底容易砌砖。 4. 底吹功能、底吹构件类型 功能:强化冶炼:特点是顶枪吹氧,底部也吹氧。 增加废钢:顶枪上设有上下孔,上孔专为CO 完全燃烧成CO 2提供氧气,下孔专为氧化 金属中的杂质供氧。 加强搅拌型:顶枪吹氧,底部吹惰性气体和中性气体N 2等。 透气砖 喷嘴:单管式、套管式和实心环缝三种 5. 转炉炉衬组成,炉衬材料 炉衬由永久层、填充层、工作层组成。 选择炉衬材料应遵循的原则:耐火度高;高温下机械强度高,耐急冷急热性能好;化学 性能稳定;资源广泛,价格便宜。 材料:镁碳砖 6. 氧枪设计主要参数确定 (1)供氧流量计算。通过物料平衡计算能精确求得吨钢耗氧量 (2)理论氧压。理论设计氧压(绝对压力)是喷头进口处的氧压,是设计喷头喉口和出口 直径的重要参数。 (3)喷头出口马赫数。马赫数的大小决定喷头氧气出口速度,即决定氧射流对熔池的 冲 击能力。 (4)喷孔夹角和喷孔间距。 7. 电弧炉炉型设计特点、变压器容量、功率水平 1) 能满足冶炼工艺的要求 2)有利于提高炉衬的寿命 3)有利于热能的充分利用 变压器容量的计算:由熔化时间计算 P=qG/(t m cos ?ηN ) 2)根据熔池表面积的功率密度计算。 组合式透气砖 高压成型透气砖 定向透气砖

《钢冶金学》复习题

《钢冶金学》 第1章绪论 1 从化学成分和机械性能方面分析钢与生铁的区别?(※) 2 列举炼钢任务和炼钢的基本任务,并阐述在现代炼钢工艺中如何完成炼钢的基本任务。(※)3何谓钢铁生产的“长流程”和“短流程”?哪种流程的能耗高、排放量大?为什么?(※)4 按照化学成分和用途如何对钢进行分类?以下钢号分别为什么钢种,每个钢号的数字和字母代表什么意思?65Mn、60Si2Mn、50CrMnA、40Cr、GCr15SiMn、X70、1Cr18Ni9Ti、20CrMnTiH、Q345。 5 主要的炼钢方法有哪些?LD、BOF、BOP、OBM、Q-BOP、K-BOP、LD-Q-BOP、LD-KG、EAF各指哪种炼钢方法?(※) 第2章炼钢的基础理论 1 写出钢的密度、熔点、粘度、导热能力等常用数值(1600℃)及炉渣的粘度、密度和渣—钢界面张力的常用数值。 2 钢的熔点是如何定义的?何谓“液相线”,何谓“固相线”?为什么钢液凝固,是在一个温度区间内完成? 3 炼钢炉渣的来源有哪些?为什么说“炼钢就是炼渣”? 4 炉渣的“氧化性”是什么意思?为什么用“碱度”和“氧化性”这两个指标来表征炉渣的化学性质?炉渣氧化性在炼钢过程中的作用?(※) 5 熟悉炉渣中常见氧化物的熔点。 6 某一炉脱氧良好的低碳钢钢水,其钢水中的酸溶铝为0.018%,请问钢水中的溶解氧最低不低于多少ppm? 7 简述单渣法和双渣法的区别及适用条件? 8 炼钢过程中硅[Si]反应的特点?铁水硅含量 [Si]对炼钢过程有何影响?(※) 9 试绘制并解析一炉钢吹炼过程中,钢液中[Mn]的变化规律?提高残锰有何意义?写出吹炼过程中熔池回[Mn]的反应式,分析影响回[Mn]的因素。为什么吹炼终点残[Mn]的高低,一定程度反映吹炼水平的高低?(※) 10 如何理解“炼钢过程的[C]+[O]=CO是目的,更是手段,又是氧化精炼的主要手段。”?(※)

炼钢设计原理课试题库

炼钢设计原理课试题库 (本科试用) 河北理工大学冶金工程教研室 一、填空题(每空1分); 1.公称容量小于30吨的转炉采用炉型; 2.已建成转炉的炉容比V/T波动在~范围内; 3.如果高宽比H/D小于就得不到防止炉渣喷溅的起码高度; 4.设计部门推荐炉口直径比d0/D在~范围内选择; 5.帽锥角θ的推荐值为~度; 6.目前,转炉炉衬工作层多使用砖; 7.氧枪喷头一般用加工而成,目前多采用型; 8.喷头出口马赫数M一般应选定在左右; 9.炉膛压力P周应为+; 10.合适的喷孔夹角α应为~之间,喷孔间距A应为~d出; 11.三孔喷头的喷管流量系数C d=~; 12.氧枪冷却水的进水速度V j为~m/s,回水速度Vp为~m/s; 13.选择枪身各层套管壁厚的总原则是最厚,次之,最薄; 14.氧气在中心氧管内的流速应为~m/S; 15.氧气在中心氧管壁厚一般为~mm; 16.氧枪在炉内不被烧坏的条件是≤; 17.工业三废排放标准规定,≥12吨转炉排放烟气的含尘浓度≤g/Nm3烟气; 18.一般未燃法除尘控制空气过剩系数为; 19.转炉的最大炉气量出现在; 20.湿法烟气净化分三步进行,即、和; 21.一文热平衡计算的目的是为了确定,二文热平衡计算的目的是为了确定; 22.溢流文氏管的除尘效率为左右,可调喉口文氏管的除尘效率为; 23.选择除尘系统风机时要满足系统和的要求; 24.当选定电炉炉坡倾角为45度时,一般D/H为较合适; 25.电极心圆直径d三极心D; 26.连铸机的冶金长度应液芯长度; 27.连铸机的冷却区总长度必须铸坯的液芯长度; 28.混铁炉的作用是并铁水成分和温度; 29.混铁车的作用是并铁水; 30.炉子跨的高度决定于天车轨面标高; 31.当采用混铁车向转炉供应铁水时,加料跨标高决定于; 32.一般小方坯连铸机的中心距以为宜; 33.中间罐的修砌面积为m3/万吨钢; 34.转炉最大炉气量出现在炉役期的一炉钢冶炼期;

(完整版)北京科技大学+钢铁冶金学(炼铁部分)知识点复习

炼铁知识点复习 第一章概论 1、试述3 种钢铁生产工艺的特点。 答:钢铁冶金的任务:把铁矿石炼成合格的钢。工艺流程:①还原熔化过程(炼铁):铁矿石→去脉石、杂质和氧→铁;②氧化精炼过程(炼钢):铁 →精炼(脱C、Si、P 等)→钢。 高炉炼铁工艺流程:对原料要求高,面临能源和环保等挑战,但产量高, 目前来说仍占有优势,在钢铁联合企业中发挥这重大作用。 直接还原和熔融还原炼铁工艺流程:适应性大,但生产规模小、产量低,而且 很 多技术问题还有待解决和完善。 2、简述高炉冶炼过程的特点及三大主要过程。 答:特点:①在逆流(炉料下降及煤气上升)过程中,完成复杂的物理化学反应;②在投入(装料)及产出(铁、渣、煤气)之外,无法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持高炉顺行(保证煤气流合理分布及炉料均匀下降)是冶炼过程的关键。 三大过程:①还原过程:实现矿石中金属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的金属与脉石的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁水。 3、画出高炉本体图,并在其图上标明四大系统。 答:煤气系统、上料系统、渣铁系统、送风系统。 4、归纳高炉炼铁对铁矿石的质量要求。 答:①高的含铁品位。矿石品位基本上决定了矿石的价格,即冶炼的经济性。 ②矿石中脉石的成分和分布合适。脉石中SiO2 和Al2O3 要少,CaO 多,MgO 含量合适。③有害元素的含量要少。S、P、As、Cu 对钢铁产品性能有害, K、Na、Zn、Pb、F 对炉衬和高炉顺行有害。④有益元素要适当。 Mn、Cr、Ni、V、Ti 等和稀土元素对提高钢产品性能有利。上述元素多时,高炉冶炼会出现一定的问题,要考虑冶炼的特殊性。⑤矿石的还原性要好。矿石在炉内被煤气还原的难易程度称为还原性。褐铁矿大于赤铁矿大于磁铁矿,人 造富矿大于天然铁矿,疏松结构、微气孔多的矿石还原性好。⑥冶金性能优良。冷态、热态强度好,软化熔融温度高、区间窄。⑦粒度分布合适。太大,对还原不利;太小,对顺行不利。 5、试述焦炭在高炉炼铁中的三大作用及其质量要求。 答:焦炭在高炉内的作用:(1)热源:在风口前燃烧,提供冶炼所需的热量;(2)还原剂:固体碳及其氧化产物CO 是氧化物的还原剂;(3)骨架作用: 焦炭作为软融带以下唯一的以固态存在的物料,是支撑高达数十米料柱的骨架,同时又是煤气得以自下而上畅通流动的透气通路;(4)铁水渗碳。 质量的要求:粒度适中、足够的强度、灰分少、硫含量少、挥发成分含量 合适、反应性弱(C+CO2=2CO)、固定C 高等。 6、试述高炉喷吹用煤粉的质量要求。 答:1、灰分含量低、固定碳量高;2、含硫量少;3、可磨性好;4、粒度细;5、爆炸性弱,以确保在制备及输送过程中的人身及设备安全;6、燃烧性和反 应性好。

钢铁冶金原理试题1答案

科技大学2008 /2009学年第1学期 《钢铁冶金原理》考试试题A 课程号:61102304 考试方式:闭卷 使用专业、年级:冶金2006 任课教师: 考试时间:2009 备 注: 一、 简答题(共5题,每题4分,共20分) 1. 请给出活度的定义及冶金中常用的三种标准态。 2. 什么是酸性氧化物、碱性氧化物和两性氧化物?如何表示炉渣的 碱度? 3. 何为化合物的分解压、开始分解温度及沸腾分解温度? 4. 何为溶液中组分的标准溶解吉布斯自山能?写出形成质量理标 准溶 液的标准溶解吉布斯自山能汁算式。 5. 何为氧化物的氧势?氧化物的氧势与其稳定性关系如何? 二、 填空题(共20空,每空1分,共20分) 1. 在恒温、恒压下,溶液的热力学性质 对某一组元摩尔 量的 偏微分值称为溶液中该组元的偏摩尔量。 2. 在任意温度下,各 组元在 全部 浓度围均服从 拉乌尔 定律的溶液称为理想溶液。 3. 按照熔渣离子 结构理论,熔渣由简单的 阳 离子、 阴 离子和复合 阴 离子团所组 成。 4. 熔渣的氧化性表示熔渣向 金属液(或钢液) 提供 氧 的能力,用熔渣中 FeO 的活度表示。 5. 在一定温度下,把熔渣具有 ________ 粘度的组成点 连成线,称为熔渣的等粘度曲线。 6. 若化学反应的速率与反应物浓度的若干次方成 正比 , 垃載対酣 nnnnnnnnnnnn 豊躱 ..... ........... ...........................................

且反应级数与反应物的计量系数相等,这样

的反应称为基元反应。 7. 气体分子在 分子(或得华)引力 的作用下被吸附到固体或 液体的表面上称为物理吸附;在 化学键力 的作用下被 吸附到固体或液体的表面上,称为化学吸附。 三、 分析题(共2题,每题12分,共24分) 1. 请写出图1中各条曲线所代表的反应,各区域稳定存在的氧化物, 利用热力学原理分析各氧化物稳定存在的原因。 2. 钢液中[C]和[Cr]之间存在化学反应:4[C] + (Cr 3O 4) = 3[Cr] + 4CO, 试用热力学原理分 析有利于实现去碳保珞的热力学条件。 1UU 80 60 40 20 400 600t t 800 1000 1 200 675 737 温度八C

转炉炼钢的一般原理

2转炉炼钢的一般原理 2-1什么是超音速氧射流,什么是马赫数,确定马赫数的原则是什么? 速度大于音速的氧流为超音速氧射流。超过音速的程度通常用马赫数量度,即氧流速度与临界条件下音速的比值,用符号Ma代表。显然,马赫数没有单位。 马赫数的大小决定喷头氧气出口速度,也决定氧射流对熔池的冲击能量。马赫数过大则喷溅大,清渣费时,热损失加大,增大渣料消耗及金属损失,而且转炉内衬易损坏;马赫数过低,会造成搅拌作用减弱,氧气利用系数降低,渣中TFe含量增加,也会引起喷溅。当Ma>2.0时,随马赫数的增长氧气的出口速度增加变慢,要求更高理论设计氧压,这样,无疑在技术上不够合理,经济上也不划算。 目前国内推荐Ma=1.9~2.1。 2-2氧气射流与熔池的相互作用的规律是怎样的? 超音速氧流其动能与速度的平方成正比,具有很高的动能。当氧流与熔池相互作用时,产生如下效果: (1)形成冲击区。氧流对熔池液面有很高的冲击能量,在金属液面形成一个凹坑,即具有一定冲击深度和冲击面积的冲击区。 (2)形成三相乳化液。氧流与冲击炉液面相互破碎并乳化,形成气、渣、金属三相乳化液。 (3)部分氧流形成反射流股。 2-3氧气顶吹转炉的传氧载体有哪些? 氧气顶吹转炉内存在着直接传氧与间接传氧两种途径。直接传氧是氧气被钢液直接吸收,其反应过程是:[Pe]+1/2{O2}=[FeO],[FeO]=[Fe]+[O];间接传氧是氧气通过熔渣传人金属液中,其反应式为(FeO)=[FeO]、[FeO]=[Pe]十[O]。氧气顶吹转炉传氧以间接传氧为主。 氧气顶吹转炉的传氧载体有以下几种。 (1)金属液滴传氧。氧流与金属熔池相互作用,形成许多金属小液滴。被氧化形成带有富氧薄膜的金属液滴,大部分又返回熔池成为氧的主要传递者;熔池中的金属几乎都经历液滴形式,有的甚至多次经历液滴形式,金属液滴比表面积大,反应速度很快。 (2)乳化液传氧。氧流与熔池相互作用,形成气—渣—金属的三相乳化液,极大地增加了接触界面,加快了传氧过程。 (3)熔渣传氧。熔池表面的金属液被大量氧化,而形成高氧化铁熔渣,这样的熔渣是传氧的良好载体。 (4)铁矿石传氧。铁矿石的主要成分是Fe2O3、Fe3O4,在炉内分解并吸收热量,也是熔池氧的传递者。 顶吹转炉的传氧主要靠金属液滴和乳化液进行,所以冶炼速度快,周期短。 2-4什么是硬吹,什么是软吹? 硬吹是指枪位低或氧压高的吹炼模式。当采用硬吹时,氧气流股对熔池的冲击力大,形成的冲击深度较深,冲击面积相对较小,因而产生的金属液滴和氧气泡的数量也多,气—熔渣—金属乳化充分,炉内的化学反应速度快,特别是脱碳速度加快,大量的CO气泡排出,熔池搅动强烈,熔渣的TFe含量较低。 软吹是指枪位较高或氧压较低的吹炼模式。在软吹时,氧气流股对熔池的冲击力减小,冲击深度变浅,冲击面积加大,反射流股的数量增多,对于熔池液面搅动有所增强,脱碳速度缓慢,因而对熔池内部的搅动相应减弱,熔渣中的TFe含量有所增加。 软吹和硬吹都是相对的。 2-5转炉内金属液中各元素氧化的顺序是怎样的? 氧化物分解压越小,元素越易氧化。在炼钢温度下,常见氧化物的分解压排列顺序如下:P{O2}(Fe2O3)>P{O2}(FeO)>P{O2}(CO2)>P{O2}(MnO)>P{O2}(P2O5)>P{O2}

2012.3.18材料制备原理-课后作业题

第1章习题与思考题 1.1溶胶-凝胶合成 1、名词解释:(1)溶胶;(2)凝胶 参考答案(列出了主要内容,根据具体情况自己总结,下同!): 1、溶胶:是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。分散粒子是固体或者大分子颗粒,分散粒子的尺寸在1~100nm之间,这些固体颗粒一般由103~109个原子组成。 凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般在1%~3%之间。 2、说明溶胶-凝胶法的原理及基本步骤。 答:溶胶-凝胶法是一种新兴起的制备陶瓷、玻璃等无机材料的湿化学方法。其基本原理是:易于水解的金属化合物(无机盐或金属醇盐)在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化,再经干燥烧结等后处理得到所需材料,基本反应有水解反应和聚合反应。这种方法可在低温下制备纯度高、粒径分布均匀、化学活性高的单多组分混合物(分子级混合),并可制备传统方法不能或难以制备的产物,特别适用于制备非晶态材料。 溶胶-凝胶法制备过程中以金属有机化合物(主要是金属醇盐)和部分无机盐为前驱体,首先将前驱体溶于溶剂(水或有机溶剂)形成均匀的溶液,接着溶质在溶液中发生水解(或醇解),水解产物缩合聚集成粒径为1nm左右的溶胶粒子(sol),溶胶粒子进一步聚集生长形成凝胶(gel)。有人也将溶胶-凝胶法称为SSG法,即溶液-溶胶-凝胶法。 3、简述溶胶-凝胶制备陶瓷粉体材料的优点。 答:①制备工艺简单、无需昂贵的设备; ②对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性; ③反应过程易控制,可以调控凝胶的微观结构; ④材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性; ⑤产物纯度高,烧结温度低 1.2水热与溶剂热合成 1、名词解释:(1)水热法;(2)溶剂热法。 水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种有效方法。 溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 2、简述水热与溶剂热合成存在的问题? 答:(1)水热条件下的晶体生长或材料合成需要能够在高压下容纳高腐蚀性溶剂的反应器,需要能被规范操作以及在极端温度压强条件下可靠的设备。由于反应条件的特殊性,致使水热反应相比较其他反应体系而言具有如下缺点: a 无法观察晶体生长和材料合成的过程,不直观。 b 设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。 c 安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。

钢铁冶金学试题库

试题库 一、填空题 1.高炉生产的主要原料是___________________、_________ 和熔剂。 答案:铁矿石及其代用品;燃料 2.炼铁的还原剂主要有三种,即__________、_________和_________ 。 答案:碳、一氧化碳、氢 3.高炉CO不能全部转变成CO2的原因是因为铁氧化物的____________需要过量的CO与生成物平衡。答案:间接还原 4.钢、铁都是铁碳合金,一般把碳含量大于2.00%叫_______________。 答案:铁 5.硅的氧化反应是________反应,低温有利于硅的氧化。答:放热 6.钢中加入适量的铝,除了脱氧的作用以外,还具有___________的作用。 答案:细化晶粒 7.在硫的分配系数一定的条件下,钢中含硫量取决于_______中硫含量和渣量。答案:炉渣 8.要使炉况稳定顺行,操作上必须做到三稳定,即____________、____________、____________。答案:炉温、碱度、料批 9.钢中有害气体主要是_________、_________。答案:H;N 10.炼钢的基本任务有脱碳、脱硫、脱氧合金化和__________。 答案:去气和去夹杂物 11.造渣方法根据铁水成份和温度,冶炼钢种的要求选用_______、双渣法、留渣法。措施。答案:单渣 12.12.铁矿石还原速度的快慢,主要取决于____________和____________的特性。 答案:煤气流;矿石 13.生铁一般分为三大类,即____________、____________、____________。 答案:铸造铁、炼钢铁、铁合金 14.在钢材中引起热脆的元素是____________ ,引起冷脆的元素是____________ 。 答案:Cu、S;P、As 15.在Mn的还原过程中,____________是其还原的首要条件, ____________是一个重要条件。答案:高温;高碱度 16.炉渣中含有一定数量的MgO,能提高炉渣____________ 和____________。 答案:流动性;脱硫能力 17.氧气顶吹转炉炼钢操作中的温度控制主要是指__________和终点温度控制。。 答案:过程温度 18.氧气顶吹转炉炼钢影响炉渣氧化性酌因素很多,经常起主要作用的因素是_________。答案:枪位和氧压 19.铁子预处理主要是指脱硫,另外也包括___________。答案:脱硅和脱磷 20.影响高炉寿命的关键部位是____________ 和____________。答案:炉缸;炉身中部 21.氧气预吹转炉传氧方式一般有直接传氧和(间接传氧)两种方式。 22.高炉下部调剂中,凡是减少煤气体积或改善透气性的因素就需____________ 风速和鼓风动能;相反,则需相应____________ 风速和鼓风动能。答案:提高;减小 23转炉入炉铁水温度应在_________以上。答案:1250℃ 24.一般规定矿石中含硫大于为____________高硫矿。答案:0.3% 25.FeO含量对烧结矿质量的影响主要表现在____________和____________两个方面。

炼钢设计原理思考题答案2016给学生资料

炼钢设计原理课程思考题2015 氧气顶吹转炉设计 转炉公称容量一般用炉役期的平均出钢量表示。 转炉炉型:指转炉炉膛的几何形状,亦指由耐火材料砌成的炉衬内形。氧气顶吹氧气转炉炉型有三种炉型:筒球型,锥球型和截锥型。 转炉的帽锥角:指炉帽锥与炉身交接处,炉帽与炉子水平线之间的夹角。 转炉三种炉型及特点? 1)筒球形炉型:形状简单,砌砖简便,炉壳易制造,在相同熔池直径D和熔池深度h下,与其他两种炉型笔,此炉型熔池的容积大,金属装入量大,形状接近于金属液的循环运动轨迹,适用于大型转炉。 2)锥球形炉型(橄榄型):与同容量的其他炉型比,在相同熔池深度h下,反映面积大,有利于钢、渣间反应,适用于吹炼高磷铁水。熔池形状比较符合钢、渣环流的要求,熔池侵蚀均匀,熔池深度变化小,新炉炉型接近于停炉后残余炉衬的轮廓,炉型上下对称,空炉重心接近于炉体的几何重心位置,使得转炉的倾动力矩小。 3)截锥形炉型:形状简单,炉底砌筑简便,其形状基本上满足炼钢反映的要求,与同容量的其他炉型比,在熔池直径相同情况下,熔池最深,适用于小型转炉。 转炉熔池直径:熔池处于平静状态时金属液面的直径。 转炉熔池深度:熔池处于平静状态时金属液面到炉底的深度。 均衡炉衬砌筑:根据不同部位的侵蚀情况,使用不同材质的耐火材料和砌成不同厚度的炉衬,使之各部位的砌蚀基本均匀,又叫均衡砌炉或平衡炉衬。铁水比:指铁水占钢铁料的比例 7、废钢比:指废钢占钢铁料的比例。 炉型主要参数包括:炉容比(V/T),高宽比(H/D),熔池深度直径比(h/D),炉口直径比(d0/D),帽锥角(θ),出钢口参数(dT,β,LT) 转炉炉容比V/T:指新炉时转炉的炉膛有效容积(V)与公称容积(T)的比值(m3/T) 转炉炉容比过小和过大有什么危害? 炉容比过小(即反应空间小): A 因为反应空间过小,满足不了冶炼反应所需要的空间,容易喷溅和溢渣,金属收得率η金降低,操作困难,工人劳动强度增加。 B 加剧钢,渣对炉衬的冲刷侵蚀,使得炉龄降低。 C 不利于提高供氧强度(B),强化冶炼,限制了生产率的提高,因为供氧强度大,炉容比小,易喷溅。 炉容比过大: 炉容比过大势必增加炉子高度H(H还受H/D的影响),增加厂房高度和倾动力矩。实践证明,炉子高度增加1米,厂房高度增加2米,将导致投资增大,设备庞大和电耗增加。 影响转炉炉容比大小的因素?一般炉容比的大小?

150T直流电弧炉炼钢工艺

摘要 改革开放以来,我国电弧炉炼钢技术紧跟世界电炉炼钢工业的发展趋势,得到了快速发展。特别是冶金工艺流程的革命性变换,如电炉从三期操作发展到只提供初炼钢水的两期操作,从模铸到连铸,从出钢槽到偏心底出钢,以及为了满足连铸生产的快节奏提高炉子生产率而采用多能源的综合利用等等,所有这些改变都是促使为冶金工艺服务的电炉装备也取得了突破性的发展。近十年,我国从国外先后引进了交流超高功率电弧炉、直流电弧炉、高阻抗电弧炉、双壳炉和竖炉。通过这些设备的调试、操作、维护以及备品的制造,提高了我国电炉制造的设计制造水平。在消化吸收与创新的基础上,我国大容量电弧炉的国产化奠定了基础。当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。 当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。电炉的主要产品是钢材,而钢的质量取决于电炉冶炼技术和工艺,目前我国钢铁产业大量整合趋向于集中,整合资源优化升级。本设计根据指导老师的课题范围,查阅相关资料,结合南京地区实际条件,优化设计150t直流电弧炉炼钢车间。 本次设计查阅国内大型电炉车间设计的相关内容和文献资料,明确本次设计的目的、方法,并向老师请教可行性方案。结合《炼钢设备及车间设计.》、《炼钢设计原理》、《炼钢设计原理》等资料进行设计提纲的书写。对电炉进行配料计算,计算出电炉炼钢的原料配比。对电炉电气设备、炉外精炼、连铸系统、车间烟气净化系统、炼钢车间布局,结合国内大型电炉进行设定并向苏老师探讨可行的方法和数据。绘制电炉炼钢车间平面布置图。 关键字:电弧炉,车间设计,连铸,炉外精炼

钢铁冶金学 炼铁部分习题

1、冶金的方法及其特点是什么? 提取冶金工艺方法:火法冶金、湿法冶金、电冶金、卤化冶金、羰基冶金等。 (1) 火法冶金:在高温下利用各种冶金炉从矿石或其它原料中进行金属提取的冶金工艺过程。操作单元包括:干燥、煅烧、焙烧(烧结)、熔炼、精炼。 (2) 湿法冶金:在水溶液中对矿石和精矿中的金属进行提取和回收的冶金过程。操作单元包括:浸取(出)、富 (3) 电冶金:利用电能提取金属的冶金过程,包括电热冶金和电化学冶金。 电热冶金:利用电能转变为热能进行金属冶炼,实质上属火法冶金。 电化学冶金:利用电化学反应使金属从含金属盐类的溶液或熔体中析出。如: ①水溶液电解:如Cu、Pb、Zn等。可列入湿法冶金。 ②熔盐电解:如Al、Mg、Ca、Na等。可列入火法冶金。 钢铁冶金:火法、电热冶金 有色冶金:火法、湿法、电化学冶金。通常为“火法+湿法”联合。集(净化和浓缩)、提取(金属或金属化合物)等 2、钢与生铁有何区别? 都是以铁为基底元素,并含少量C、Si、Mn、P、S——铁碳合金。 (1) 生铁:硬而脆,不能锻造。 用途:①炼钢生铁; ②铸造生铁,占10%。用于铸造零、部件,如电机外壳、机架等。 (2) 钢:有较好的综合机械性能,如机械强度高、韧性好、可加工成钢材和制品;能铸造、锻造和焊接;还可加工成不同性能的特殊钢种。 3、钢铁冶炼的任务及基本冶炼工艺是什么? 把铁矿石冶炼成合格的钢: 铁矿石:铁氧化物,脉石杂质。 炼铁:去除铁矿石中的氧及大部分杂质,形成铁水和炉渣并使其分离。 炼钢:把铁水进一步去除杂质,进行氧化精炼。 铁矿石→去脉石、杂质和氧→铁铁→精炼(脱C、Si、P等)→钢 4、试述3种钢铁生产工艺及其特点。 传统流程:间接炼钢法:高炉炼铁+ 转炉炼钢。 优点:工艺成熟,生产率高,成本低 缺点:流程工序多,反复氧化还原,环保差 短流程:直接炼钢法:直接还原炉+ 电炉,将铁矿石一步炼成钢。 优点:避免反复氧化还原 缺点:铁回收率低,要求高品位矿,能耗高,技术尚存在一定问题。 新流程:熔融还原法:熔融还原炉+ 转炉(将铁矿石一步炼成钢)。 优点:工艺简单,投资少、成本低,资源要求不高,环境友善。 缺点:能耗高,技术尚存在大量问题,仅Corex投入工业应用。 5、一个现代化的钢铁联合企业有哪些主要工序和辅助工序?用框图画出钢铁联合企业的生产工艺流程。 目前,钢铁联合企业的主要生产流程还是传统流程: 采矿——选矿——高炉炼铁——转炉炼钢——炉外精炼——连续铸钢——轧钢——成品钢材

钢铁冶金部分课后作业题及答案

1—1高炉炼铁工艺由哪几部分组成? 答案(1):在高炉炼铁生产在中,高炉是工艺流程的主体,从其上部装入的铁矿石燃料和溶剂向下运动,下部鼓入空气燃烧燃料,产生大量的还原性气体向上运动。炉料经过加热、还原、熔化、造渣、渗碳、脱硫等一系列物理化学过程,最后生成液态炉渣和生铁。组成除高炉本体外,还有上料系统、装料系统、送风系统、冷却系统、液压系统、回收煤气与除尘系统、喷吹系统、动力系统1—2 高炉炼铁有哪些技术经济指标? 答案:综合入炉品位(%) 炼铁金属收得率(%) 生铁合格率(%) 铁水含硅(%) 铁水含硫(%) 风温(℃) 顶压(KPa) 熟料比(%) 球矿比(%) 高炉利用系数(t/m3.d) 综合焦比(Kg/t) 入炉焦比(Kg/t) 焦丁比(Kg/t) 喷煤比(Kg/t) 1—3 高炉生产有哪些特点? 答案:一是长期连续生产。高炉从开炉到大修停炉一直不停地连续运转,仅

在设备检修或发生事故时才暂停生产(休风)。高炉运行时,炉料不断地装入高炉,下部不断地鼓风,煤气不断地从炉顶排出并回收利用,生铁、炉渣不断地聚集在炉缸定时排出。 二是规模越来越大型化。现在已有5000m3以上容积的高炉,日产生铁万吨以上,日消耗矿石近2万t,焦炭等燃料5kt。 三是机械化、自动化程度越来越高。为了准确连续地完成每日成千上万吨原料及产品的装入和排放。为了改善劳动条件、保证安全、提高劳动生产率,要求有较高的机械化和自动化水平。 四是生产的联合性。从高炉炼铁本身来说,从上料到排放渣铁,从送风到煤气回收,各系统必须有机地协调联合工作。从钢铁联合企业中炼铁的地位来说,炼铁也是非常重要的一环,高炉体风或减产会给整个联合企业的生产带来严重影响。因此,高炉工作者要努力防止各种事故,保证联合生产的顺利进行。1—5 高炉生产有哪些产品和副产品,各有何用途? 答案:高炉冶炼主要产品是生铁,炉渣和高炉煤气是副产品。 (1)生铁。按其成分和用途可分为三类:炼钢铁,铸造铁,铁合金。 (2)炉渣。炉渣是高炉生产的副产品,在工业上用途很广泛。按其处理方法分为: 1)水渣:水渣是良好的水泥原料和建筑材料。2)渣棉:作绝热材料,用于建筑业和生产中。3)干渣块:代替天然矿石做建筑材料或铺路用。 (3)高炉煤气。高炉煤气可作燃料用。除高炉热风炉消耗一部分外,其余可供动力、烧结、炼钢、炼焦、轧钢均热炉等使用。 2—1高炉常用的铁矿石有哪几种,各有什么特点?

相关文档
相关文档 最新文档