文档库 最新最全的文档下载
当前位置:文档库 › 第七章 空间解析几何与向量代数(答案)

第七章 空间解析几何与向量代数(答案)

第七章 空间解析几何与向量代数(答案)
第七章 空间解析几何与向量代数(答案)

第七章 空间解析几何与向量代数

一、选择题

1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:(A )

A )5

B ) 3

C ) 6

D )9

2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )

A ){-1,1,5}.

B ) {-1,-1,5}.

C ) {1,-1,5}.

D ){-1,-1,6}.

3. 设a ={1,-1,3}, b ={2, 1,-2},求用标准基i , j , k 表示向量c=a-b 为(A )

A )-i -2j +5k

B )-i -j +3k

C )-i -j +5k

D )-2i -j +5k

4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( C )

A )2π

B )4π

C )3π

D )π

5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( B )

A )5焦耳

B )1焦耳

C )3焦耳

D )9焦耳

6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( C )

A )2π

B )4π

C )3

π D )π

7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( )

A )-i -2j +5k

B )-i -j +3k

C )-i -j +5k

D )3i -3j +3k

9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )

A B )3

64 C )32 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A )2x+3y=5=0 B )x-y+1=0

C )x+y+1=0

D )01=-+y x .

11、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );

(A )-+a b =a b ; (B )=a b ; (C )0?a b =; (D )?a b =0.

12、已知{}{}2,1,21,3,2---a =,b =,则Pr j b a =( D );

(A )5

3; (B )5; (C )3; (D

13、直线1

1z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 B ; (A )6π; (B )3π; (C )4π; (D )2

π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 A ;

(A )??

? ??23,0,21; (B )13,0,22??-- ???; (C )()1,1,0-;(D )11,1,22??-- ???. 15、方程222231x y z -+=表示 曲面,其对称轴在 上;

(A)单叶双曲面,x 轴; (B)双叶双曲面,x 轴;

(C)单叶双曲面,y 轴; (D)双叶双曲面,z

16设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

17、设向量,a b 相平行,但方向相反,则当0>>a b 时,必有(A ) A +=-a b a b B +>-a b a b C a b a b +<- D a b a b +=+

18向量a 与b 的数量积?a b =( C ). A a rj P b a ; B ?a rj P a b ; C a rj P a b ; D b rj P a b . 19非零向量,a b 满足0?=a b ,则有( C ).

A a ∥b ;

B =λa b (λ为实数);

C ⊥a b ;

D 0+=a b .

20设a 与b 为非零向量,则0?=a b 是(A ).

A a ∥b 的充要条件;

B a ⊥b 的充要条件;

C =a b 的充要条件;

D a ∥b 的必要但不充分的条件.

21设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).

A 7

B 7j

C –1;

D -9k

22空间曲线的方程是( B ).

A 惟一的;

B 不惟一的;

C 可能不惟一;

D 不能确定.

23方程组2222491

x y z x ?++=??=?? 表示 ( B ). A 椭球面; B 1=x 平面上的椭圆;

C 椭圆柱面;

D 空间曲线在1=x 平面上的投影.

24方程 220x y +=在空间直角坐标系下表示 (C ).

A 坐标原点(0,0,0);

B xoy 坐标面的原点)0,0(;

C z 轴;

D xoy 坐标面.

25设空间直线的对称式方程为 012

x y z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;

C 过原点且垂直于z 轴;

D 过原点且平行于x 轴.

26设空间三直线的方程分别为

123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =?+-+=?++?===-+??+-=--??=+?

, 则必有( D ).

A 1L ∥2L ;

B 1L ∥3L ;

C 32L L ⊥;

D 21L L ⊥.

二、填空题

1 平面的点法式方程是

2、yoz 坐标面的曲线0),(=z y f 绕z 轴旋转生成的旋转曲面的方程是:

3、 已知两点)5,0,4(A 与)3,1,7(B ,与向量AB 方向一致的单位向量0

a = 。

4、 平面的一般式方程是:

5、 平面的截距式方程是:

6

、已知2,==a b 且2?=a b , 则?=a b ; 7、已知三向量,,a b c 两两互相垂直,

且1,1===a b c ,则向量=+-s a b c 的模等于 ;

8

、旋转曲面2z =-是由曲线 绕z 轴旋转一周而得;

9、空间曲线???==

+x

z 1y x 在yOz 面上的投影为 ;

10、当λ=_____时,直线231x y z ==-平行于平面40x y z λ++=。

(1)过点(1,2,1)M -且与直线2341x t y t z t =-++??=-??=-?

垂直的平面方程是 __________.

(2)已知两条直线的方程分别是 1212321:

,:101211

x y z x y z L L ---+-====-, 则过L 1且平行于L 2的平面方程是 __________. 解(1)化参数方程为对称方程:241131

x y z -++==-,

则所求平面的法向量为 {}1,3,1=-n ,依点法式得

1(1)3(2)1(1)0x y z --+-+?+=, 即 340x y z --+=.

(2)取1L 上的点)3,2,1(A ,取 {}121011,3,1211

=?=-=-i j k

n s s .

则由点法式可得所求平面方程为 320x y z -++=.

三、判断题

1、任何向量都有确定的方向。 ( )

2、若两向量,a b 满足关系a b a b +=+ ,则,a b 同向。( )

3、若a b a c +=+ ,则b c = 。 ( )

4、与非零向量a 同向的单位向量 a 只有1个. ( √ )

5、与非零向量a 共线的单位向量只有1个. ( × )

四、计算题

1.在yoz 平面上,求与三点(

3A 解:设所求点为(),,,0z y P 则 ()()222213||-+-+=z y PA , ()()

2222224||++++=z y PB ,()()22215||-+-=z y PC 。

由于P 与A 、B 、C 三点等距,故

222||||||PC PB PA ==,

于是有:()()()()()()()()

?????-+-=++++-+-=-+-+22222222221522415213z y z y z y z y , 解此方程组,得1=y ,2-=z ,故所求的点为()2,1,0-P 。

2.证明0442222=-+-++z y x z y x 是一个球面方程,并求出球心和半径。 证:将方程移项并配方,得:()()()22

223221=-+++-z y x ,由两点间的距离公式知它是以()2,2,1-P 为球心,3为半径的球面方程。

3.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。 解:由题设知:{}{},2,1,120,23,2121--=---=M M 则

()(),2211222=-++-=

21c o s -=α,21cos =β,2

2cos -=γ, 于是,32πα=,3πβ=,4

3πγ=。 4.已知{}1,5,3-=a ,{}3,2,2=b ,{}3,1,4--=c ,求下列各向量的坐标:

(1)a 2;(2)c b a -+;(3)c b a 432+-;(4).b n a m +

解:(1) {}2,10,62-=;(2){}5,8,1=-+;(3){}23,0,16432-=+-;

(4){}.3,25,23n m n m n m n m +-++=+

5.设k j i m 853++=,k j i n 742--=和k j i p 45-+=,求向量p n m a -+=34在x 轴上的投影及在y 轴上的分向量。 解:()()()

4574238534-+---+++=15713++=

故在x 轴上的投影为13,在y 轴上的分向量为7。

6.在xoz 坐标面上求一与已知向量{}4,3,2-=垂直的向量。

解:设所求向量为{}00,0,z x =,由题意,

04200=+-=?z x

取10=z ,得20=x ,故{}1,0,2=与垂直。当然任一不为零的数λ与的乘积b λ也垂直a 。

7.求以()3,2,1A ,()5,4,3B ,()7,2,1--C 为顶点的三角形的面积S 。

解:由向量的定义,可知三角形的面积为S ?=2

1,因为{}2,2,2=,{}4,4,2--=,所以

{}4,12,164

42222--=--=?,

于是, ()().69242162

144222221222=-+-+=--=k j i S 8.求与向量{}1,0,2=,{}2,1,1-=都垂直的单位向量。 解:由向量积的定义可各,若=?,则同时垂直于和,且

k j i k j i

b a

c 232

11102

--=-=?=, 因此,与?=平行的单位向量有两个: ()()()k j i b a c c 2314123123||||222--=-+-+--=?=

= 和 ().2314

1c ++-=- 9.指出下列方程在平面解析几何中和空间解析几何中分别表示什么图形?

(1)2=x ;(2)1+=x y ;(3)422=+y x ;(4)122=-y x 。

9.分别求母线平行于x 轴及y 轴而且通过曲线?????=-+=++0

162222222y z x z y x 的柱面方程。

解:10.从方程组中消去x 得:162322=-z y ,此方程即母线平行于x 轴且通过已知曲线的柱面方程;

20.从方程组中消去y 得:162322=+z x ,此方程即母线平行于y 轴且通过此曲线的柱面方程。

10.求球面9222=++z y x 与平面1=+z x 的交线在xoy 面上的投影的方程。 解:由1=+z x ,得x z -=1,代入9222=++z y x ,消去z 得()912

22=-++x y x ,即82222=+-y x x ,这就是通过球面9222=++z y x 与平面1=+z x 的交线,并且母线平行于z 轴的柱面方程,将它与0=z 联系,得:?

??==+-082222z y x x ,即为所求的投影方程。 11.求过()1,1,1-A ,()2,,2,2--B 和()2,1,1-C 三点的平面方程。

解一:点法式:{}3,3,3--=AB ,{}3,2,0-=AC ,取

{

}2,3,133

20333---=---=?=j

j i , 于是所求方程:023=--z y x 。

解法二:用一般式,设所求平面方程为

,0=+++D Cz By Ax

将已知三点的坐标分别代入方程得

,0202220??

???=++-=++--=+-+D C B A D C B A D C B A

解得

??

???=-=-=023D A C A B ,得平面方程:023=--z y x 。

解法三:设点()z y x P ,,为此平面上任一点,则,,共面,由三向量共面的充要条件得[]

0,,=,而

{}1,1,1+--=z y x ,{}3,3,3--=,{}3,2,0-=,所以 0320333

1

11=---+--z y x ,即023=--z y x 为所求平面的方程。

12.求平面0522=++-z y x 与xoy 面的夹角。

解:{}1,2,2-=为此平面的法向量,设此平面与xoy 的夹角为γ,则{}{}3131,0,01,2,2||||cos =?-=?=k n γ,故3

1cos Arc =γ。 13.分别按下列条件求平面方程

(1)平行于xoz 面且经过点()3,5,2-;

(2)通过z 轴和点()2,1,3-;

(3)平行于x 轴且经过两点()2,0,4-和()7,1,5。

解:(1)因为所求平面平行于xoz 面,故{}0,1,0=j 为其法向量,由点法式可得:

()()()0305120=-?++?+-?z y x ,

即所求平面的方程:05=+y 。

(2)因所求平面通过z 轴,其方程可设为(*)0=+By Ax ,已知点()2,1,3--在

此平面上,因而有03=+-B A ,即A B 3=,代入(*)式得:

03=+Ay Ax ,即所求平面的方程为:03=+y x 。

(3)从共面式入手,设()z y x P ,,为所求平面上的任一点,点()2,0,4-和()7,1,5分

别用A ,B 表示,则,,共面,从而[]00

0191

124,,=+-=z y

x ,于是可得所求平面方程为:029=--z y 。

14.用对称式方程及参数式方程表示直线l :?

??=++=+-421z y x z y x 。 解:因为直线l 的方向向量可设为{}3,1,21

1211121-=-=?=k

j i n n ,在直

线上巧取一点()2,0,3-A (令0=y ,解直线l 的方程组即可得3=x ,2-=z ),则直线的对称式方程为

3

2123+==--z y x ,参数方程为:t x 23-=,t y =,t z 32+-=。 15.求过点()4,2,0且与两平面12=+z x 和23=-z y 平行的直线方程。 解:因为两平面的法向量{}2,0,11=n 与{}3,1,02-=n 不平行,所以两平面相交于一直线,此直线的方向向量{}1,3,23

1020121-=-=?=n n ,故所求直线方程为1

4322-=-=-z y x 。 16.确定直线 3

7423z y x =-+=-+和平面3224=--z y x 间的位置关系。 解:直线的方向向量{},3,7,2--=

平面的法向量{},2,2,4--=

{}{}

()()()().02243722,2,43,7,2c o s 222222=-+-+?+-+---?--=?

从而⊥,由此可知直线平等于平面或直线在平面上。

再将直线上的点)0,4,3(--A 的坐标代入平面方程左边,得

()()34024234≠-=?--?--?,即A 不在平面上,故直线平行于平面。

17.求过点()1,2,1而与直线???=-+-=+-+01012:1z y x z y x l ,?

??=+-=+-002:z y x z y x l 平行的平面方程。 解:因{}3,2,111

1

12

11--=--=s 为直线1l 的方向向量, {}1,1,01

111122--=--=k j i s 直线2l 的方向向量。

取 {}1,1,11

1032121--=----=?=s s ,则通过点()1,2,1并以为法向

量的平面方程0=+-z y x 即为所求的平面方程。

本章测试题

一、填空题

1. 已知234,53=+-=-+a i j k b i j k ,则向量23=-c a b 在z 轴方向上的分向量为_________.

2. 过点1(3,2,1)M -和2(1,0,2)M -的直线方程为_________.

3. 设2,==a b 2?=a b ,则___________?=a b .

4. 设空间两直线11112x y z λ

-+-==与11x y z +=-=相交于一点,则_____=λ. 5. 已知向量a 与{}4,7,4c =-平行且方向相反,若27=a ,则________=a .

6. 方程22z x y =+在空间直角坐标系中表示的曲面是__________.

7. 平面210x y z -+-=与平面230x y z ++-=的夹角为__________.

8. xoy 平面上的双曲线224936x y -=绕y 轴旋转所得旋转曲面方程为__________.

二、 选择题

1. 设,,a b c 为三个任意向量,则()+?=a b c ( ).

A ?+?a c c b ;

B ?+?c a c b ;

C ?+?a c b c ;

D ?+?c a b c .

2. 曲面2222a z y x =++与az y x 222=+)0(>a 的交线是 ( ).

A 抛物线;

B 双曲线;

C 圆周;

D 椭圆.

3. 设向量a 与b 平行且方向相反,又0>>a b , 则有( ).

A +=-a b a b ;

B +>-a b a b ;

C +<-a b a b ;

D +=+a b a b .

4. 直线 34273

x y z ++==--与平面4223x y z --=的关系为 ( ). A 平行但直线不在平面上; B 直线在平面上;

C 垂直相交;

D 相交但不垂直.

5. 已知1,=a b 且(,)4

∧π=a b , 则 +a b = ( ).

A 1;

B 1

C 2; D

. 6. 下列等式中正确的是( ).

A +=i j k ;

B ?=i j k ;

C ?=?i i j j ;

D ?=?i i i i .

7. 曲面22x y z -=在xoz 平面上的截线方程为 ( ).

A 2x z =;

B 20y z x ?=-??=??;

C 2200x y z ?-=??=??;

D 20

x z y ?=??=??. 8. 2222(1)(2)(3)0x y z -+---=在空间直角坐标系中表示 ( ).

A 球面;

B 椭圆锥面;

C 抛物面;

D 圆锥面.

三、 计算题

1.已知22,5,(,)3

∧π===a b a b ,问λ为何值时,向量17=λ+u a b 与3=-v a b 互相垂直. 2.求过点11112222(,,),(,,)M x y z M x y z 且垂直于平面0=++z y x 的平面法向量n .

3.求两平行面362140x y z +-+=与36270x y z +--=之间的距离.

4.求过点(3,2,5)-且与两平面430x z --=和2510x y z ---=的交线平行的直线方程.

5.一平面过点(1,0,1)A -且平行向量{}2,1,1=a 和{}1,1,0=-b ,试求这平面方程.

四、已知三个非零向量,,a b c 中任意两个向量都不平行,但()+a b 与c 平行,()+b c 与a 平行,试证:0++=a b c .

测试题参考答案

一、填空题

1. 9k -

2. 321421x y z -+-==-

3. 2

4. 54

λ= 5.

{}12,21,12--=a

6. 顶点在原点,开口向上的旋转抛物面

7. 3π

θ= 8.

2224()936x z y +-=

二、 选择题

1. C

2. C

3. A

4. A

5. D

6. C

7. D

8. B

三、计算题

1. 解 由0?=u v 得(17)(3)0λ+?-=a b a b ,即 223(51)170λ+-λ?-=a a b b , 将22,5,(,)3

∧π===

a b a b 代入得:212(51)10cos 42503πλλ+-?-=, 解得 40λ=.

2. 解 由题意知:n 垂直于过点1M 和2M 的直线,

故n {}121212,,,x x y y z z ⊥---又因为n 垂直于已知平面0=++z y x 的法向量,故{}1,1,1⊥n ,从而可取

121212111=---i j k

n x x y y z z {}121212121212,,y y z z x x z z x x y y =--+-++---+.

3. 解 在平面362140x y z +-+=上取点(0,0,7)M ,

则点M 到平面36270x y z +--=的距离

即为所求:2137

d ===. 4. 解 设s {},,m n p =为所求直线的一个方向向量,由题意知s 与两个平面的法向量

{}11,0,4=-n 和{}22,1,5=-n 同时垂直,故有120,0,?=?=s n s n

即40250m p m n p -=??--=?

解得: 4,3m p n p ==,即得 s {}4,3,1= 故所求直线方程为 325431

x y z +--==. 5. 解 (从点法式入手) 由条件可取{}2111,1,3110

=?==--i j k

n a b ,

于是 1(1)1(0)3(1)0x y z ?-+?--?+=,

即 043=--+z y x 为所求平面方程.

四、证 因为 ()+a b 与c 平行,所以存在常数λ使

+=λa b c , ①

同理有 +=μb c a , ② ①-②得:-=λ-μa c c a ,即 (1)+μ=a (1)+λc . 但a 与c 不平行,故110μλ+=+=,所以1λμ==-. 从而 +=-a b c ,故++=a b c 0,得证.

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

高等数学空间解析几何与向量代数.docx

第七章空间解析几何与向量代数 第一节空间直角坐标系 教学目的:将学生的思维由平面引导到空间,使学生明确学习空 间解析几何的意义和目的。 教学重点: 1.空间直角坐标系的概念 2.空间两点间的距离公式 教学难点:空间思想的建立 教学内容: 一、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系 (三维)如图7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指 从正向x 轴以角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2 间直角坐标系共有八个卦限,各轴名称分别为:轴、y 轴、轴,坐标面分别为xoy 面、yoz面、zox 面。坐标面以及卦限的划分如图7-2 所示。图7-1 右手规则演示图 7-2 空间直角坐标系图图 7-3空间两点M1M 2的距离图3.空间点M ( x, y, z) 的坐标表示方法。通过坐标把空间的点与一个有序数组 一一对应起来。 注意:特殊点的表示 a)在原点、坐标轴、坐标面上的点; b) 关于坐标轴、坐标面、原点对称点的表示法。4.空间两点间的距离。若M 1 ( x1 , y1 , z1 ) 、 M 2 (x2 , y2 , z2 ) 为空间任意两点,则 M 1M 2的距离(见图7- 3),利用直角三角形勾股定理为: d 2 222 M1M 2M1NNM 2 222 M 1 p pNNM 2

而 M 1 P x 2 x 1 PN y 2 y 1 NM 2 z 2 z 1 所以 d M 1M 2 (x 2 x 1 ) 2 ( y 2 y 1 )2 (z 2 z 1 )2 特殊地:若两点分别为 M ( x, y, z) , o(0,0,0) d oM x 2 y 2 z 2 例 1:求证以 M 1(4,3,1) 、 M 2 (7,1,2) 、 M 3 (5,2,3) 三点为顶点的三角形是一个 等腰三角形。 2 ( 4 7) 2 (3 1) 2 (1 2) 2 14 证明 : M 1M 2 M 2M 3 2 7) 2 (2 1)2 (3 2)2 6 (5 2 4) 2 (2 3) 2 (3 1) 2 6 M 3M 1(5 由于 M 2M 3 M 3 M 1 ,原结论成立。 例 2:设 P 在 x 轴上,它到 P (0, 2 ,3) 的距离为到点 P 2 (0,1, 1) 的距离的两倍, 1 求点 P 的坐标。 解:因为 P 在 x 轴上,设 P 点坐标为 ( x,0,0) PP 1 x 2 2 PP 2 x 2 1 2 x 2 11 32 2 x 2 2 12 PP 1 2 PP 2 x 2 11 2 x 2 2 x 1

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

向量代数与空间解析几何-期末复习题-高等数学下册-(上海电机学院)

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2 222 =+y x 在空间解析几何中表示的图形为 [ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141:1+=+=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3 π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)

5.将xoz 坐标面上的抛物线x z 42 =绕z 轴旋转一 周,所得旋转曲面方程是[B ] A. ) (42y x z += B. 2 2 2 4y x z +±= C. x z y 422 =+ D. x z y 422 ±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是 [B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程 222 22 x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知 a ?={0, 3, 4}, b ?={2, 1, -2},则 = b proj a ?ρ[ C ]

空间解析几何和向量代数总结

第八章空间解析几何和 向量代数总结 向量的概念 向量的线性运算 空间直角坐标系(右手系)向量的坐标 坐标形式的向量的线性运算(8—1,19) 方向角与方向余弦(8—1,15) 向量的数量积、向量积、混合积 (8—2,1、3、6、10; 总习题八,1(3)、(4))

应用:判断向量正交、 平行(共线)、 计算平行四边形面 积、 一向量在另一向量的投影。 曲面 曲面的概念 (),,0F x y z =, ()(){}:,,,,0x y z F x y z ∑=建立曲面方程 (P23,例1、P24,例2,8—3,2、3)

旋转曲面(8—3,7、10) 坐标面上的曲线饶一坐标轴旋转一周的旋转曲面方程 (),00f x y z ?=?=?绕x 轴旋转一周得到的旋转曲面 为(,0f x =; (),00f x y z ?=?=?绕y 轴旋转一周得到的旋转曲面 为()0 f y =;

(),00f y z x ?=?=?绕y 轴旋转一周得到的旋转曲面 为(,0f y =; (),00f y z x ?=?=?绕z 轴旋转一周得到的旋转曲面 为()0f z =; (),00f x z y ?=?=?绕x 轴旋转一周得到的旋转曲面为

(,0f x =; (),00f x z y ?=?=?绕z 轴旋转一周得到的旋转曲面 为() 0f z =。 空间曲线及其方程 空间曲线的一般方程 ()(),,0,,0F x y z G x y z =???=?? 参数方程(P33,例3)

()()()x t y t z t αβγ=??=??=? 空间曲线在坐标面的投影(P36,例4、例5、8—4,4) 平面及其方程 建立平面方程:点法式、一般式、截距式、三点式(8—5,1、2、3、6) 平面与平面的夹角(锐角)(8—5,5) 点的平面的距离(8—5,9)

向量代数与空间解析几何

第六章.向量代数与空间解析几何 本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。 向量。 向量可以说是几何的最为基本的概念。因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。 由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。 我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。基于向量的这种直观图象,可以定义向量的基本属性。 首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。 注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。 在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。 空间直角坐标系以及向量代数。 在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。 能够满足上面这两个基本要求的坐标系可以有很多的形式,我们经常使用的坐标系就是直角坐标系。 我们已经强调了一个向量的大小与方向是与它所处的空间位置没有关系的,换一个说法,就是一个向量在空间进行平移时,不影响它的大小与方向。那么在空间中,对任意一个向量的度量,都可以通过把这个向量平移到以坐标系的原点为起点的位置,再用它的终点的坐标来表征这个向量的大小与方向。显然,任意的一个向量,只要是通过平移而处于这种方式,就只会唯一的,而空间中的任意一点在一个这样的直角坐标系里的标度也是唯一的。因此这样决定的一个向量的坐标也就是唯一的。 本课程我们主要只考虑三维的情况,因此一个向量可以用一个唯一的坐标来表示,在直角坐标系里,也就是由三个实数组成的三元组:(a ,b ,c )。 基于上面对于唯一性的分析,可以得到坐标表示的向量的相等的含义,就是坐标三元组的分别相等。 进一步,为了更为方便地度量一般的向量,我们引入单位向量的概念,就是在坐标轴方向上具有单位 长度的向量,在直角坐标系当中,习惯的写法,就是 ,,,分别表示在X ,Y ,Z 轴上的单位向量。 按照坐标三元组的写法,就是 =(1,0,0); i r j r k r i r

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

向量代数与空间解析几何教案.doc

第八章向量代数与空间解析几何 第一节向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。教学重点: 1. 空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点: 1. 空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向 量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2.量的表示方法有: a 、i、F、 OM 等等。 3.向量相等a b :如果两个向量大小相等,方向相同,则说(即经过平移后能完全 重合的向量)。 4.量的模:向量的大小,记为 a 、OM。 模为 1 的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5.量平行a // b:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6.负向量:大小相等但方向相反的向量,记为 a 二、向量的线性运算 b c 1.加减法a b c:加法运算规律:平行四边形法则(有 时也称三角形法则),其满足的运算规律有交换率和结合率见图7 a -4

2.a b c 即 a ( b) c 3.向量与数的乘法 a :设是一个数,向量 a 与的乘积a规定为 (1) 0 时, a 与a 同向, | a | | a | (2) 0 时, a 0 (3) 0 时, a 与a反向,| a | | || a | 其满足的运算规律有:结合率、分配率。设 a 0表示与非零向量 a 同方向的单位向量,那么 a 0a a 定理 1:设向量,那么,向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ , a≠ 0 使b=a 例 1:在平行四边形ABCD中,设AB a ,AD b ,试用 a 和b表示向量 MA 、MB 、MC 和 MD ,这里M是平行四边形对角线的交点。(见图7-5)图 7- 4 解: a b AC 2 AM ,于是 MA 1 (a b) 2 由于 MC MA ,于是 MC 1 b) (a 2 1 (b a) 又由于 a b BD 2 MD ,于是 MD 1 (b 2 由于 MB MD ,于是 MB a) 2 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维) 如图 7- 1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以角度 2 转向正向 y 轴时,大拇指的指向就是z 轴的正向。 2.间直角坐标系共有八个卦限,各轴名称分别为:x轴、y轴、z轴,坐标面分别 为 xoy 面、yoz面、zox面。坐标面以及卦限的划分如图7-2 所示。 图 图 7-1 右手规则演示 7- 2 空间直角坐标系图图7-3空间两点 M 1 M 2的距离图3.空间点M ( x, y, z)的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

高考数学解析几何和向量的结合专题

解析几何与向量的结合问题专题 1.教学目标 1.1熟练掌握平面向量的三角形与平行四边形法则、数量积的相关概念以及它与解析几何的结合应用 2.2通过对解析几何中,与向量的结合问题,渗透从特殊到一般的思想、数形结合思想、空间想象能力、逻辑思维能力、推理论证能力以及运算求解能力; 3.3提高学生分析问题、自主探究和解决问题的能力,提升学生数学的核心素养。 2.教学重点、难点 2.1重点:利用数学基础知识与基本技能探究解析几何问题,并培养学生分析问题以及解决问题的能力; 2.2难点:如何找到解决解析几何问题的知识与能力的平衡点,并探寻合理的解决方法,进而培养学生的逻辑思维能力。 3.教学过程 喜欢学习解析几何问题的学生很多,喜欢动脑,非常好的事。但遇到解析几何问题,得分率又不高,细化汇总来看,在一些问题上还有待提高,其中错误率较高的问题都反映在什么地方呢?今天我们就一起来探讨一下。 试卷上刚做过得一题: 例1:已知双曲线C :),0,0(12 2 >>=-n m n y m x 21,F F 是双曲线C 的左、右焦点,直线l 与 双曲线C 交于A,B 两点,E 是A 关于y 轴的对称点。若1,1m n ==,(1,0)A -,直线l 与坐 标轴不垂直,点M 为直线BE 与y 轴的交点,且满足3ME EB =u u u r u u u r ,求直线l 的斜率; 3.1学生分析题目 站在学生角度分析: (1)学生看到32 ME EB =u u u r u u u r ,两个动M B 和, 无法下手。 (2)学生看到32 ME EB =u u u r u u u r ,第一步表示出E 标,由(1,0)A -关于y 轴对称写出(1,0)E , B 第二步:再求出点坐标,如何求B 点坐标呢? 设AB: (1)y k x =+,(,)B B B x y 然后我把直线AB: (1)y k x =+和双曲线方程2 2 1x y -=联立,用韦达定理

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则 B (A )、x=0.5 y=6 (B)、x=-0.5 y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题 1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平 行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的表示方法有两种: → a 、→ AB 向量的模:向量的大小叫做向量的模. 向量→ a 、→ AB 的模分别记为||→ a 、||→ AB . 单位向量: 模等于1的向量叫做单位向量. 零向量: 模等于0的向量叫做零向量, 记作→0.规定:→ 0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量): 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行.记作a // b .规定: 零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法: 设有两个向量a 与b , 平移向量使b 的起点与a 的终点重合, 此时从a 的起点到b 的终点的向量c 称为向量a 与b 的和, 记作a +b , 即c =a +b . 当向量a 与b 不平行时, 平移向量使a 与b 的起点重合, 以a 、b 为邻边作一平行四边形, 从公共起点到对角的向量等于向量a 与b 的和a +b . 向量的减法: 设有两个向量a 与b , 平移向量使b 的起点与a 的起点重合, 此时连接两向量终点且指向被减数的向量就是差向量。 → → → → → A O O B OB O A AB -=+=, 2、向量与数的乘法 向量与数的乘法的定义: 向量a 与实数λ的乘积记作λa , 规定λa 是一个向量, 它的模|λa |=|λ||a |, 它的方向当λ>0时与a 相同, 当λ<0时与a 相反. (1)结合律 λ(μa )=μ(λa )=(λμ)a ; (2)分配律 (λ+μ)a =λa +μa ; λ(a +b )=λa +λb . 例1 在平行四边形ABCD 中, 设?→ ?AB =a , ?→ ?AD =b .

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

向量代数与空间解析几何教案

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =,b =,试用a 和b 表示向量、、和MD ,这里M 是平行四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别 为xoy 面、yoz 面、 zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。 注意:特殊点的表示

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

空间解析几何与向量代数教案

《高等数学A》课程教案 第七章空间解析几何 一、教学目的与要求 1、了解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、了解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。 4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 5、了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程 6、掌握平面方程和直线方程及其求法。 7、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 8、会求点到直线以及点到平面的距离。 二、教学内容及学时分配: 第一节向量及其线性运算2学时 第二节数量积向量积和混合积2学时 第三节曲面及其方程2学时 第四节空间曲线及其方程2学时 第五节平面及其方程2学时 第六节空间直线及其方程2学时 三、教学内容的重点及难点: 重点: 向量概念与运算,旋转曲面方程,柱面方程,平面方程直线方程

难点:向量的数量积与向量积,旋转曲面方程,平面束方程,有关直线与平面的综合题 四、教学内容的深化和拓宽: 1、空间直角坐标系的作用,向量的概念及其表示。 2、向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。 3、单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法。 4、平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 5、曲面方程的概念,常用二次曲面的方程及其图形, 五、教学方法与手段 启发探索式教学方法,结合多媒体课件教学。

空间解析几何与向量代数复习题

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面和的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点到直线L :的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) B 364 C 3 2 D 3 9. 求平行于轴,且过点和的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

相关文档
相关文档 最新文档