文档库 最新最全的文档下载
当前位置:文档库 › 向量代数与空间解析几何相关概念和例题

向量代数与空间解析几何相关概念和例题

向量代数与空间解析几何相关概念和例题
向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数

向量及其运算

目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算;

重点与难点

重点:向量的概念及向量的运算。难点:运算法则的掌握

过程:

一、向量

既有大小又有方向的量称作向量

通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.

向量的表示方法有两种:→a、

→AB

向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为|

|→a、|

|→AB.

单位向量:模等于1的向量叫做单位向量.

零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的.

相等向量:方向相同大小相等的向量称为相等向量

平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行.

二、向量运算

向量的加法

向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b .

当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b.

向量的减法:

设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。

→→→→→

A

O

OB

OB

O

A

AB-

=

+

=,

2、向量与数的乘法

向量与数的乘法的定义:

向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反.

(1)结合律λ(μa)=μ(λa)=(λμ)a;

(2)分配律(λ+μ)a=λa+μa;

λ(a+b)=λa+λb.

例1在平行四边形ABCD中,设

?→

?

AB=a,

?→

?

AD=b.

试用a 和b 表示向量?→?MA 、?→?MB 、?→?MC 、?→

?MD , 其中M 是平行四边形对角线的交点. 解 :a +b ?→

??→

?==AM AC 2于是 21-=?→

?MA (a +b ).

因为?→??→

?-=MA MC , 所以

2

1=?→

?MC (a +b ).

又因-a +b ?→

??→

?==MD BD 2, 所以2

1=?→

?MD (b -a ).

由于?→

??→?-=MD MB , 所以2

1=?→

?MB (a -b ).

定理1 设向量a ≠ 0, 那么, 向量b 平行于a 的充分必要条件是: 存在唯一的实数λ, 使 b = λa .

三、空间直角坐标系

过空间一个点O ,作三条互相垂直的数轴,它们都以O 为原点。这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴。三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面。其中x 轴与y 轴所确定的平面叫做xOy 面,y 轴与z 轴所确定的平面叫做yOz 面,z 轴与x 轴所确定的平面叫做zOx 面。三个坐标面把空间分成八个部分,每一部分叫做卦限。含x 轴、y 轴、z 轴正半轴的那个卦限叫做第I 卦限,其它第Ⅱ,Ⅲ,Ⅳ卦限,在xOy 坐标面的上方,按逆时针方向确定。第Ⅴ到第Ⅷ卦限分别在第Ⅰ到第Ⅳ卦限的下方(如图)。

设P 为空间一点,过点P 分别作垂直x 轴、y 轴、z 轴的平面,顺次与x 轴、y 轴、z 轴交于P X ,P Y ,P Z ,这三点分别在各自的轴上对应的实数值x ,y ,z 称为点P 在x 轴、y 轴、z 轴上的坐标,由此唯一确定的有序数组(x ,y ,z )称为点P 的坐标。依次称x ,y 和z 为点P 的横坐标、纵坐标和竖坐标,并通常记为P (x ,y ,z )。

坐标面上和坐标轴上的点, 其坐标各有一定的特征. 例如: 点M 在yOz 面上, 则x =0; 同相, 在zOx 面上的点, y =0; 在xOy 面上的点, z =0. 如果点M 在x 轴上, 则y =z =0; 同样在y 轴上,有z =x =0; 在z 轴上 的点, 有x =y =0. 如果点M 为原点, 则x =y =z =0.

四、利用坐标作向量的线性运算

对向量进行加、减及与数相乘,只需对向量的各个坐标分别进行相应的数量运算

利用向量的坐标判断两个向量的平行: 设a =(a x , a y , a z )≠0, b =(b x , b y , b z ), 向量b //a ?b =λa , 即b //a ?(b x , b y , b z )=λ(a x , a y , a z ), 于是

z

z

y y x x a b a b a b ==.

例2求解以向量为未知元的线性方程组?

??=-=-b y x a

y x 2335,

其中a =(2, 1, 2), b =(-1, 1, -2).

解 如同解二元一次线性方程组, 可得 x =2a -3b , y =3a -5b . 以a 、b 的坐标表示式代入, 即得

x =2(2, 1, 2)-3(-1, 1, -2)=(7, -1, 10), y =3(2, 1, 2)-5(-1, 1, -2)=(11, -2, 16).

例3已知两点A (x 1, y 1, z 1)和B (x 2, y 2, z 2)以及实数λ≠-1, 在直线AB 上求一点M , 使→→

MB AM λ=.

解 设所求点为M (x , y , z ), 则→

) , ,(111z z y y x x AM ---=, →

) , ,(222z z y y x x MB ---=. 依题意有

MB AM λ=, 即

(x -x 1, y -y 1, z -z 1)=λ(x 2-x , y 2-y , z 2-z ) λλ++=

121x x x , λλ++=121y y y , λ

λ++=12

1z z z . 点M 叫做有向线段→

AB 的定比分点. 当λ=1, 点M 的有向线段→

AB 的中点, 其坐标为

221x x x +=

, 221y y y +=, 2

21z

z z +=.

空间向量数量积与向量积

目的:掌握向量的数量积、向量积的定义及数量积的性质;掌握其计算方法。 重点与难点:数量积与向量积的计算方法。 过程:

一、两向量的数量积

数量积的物理背景: 设一物体在常力F 作用下沿直线从点M 1移动到点M 2. 以s 表示位移→

21M M . 由物理学知道, 力F 所作的功为

W = |F | |s | cos θ ,

其中θ 为F 与s 的夹角.

数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的余弦的乘积称为向量a 和b 的数量积,记作a ?b , 即

a ·

b =|a | |b | cos θ . 数量积与投影:

当a ≠0时, |b | cos(a ,^ b ) 是向量b 在向量a 的方向上的投影 数量积的性质:

(1) a·a = |a | 2.

(2) a 、b , 为非零向量, a·b =0是 a ⊥b 的充要条件 数量积的运算律:

(1)交换律: a·b = b·a (2)分配律: (a +b )?c =a ?c +b ?c . (3) (λa )·b = a·(λb ) = λ(a·b ), 数量积的坐标表示:

设a =(a x , a y , a z ), b =(b x , b y , b z ), 则a·b =a x b x +a y b y +a z b z .

设θ是a 与b 的夹角,则当a ≠0、b ≠0时, 有222222||||cos z

y x z y x z z y y x x b b b a a a b a b a b a ++++++=?=b a b a θ

复习高中时的有代表性的例题

例1 一质点在力F=4i + 2j +2k 的作用下,从点A(2, 1, 0)移动到点B(5, –2, 6) ,求F 所做的功及F 与间的夹角.

解 由数量积的定义知, F 所做的功是W=F .s, 其中s=AB =3i – 3j+6k 是路程向量, 故

W=F .s=(4 i + 2j +2k).( 3i – 3j+6k )=18.

如果力的单位是牛顿(N),位移的单位是米(m),则F 所做的功是18焦耳(J).再由式(6.7),有 cos θ =

s F s F ?=2222226)3(322418

+-+++=2

1, 因此, F 与s 的夹角为θ=

3

π

. 例2 求向量a=(5, –2, 5)在 b=(2, 1, 2)上的投影. 解 Cos=

b b a ?=4

1410

210+++-=6. 二、两向量的向量积

向量积: 设向量c 、 a 、b 满足:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定. 则称向量c 是a 与b 的向量积, 记作a ?b , 即

c = a ?b .

向量积的运算律:

(1) 交换律a ?b = -b ?a ;

(2) 分配律: (a +b )?c = a ?c + b ?c .

(3) (λa )?b = a ?(λb ) = λ(a ?b ) (λ为数).

向量积的坐标表示: 若a = a x i + a y j + a z k , b = b x i + b y j + b z k . 则

z

y x z y x b b b a a a k

j i b a =?

=z

y

z y b b a a i –

z

x z x b b a a j +

y

x y x b b a a k .

= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . .

例3 设a =(1,2,–2), b =(–2,1,0), 求a ?b 及与a 、b 都垂直的单位向量.

解 a ?b =0

12221

--k

j i =0122-i –0221--j +1

22

1-k

= 2i +4j +5k .

所求的单位向量为±

2

225)4(21++(2i +4j +5k )=±

15

5

(2i +4j +5k ).

例4 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.

解 根据向量积的定义, 可知三角形ABC 的面积

→→→→||2

1sin ||||21AC AB A AC AB S ABC ?=∠=?. 由于→

AB =(2, 2, 2), →

AC =(1, 2, 4), 因此

4

21222k

j i =?AC AB =4i -6j +2k .

于是 142)6(42

1

|264|21222=+-+=+-=?k j i ABC S .

例5设a =(–2, 3, 1), b =(0,–1, 1), c =(1, –1, 4),三个向量是否共面?

解 因为r =a ?b 与a 、b 所确定的平面垂直,所以当a 、b 、c 三个向量共面时, 应该有 r ⊥c ,即r .c =0.

r =a ?b =1

10

13

2

--k

j i

=(4, 2, 2) ,

所以有

r .c = (4i +2j +2k ).( i – j +4k )=4–2+8=10≠0,

因此三个向量不共面.

空间简单图形及其方程方程

目的:掌握直线、平面、常见曲面的方程及其求法;会利用平面、直线的相互关系解决有关问题。

重点与难点:直线、平面方程及其求法。 过程:

一、平面方程

1、平面的点法式方程

已知平面上一点M 0 (x 0, y 0, z 0)和它的一个法线向量n =(A , B , C ) 则其方程为 A (x -x 0)+B (y -y 0)+C (z -z 0)=0.

例1求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 得所求平面的方程为

(x -2)-2(y +3)+3z =0,

即 x -2y +3z -8=0.

例2已知空间两点M 1(1,2,-1)、M 2(3,-1,2),求过M 1点且与直线M 1 M 2垂直的平面方程。 例3 求过三点M 1(2, -1, 4)、M 2(-1, 3, -2)和M 3(0, 2, 3)的平面的方程. 解:我们可以用→

3121M M M M ?作为平面的法线向量n . 因为→

)6 ,4 ,3(21--=M M , →

)1 ,3 ,2(31--=M M , 所以

k j i k

j i n -+=----=?=9141

326433121M M M M .

根据平面的点法式方程, 得所求平面的方程为 14(x -2)+9(y +1)-(z -4)=0, 即 14x +9y - z -15=0.

2、平面的一般方程

由平面的点法式方程A (x -x 0)+B (y -y 0)+C (z - z 0)=0知,任一平面都可用x , y , z 的一次方程来表示。

方程Ax +By +Cz +D =0称为平面的一般方程, 其中x , y , z 的系数就是该平面的一个法线向量n 的坐标, 即 n =(A , B , C ).

例如, 方程3x -4y +z -9=0表示一个平面, n =(3, -4, 1)是这平面的一个法线向量. 例4 求通过x 轴和点(4, -3, -1)的平面的方程.

解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为 By +Cz =0.

又因为这平面通过点(4, -3, -1), 所以有

-3B -C =0,

将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为

y -3z =0.

二、两平面的位置关系

两平面的位置关系不外是相交、垂直、平行与重合,利用两平面法向量位置关系就可判定

两平面的法线向量分别为n 1=(A 1, B 1, C 1)和n 2=(A 2, B 2, C 2),由于 2

2

22222121212121212^

1|

||) ,c o s (|c o s C B A C B A C C B B A A ++?++++=

=n n θ.:

是两平面夹角,则有

A 1 A 2 +

B 1B 2 +

C 1C 2=0充要条件为平面垂直;

2

1

2121C C B B A A ==则平面重合或平行 例5 求两平面 x -y +2z -6=0和2x +y +z -5=0的夹角. 解 n 1=(A 1, B 1, C 1)=(1, -1, 2), n 2=(A 2, B 2, C 2)=(2, 1, 1), 2

22222212121212121||cos C B A C B A C C B B A A ++?++++=

θ2

11122)1(1|

121)1(21|222222=++?+-+?+?-+?=,

所以, 所求夹角为3

πθ=.

例6 一平面通过两点M 1(1, 1, 1)和M 2(0, 1, -1)且垂直于平面x +y +z =0, 求它的方程. 解1:由M 1到点M 2的向量为n 1=(-1, 0, -2), 平面x +y +z =0的法线向量为n 2= (1, 1, 1). 设所求平面的法线向量为n =(A , B , C ). 则有n ⊥n 1, 即-A -2C =0, A =-2C .

又因为所求平面垂直于平面x +y +z =0, 所以n ⊥n 1, 即A +B +C =0, B =C . 所求平面为 -2C (x -1)+C (y -1)+C (z -1)=0, 即2x -y -z =0.

解2 从点M 1到点M 2的向量为n 1=(-1, 0, -2), 平面x +y +z =0的法线向量为n 2= (1, 1, 1). 设所求平面的法线向量n 可取为n 1? n 2. 因为

k j i k j i n n n --=--=?=2

111 201

21,

所以所求平面方程为2x -y -z =0.

三 直线的方程

直线是两平面的交线,即直线的一般式方程:

??

?=+++=+++0

22221111D z C y B x A D z C y B x A 直线上一点M 0(x 0, y 0, z 0)和方向向量s ={m , n , p },直线的对称式方程:

p

z z n m x x 0

00y -y -==- 例7 将直线?

?

?=++-=+++04320

1z y x z y x 表为对称式

解 取x 0=1,代入方程组得y 0=0、z 0= -2,即点(1,0,-2)在直线上。

两平面的法向量分别为n 1={1,1,1}和n 2={2,-1,3},则s= n 1×n 2=3

1211

1

-k

j i =4i –j –3k ,

所求对称式方程为:

3

2

141-+=

-=-z y x 设直线l 1和l 2的方向向量为a ={x 1, y 1, z 1}、b ={x 2, y 2, z 2},则

φcos =|cos(a ,^b

四 几个曲面方程

例8 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解 通过配方, 原方程可以改写成

(x -1)2+(y +2)2+z 2=5. 这是一个球面方程, 球心在点M 0(1, -2, 0)、半径为5=R .

一般地, 设有三元二次方程

Ax 2+Ay 2+Az 2+Dx +Ey +Fz +G =0,

这个方程的特点是缺xy , yz , zx 各项, 而且平方项系数相同, 只要将方程经过配方就可以化成方程

(x -x 0)2+(y -y 0)2+(z -z 0)2=R 2.

的形式, 它的图形就是一个球面.

例9方程x 2+y 2=R 2表示怎样的曲面?

解 方程x 2+y 2=R 2在xOy 面上表示圆心在原点O 、半径为R 的圆. 在空间直角坐标系中, 这方程不含竖坐标z , 即不论空间点的竖坐标z 怎样, 只要它的横坐标x 和纵坐标y 能满足这方程, 那么这些点就在这曲面上. 也就是说, 过xOy 面上的圆x 2+y 2=R 2, 且平行于z 轴的直线一定在x 2+y 2=R 2表示的曲面上. 所以这个曲面可以看成是由平行于z 轴的直线l 沿xOy 面上的圆x 2+y 2=R 2移动而形成的. 这曲面叫做圆柱面, xOy 面上的圆x 2+y 2=R 2叫做它的准线, 这平行于z 轴的直线l 叫做它的母线.

柱面: 平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面, 定曲线C 叫做柱面的准线, 动直线L 叫做柱面的母线.

上面我们看到, 不含z 的方程x 2+y 2=R 2在空间直角坐标系中表示圆柱面, 它的母线平行于z 轴, 它的准线是xOy 面上的圆x 2+y 2=R 2.

一般地, 只含x 、y 而缺z 的方程F (x , y )=0, 在空间直角坐标系中表示母线平行于z 轴的柱面, 其准线是xOy 面上的曲线C : F (x , y )=0.

例如, 方程y 2=2x 表示母线平行于z 轴的柱面, 它的准线是xOy 面上的抛物线y 2 =2x , 该柱面叫做抛物柱面.

又如, 方程 x -y =0表示母线平行于z 轴的柱面, 其准线是xOy 面的直线 x -y =0, 所以它是过z 轴的平面.

类似地, 只含x 、z 而缺y 的方程G (x , z )=0和只含y 、z 而缺x 的方程H (y , z )=0分别表示母线平行于y 轴和x 轴的柱面.

例如, 方程 x -z =0表示母线平行于y 轴的柱面, 其准线是zOx 面上的直线 x -z =0. 所以

它是过y 轴的平面.

由方程1222222=++c

z b y a x 所表示的曲面称为椭球面. 球面在x 轴、y 轴或z 轴方向伸缩而得的曲面.

把x 2+y 2+z 2=a 2沿z 轴方向伸缩

a c 倍, 得旋转椭球面12

2222=++c z a y x ; 再沿y 轴方向伸缩a b

倍, 即得椭球面1222222=++c

z b y a x .

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:In terspace An alytic Geometry (2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向 量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2?教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3?教学难点:求解平面和空间直线的方程。 4.教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。 (二)特殊曲面(8学时)

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

平面向量的基本概念练习题

平面向量的实际背景及基本概念 一、选择题: 1.下列物理量中,不能称为向量的是( ) A .质量 B .速度 C .位移 D .力 2.设O 是正方形ABCD 的中心,向量AO 、OB 、CO 、OD 是( ) A .平行向量 B .有相同终点的向量 C .相等向量 D .模相等的向量 3.下列命题中,正确的是( ) A .||||a b =a b ?= B .||||a b >a b ?> C .a b a =?与b 共线 D .||00a a =?= 4.在下列说法中,正确的是( ) A .两个有公共起点且共线的向量,其终点必相同 B .模为0的向量与任一非零向量平行 C .向量就是有向线段 D .若||||a b =,则a b = 5.下列各说法中,其中错误的个数为( ) (1)向量AB 的长度与向量BA 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行 A .2个 B .3个 C .4个 D .5个 *6.ABC ?中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF 共线的向量有( ) A .2个 B .3个 C .6个 D .7个 二、填空题: 7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是 . 8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中, (1)与AO 相等的向量有 ; (2)与AO 共线的向量有 ; (3)与AO 模相等的向量有 ; (4)向量AO 与CO 是否相等答: . 9.O 是正六边形ABCDEF 的中心,且AO a =,OB b =,AB c =,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中: (1)与a 相等的向量有 ; (2)与b 相等的向量有 ; (3)与c 相等的向量有 . O A B C D E F

平面向量的基本概念

平面向量的实际背景及基本概念 1.向量的概念:我们把既有大小又有方向的量叫向量。 2.数量的概念:只有大小没有方向的量叫做数量。 数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 3.有向线段:带有方向的线段叫做有向线段。 4.有向线段的三要素:起点,大小,方向 5.有向线段与向量的区别; (1)相同点:都有大小和方向 (2)不同点:①有向线段有起点,方向和长度,只要起点不同就是不同的有向线段 比如:上面两个有向线段是不同的有向线段。 ②向量只有大小和方向,并且是可以平移的,比如:在①中的两个有向线 段表示相同(等)的向量。 ③向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成 6.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母: AB ; 7.向量的模:向量AB 的大小(长度)称为向量的模,记作|AB |. 8.零向量、单位向量概念: 长度为零的向量称为零向量,记为:0。长度为1的向量称为单位向量。 9.平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.即:0 ∥a。 说明:(1)综合①、②才是平行向量的完整定义; (2)向量a、b、c平行,记作a∥b∥c. 10.相等向量 A(起点) B (终点) a

长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有.. 向线段的起点无关......... 11.共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关) 说明:(1)平行向量是可以在同一直线上的。 (2)共线向量是可以相互平行的。 例1.判断下列说法是否正确,为什么? (1)平行向量是否一定方向相同? (2)不相等的向量是否一定不平行? (3)与零向量相等的向量必定是什么向量? (4)与任意向量都平行的向量是什么向量? (5)若两个向量在同一直线上,则这两个向量一定是什么向量? (6)两个非零向量相等当且仅当什么? (7)共线向量一定在同一直线上吗? 解析:(1)不是,方向可以相反,可有定义得出。 (2)不是,当两个向量方向相同的时候,只要长度不相等就不是相等向量,但是是平行的。 (3)零向量 (4)零向量 (5)共线向量(平行向量 (6)长度相等且方向相同 (7)不一定,可以平行。 例2.下列命题正确的是( ) A.a与b共线,b与c共线,则a与c 也共线 B.任意两个相等的非零向量的始点与终点是平行四边形的四顶点 C.向量a与b不共线,则a与b都是非零向量 D.有相同起点的两个非零向量不平行 解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C. B A O D E F

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

空间解析几何与向量代数复习题

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面和的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点到直线L :的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) B 364 C 3 2 D 3 9. 求平行于轴,且过点和的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

《空间解析几何》学习指导

《空间解析几何》学习指导 一、教学目的与课程性质、任务。 《空间解析几何》是数学教育专业专业开设的一门重要基础数学课,它具有逻辑推理的严密性和实际应用的广泛性。本课程的基本概念、基本方法和基本理论是学习后继课程所必备的数学基础,同时本课程对于培养学生的严密的逻辑推理能力,抽象的思维表达能力,空间想象能力以及解决实际问题的能力都有着十分重要的意义。本课程使学生切实体会“代数”与“几何”的密切关系,学会并掌握以代数为工具研究几何问题以及为代数问题寻找直观的几何背景。 二、教学要求 通过这门课程的学习,使学生能够比较系统地掌握几何向量,n维向量的基本概念、基本方法和基本运算技巧。逐步培养学生抽象思维能力,逻辑推理能力,运算技能,并且能运用所学知识解决实际问题。具体要求如下: 第一章向量与坐标 1 使掌握矢量的概念和记法,矢量相等和反矢量的概念 2 了解共线矢量及共面矢量等有关概念 3 掌握矢量加法的三角形法则和平行四边形法则 4理解矢量加法的运算律,矢量减法的定义 5理解数乘矢量的概念,掌握数乘矢量含义及运算律 6理解线性相关和线性无关的含义 7根据矢量的线性组合、线性相关判断矢量的几何关系. 8掌握空间标架的构成及坐标系的概念,掌握空间点和矢量坐标的定义,坐标与矢量的关系 9掌握投影与矢量模及夹角的关系. 10利用数积判断两矢量是否垂直;掌握矢量模的计算和两矢量夹角的计算11了解矢量的矢性积的概念,掌握矢积的计算;矢积坐标的公式;能利用矢积判断两矢量是否共线 12了解矢量的混合积的概念,掌握混合积与矢量坐标的关系 第二章轨迹与方程 1系统地理解曲面方程的概念,掌握矢量方程和参数方程的求法及关系 2系统地理解母线平行于坐标轴的柱面方程的概念,掌握其方程的特征 3掌握空间曲线的一般方程和参数方程的概念及求法,空间曲线在坐标面上的投影及求法 4 了解螺旋线的方程. 第三章平面与空间曲线 1 认识平面方程的几种形式:(1)点法式方程,(2)一般式方程,(3)参数式方程,(4)法式化方程 2 熟练掌握平面方程几种形式的求法 3 熟练掌握点到平面的距离公式 4 熟练掌握平面与平面的夹角公式

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x=0.5 y=6 (B)、x=-0.5 y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题 1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.

高中数学平面向量基本概念

平面向量基本概念 一.考试内容: 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移. 二.考试要求: (1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式. 【注意】向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切.在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用. 三.基础知识: 1.实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 2.向量的数量积的运算律: (1) a·b= b·a(交换律); (2)(λa)·b= λ(a·b)=λa·b= a·(λb); (3)(a+b)·c= a·c +b·c. 切记:两向量不能相除(相约);向量的“乘法”不满足结合律, 3.平面向量基本定理 如果e 1、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有 一对实数λ 1、λ 2 ,使得a=λ 1 e 1 +λ 2 e 2 .不共线的向量e 1 、e 2 叫做表示这一平面内所有向量的 一组基底.

相关文档
相关文档 最新文档