文档库 最新最全的文档下载
当前位置:文档库 › 自由曲面加工理论与应用(第04讲多轴加工刀具路径生成算法

自由曲面加工理论与应用(第04讲多轴加工刀具路径生成算法

H UAZHONG U NIVERSITY OF S CIENCE AND T ECHNOLOG

S CHOOL OF M ECHANICAL S CIENCE & E NGINEERING

自由曲面加工理论与应用

第04讲--刀具路径生成算法

11 June 20121

?

?

等距切削

分层切削

单元切削(Octree)插铣加工

截面线法

?

?

型腔(直壁平底,封闭)型腔(直壁平底,开放)型芯

型芯

型腔(自由曲面)

型腔(自由曲面)

?

?

?

?

?

?

?

?

?

G-buffer

?

?

?

最优路径算法

解决方案一: Dijkstra算法(单源最短路径) 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有 P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j),源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。 1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中; 2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]}) 3.知道U=V,停止。 测试数据:

加工中心常用刀具参数

加工中心常用刀具参数(普通机) 刀具转速进刀切削吃刀量退刀 d32r5 1900 1500 1800 0.6 1300 d25r5 2100 1300 1500 0.6 1200 d20r5 2200 1100 1300 0.5 800 d16r0.5 2400 1000 1100 0.4 800 d12r0.5 2600 800 1000 0.35 600 d10r0.5 2800 700 800 0.35 600 d8r0.5 3000 600 600 0.3 500 d6r0.5 3200 450 500 0.25 400 d12 2800 800 1000 0.35 600 d10 2800 700 800 0.35 600 d8 3000 600 600 0.3 500 d6 3200 450 500 0.25 400 d4 3500 300 400 0.2 400 d12r6 3200 800 1000 0.3 600 d10r5 3600 700 800 0.25 600 d6r3 4000 450 500 0.2 400 d4r2 4800 300 400 0.15 400 d2r1 5600 250 300 0.1 300 d1r0.5 6800 200 200 0.08 250 加工中心常用刀具参数(高速机) 刀具转速进刀切削吃刀量退刀 d16r0.5 6500 1000 1100 0.35 800 d12r0.5 7000 800 1000 0.3 600 d10r0.5 7500 700 800 0.3 600 d8r0.5 8000 600 600 0.3 500 d6r0.5 8500 450 500 0.2 400 d12 7000 800 800 0.35 600 d10 7500 600 650 0.3 600 d8 8000 500 600 0.3 500 d6 10000 350 400 0.25 400 d4 12000 200 300 0.2 300 d2 14000 150 250 0.15 250 d1 16000 150 200 0.1 200 d0.8 21000 100 150 0.06 200 d12r6 8500 600 800 0.25 600 d10r5 8800 500 650 0.2 600 1

刀具路径常见问题解答

刀具路径常见问题解答 主要内容 加工基础 刀具与材料 平面雕刻加工 曲面雕刻加工 公共参数 刀具路径管理 典型加工路径 2.1加工基础 1、什么是数控加工? 数控加工就是将加工数据和工艺参数输入机床,机床的控制系统对输入信息进行运算与控制,并不断地向驱动系统发送运动脉冲信号,驱动系统将脉冲信号进行转换与放大处理,然后由传动机构驱动机床运动,从而完成零件加工。 2、数控加工一般包括那些内容? 1)对图纸进行分析,确定加工区域; 2)构造加工部分的几何形状; 3)根据加工条件,选择加工参数,生成加工路径; 4)刀具路径分析、模拟;

5)开始加工; 3、数控系统的控制动作包括那些? 1)主轴的起、停、转速、转向控制; 2)进给坐标轴的坐标、速度、进给方式(直线、圆弧等); 3)刀具补偿、换刀、辅助动作(机台锁紧/松开、冷却泵等开关); 4、常见的数控系统的有那些? Funuc, Siemens, Fidia, Heidenhain, Fagor, Num, Okuma, Deckel, Mitsubishi 5、普通铣削和数控铣削的主要区别是什么? 普通铣削的进给运动以单轴运动为主,数控铣削实现了多轴联动。 6、数控铣削加工常用的刀具是哪些? 面铣刀、立铣刀、盘铣刀、角度铣刀、键槽铣刀、切断铣刀、成型铣刀。 7、数控加工中需要考虑的切削要素包括那些? 主要考虑的因素是最大切除效率和主轴转速,最大切削效率决定于进给速度、吃刀深度、侧向进给量;主轴转速影响切削速度、每齿每转进给量。 8、影响切削加工的综合因素包括那些? 1)机床,机床的刚性、功率、速度范围等 2)刀具,刀具的长度、刃长、直径、材料、齿数、角度参数、涂层等; 3)工件,材质、热处理性能、薄厚等; 4)装卡方式(工件紧固程度),压板、台钳等; 5)冷却方式,油冷、气冷等; 9、数控铣加工的如何分类? 一般按照可同时控制而且相互独立的轴数分类,常见的有两轴加工、两轴半加工、三轴加工、四轴加工、五轴加工。 10、四轴加工的对象是什么? 主要用于加工单个的叶轮叶片、圆柱凸轮等。 11、五轴加工的对象是什么? 主要用于加工整体叶轮、机翼、垂直于曲面的直壁等。

CNC加工中心刀具的选择与切削用量的确定

CNC加工中心刀具的选择与切削用量 的确定 收藏此信息打印该信息添加:佚名来源:未知 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用C AD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 1.数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。 根据刀具结构可分为: 1)整体式; 2)镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 3)特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为: 1)高速钢刀具; 2)硬质合金刀具; 3)金刚石刀具; 4)其他材料刀具,如立方氮化硼刀具,陶瓷刀具等 从切削工艺上可分为 : 1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 2)钻削刀具,包括钻头、铰刀、丝锥等; 3)镗削刀具; 4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 1)刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 2)互换性好,便于快速换刀; 3)寿命高,切削性能稳定、可靠; 4)刀具的尺寸便于调整,以减少换刀调整时间; 5)刀具应能可靠地断屑或卷屑,以利于切屑的排除; 6)系列化,标准化,以利于编程和刀具管理。 2.数控加工刀具的选择

加工中心的刀具及参数选择

加工中心的刀具及参数选择 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为: ①整体式; ②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;

③特殊型式,如复合式刀具,减震式刀具等。 根据制造刀具所用的材料可分为: ①高速钢刀具; ②硬质合金刀具; ③金刚石刀具; ④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。 从切削工艺上可分为: ①车削刀具,分外圆、内孔、螺纹、切割刀具等多种; ②钻削刀具,包括钻头、铰刀、丝锥等; ③镗削刀具; ④铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。 二、数控加工刀具的选择 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因

游戏路径算法

A*寻路初探 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。 这篇文章非常知名,国内应该有不少人翻译过它,我没有查找,觉得翻译本身也是对自身英文水平的锻炼。经过努力,终于完成了文档,也明白的A*算法的原理。毫无疑问,作者用形象的描述,简洁诙谐的语言由浅入深的讲述了这一神奇的算法,相信每个读过的人都会对此有所认识(如果没有,那就是偶的翻译太差了--b)。 原文链接:https://www.wendangku.net/doc/5a11846654.html,/reference/articles/article2003.asp 以下是翻译的正文。(由于本人使用ultraedit编辑,所以没有对原文中的各种链接加以处理(除了图表),也是为了避免未经许可链接的嫌疑,有兴趣的读者可以参考原文。 会者不难,A*(念作A星)算法对初学者来说的确有些难度。 这篇文章并不试图对这个话题作权威的陈述。取而代之的是,它只是描述算法的原理,使你可以在进一步的阅读中理解其他相关的资料。 最后,这篇文章没有程序细节。你尽可以用任意的计算机程序语言实现它。如你所愿,我在文章的末尾包含了一个指向例子程序的链接。压缩包包括C++和Blitz Basic两个语言的版本,如果你只是想看看它的运行效果,里面还包含了可执行文件。 我们正在提高自己。让我们从头开始。。。 序:搜索区域 假设有人想从A点移动到一墙之隔的B点,如下图,绿色的是起点A,红色是终点B,蓝色方块是中间的墙。

[图1] 你首先注意到,搜索区域被我们划分成了方形网格。像这样,简化搜索区域,是寻路的第一步。这一方法把搜索区域简化成了一个二维数组。数组的每一个元素是网格的一个方块,方块被标记为可通过的和不可通过的。路径被描述为从A 到B我们经过的方块的集合。一旦路径被找到,我们的人就从一个方格的中心走向另一个,直到到达目的地。 这些中点被称为“节点”。当你阅读其他的寻路资料时,你将经常会看到人们讨论节点。为什么不把他们描述为方格呢?因为有可能你的路径被分割成其他不是方格的结构。他们完全可以是矩形,六角形,或者其他任意形状。节点能够被放置在形状的任意位置-可以在中心,或者沿着边界,或其他什么地方。我们使用这种系统,无论如何,因为它是最简单的。 开始搜索 正如我们处理上图网格的方法,一旦搜索区域被转化为容易处理的节点,下一步就是去引导一次找到最短路径的搜索。在A*寻路算法中,我们通过从点A开始,检查相邻方格的方式,向外扩展直到找到目标。 我们做如下操作开始搜索: 1,从点A开始,并且把它作为待处理点存入一个“开启列表”。开启列表就像一张购物清单。尽管现在列表里只有一个元素,但以后就会多起来。你的路径可能会通过它包含的方格,也可能不会。基本上,这是一个待检查方格的列表。 2,寻找起点周围所有可到达或者可通过的方格,跳过有墙,水,或其他无法通过地形的方格。也把他们加入开启列表。为所有这些方格保存点A作为“父方格”。当我们想描述路径的时候,父方格的资料是十分重要的。后面会解释它的具体用途。 3,从开启列表中删除点A,把它加入到一个“关闭列表”,列表中保存所有不需要再次检查的方格。

曲面加工时刀具路径优化

加工模具曲面时刀具路径的优化 摘要:以我厂加工模具实际出发,从行距、步长、分区加工、行间、层间、切入切出点确定等方面研究刀具路径优化对模具曲面的影响。在实际加工中,要得到一个优化的道具路径需要综合考虑,以便保证曲面加工质量和生产效率,曲面曲率变化较大时采用分区加工,切入切除点的选择可提高曲面加工质量和刀具使用寿命。 关键词:模具曲面、优化、刀具路径、曲面加工质量、生产效率 引言 模具铣削数控加工对象大多为曲面加工,曲面加工中最常用到刀具为球头铣刀,球头铣刀在加工曲面时被加工曲面与铣刀球面的公法线经过铣刀球面的球心,使干涉过切现象易于监测,切削运动轨迹容易控制,在复杂曲面数控加工中优先运用。 在实际加工中,工艺员在编制数控加工程序时对刀具参数、铣削方式、刀具路径等了解不透,造成模具曲面加工质量不搞,加工工时过长和刀具使用寿命降低。当参数和路径选择不当时造成模具曲面过切甚至于模具报废。因此,如何选择刀具路径和铣削参数对数控加工有很重要的意义。 一、球头铣刀的铣刀参数和铣削方式 球头铣刀的主要铣削参数有:刀具转速n r/min、切削深度a po mm、行距a eo mm、铣刀每齿进给量f z mm/z、进给速度v f mm/min、铣刀球面半径R mm、铣刀齿数Z 在球头铣刀加工区面时,沿刀轴方向Z方向,当a po ≤R时,球头铣刀在(R-a po )≤d z<(R-h)处为非对称铣削,在(R-h)≤d z ≤R处为对称铣削,如图1所示

(图1)a po ≤R (图2)a po >R 当a po >R 时,球头铣刀在(a po - R )≤d z <(R-h )处为非对称 铣削,在(R-h )≤d z ≤R 处为对称铣削,如图2所示 在曲面精加工时曲面加工余量较小,通常采用图1所示加工方式,而在粗加工时,通常采用图2所示加工方式。图1图2所示中h 为残余波峰高度,也是决定曲面加工粗糙度的主要参数,存在如下关系式: 2a 22eo - =R h 二、曲面加工时刀具路径的优化 在用CAM 软件编程加工曲面时,以UG 软件为例,由于没有科学合理的选择影响加工便面质量的2个因素,切削行距a eo 和步长L, 使得零件表面加工质量粗糙而达不到使用要求。 从2a 22 eo -=R h 可以看出,影响残余波峰高度h 的主要参数为行 距a eo ,h 越大残余波峰越高,加工表面越粗糙,反之h 越小加工表面精度越高,h 、a eo 与加工精度之间成正比关系。但是步距也不能太

自由曲面的刀具路径生成与公差分析翻译

自由曲面的刀具路径生成与误差分析 年轻的根莱(美国.德克萨斯州.德克萨斯农机学院.工业工程学院) 2006.1.30收到;2006.4.25接收; 2006.6.12在线提供 摘要:这篇文章集中于发展一种算法,并以这种算法生成满足一定精度的自由曲面的刀具路径,该算法用数学曲线或曲面来表示加工零件,这样我们可以生成可靠的、近于优化的刀具路径以及后续加工的刀位数据,这种算法包括两个部分:第一是进给步长函数,他决定给定公差的两个刀触点之间的最大距离即进给步长,这个函数独立于面类型并且适用于所有的二次可微的连续参数表面,第二部分是行距函数,他决定给定残高的相邻刀具路径之间的最远距离—行距,这个算法在保持给定公差和残高的同时减少了加工制造和计算时间以及刀触点的个数。用三轴洗床加工几种用推荐的算法生成刀触点的零件,分析加工过程生成的刀具路径并比较最终加工生成的零件与所需零件,以此验证这种算法的优点. 关键词:CAD/CAM;刀具路径生成;数控加工;点云法 1.介绍 工艺规划是制造加工的功能之一,他决定使用哪个工艺和参数来将初始零件生成工程图纸预定的最终零件,系统的输入为一个二位或三维的计算机辅助设计模型,这个模型不仅包括形状和尺寸信息,也包括公差和专门的特征,在便于加工制造方面,CAD/CAM系统直接从CAD模型生成数字控制程序,该程序包括了一连串的指令代码,而且数字控制直接影响加工零件的精度和成本,并在被加工零件上产生特定轨迹即刀具路径。在铣削加工中,刀具沿着刀具路径在刀触点作直线远动,曲面近是一段段直线段如图一所示,由偏差控制的近似直线的精确度叫做误差,如图一相邻刀具路径之间有残留物,洗削加工后需要进行磨削加工来是表面广整,然而消除相邻路径之间的残高的磨削加工是非常好时和昂贵的,大的残高增加了加时间和成本。因此适合的刀具路径对于减少再次加工(入磨削和抛光)是非常重要的。对于给定的公差和高用较少的刀触点来生成刀具路径也是非常重要的,因为我们认为直线段越多,加工时间越长,刀触点之间线段长度叫做进给步长,记为S,最大允许偏差是指公差记为e,如图一所示,更进一步说,相邻刀具路径之间的距离叫做行距,把它记为g,最大允许残高叫做残高记为h,如图一,e与h的值先被确定,然后由他们确定s和g值。 这篇文章中,我们为给定公差和残高的自由曲面的刀具路径生成提供了新的方法,然后用建议的算法生成数控代码,再用此数控代码加工真实零件,以验证零件的精度。

加工中心所用铣刀的种类

加工中心所用铣刀的种类 铣刀主要用于卧式铣床加工平面。圆柱铣刀一般为整体式。铣刀的材料为高速钢,主切削刃分布在圆柱表面上,无副切削刃。铣刀有粗齿和铣刀的种类很多,这里只介绍几种在数控铣床上常用的铣刀。 (一)圆柱铣刀圆柱铣刀主要用于卧式铣床加工平面。圆柱铣刀一般为整体式。 铣刀的材料为高速钢,主切削刃分布在圆柱表面上,无副切削刃。铣刀有粗齿和细齿之分。粗齿铣刀的齿数少,刀齿强度大,容屑空间也大,可重磨次数多,适合于粗加工。细齿铣刀的齿数多,工作平稳,适合于精加工。圆加工中心柱铣刀的直径范围d 二50—100mm,齿数一般为z二6~14齿,螺旋角口二30…—45*。 (二)面铣刀面铣刀主要用于立式铣床加工平面和台阶面等。面铣刀的主切削刃分 布在铣刀的圆柱面上或圆机床电器锥面上,副切削刃分布在铣刀的端面上。面铣刀按结构可以分为整体式面铣刀、硬质合金整体焊接式面铣刀、硬质合金机夹焊接式面铣刀、

硬质合金可转位式面铣刀等形式。 (1)整体式面铣刀。由于这种面铣刀的材料为高速钢,所以其切削速度和进给量都受定 的限制,生产率较低,并且由于该铣刀的刀齿损坏后很难修复,所以整体加工中心式面铣刀的应用较少。 (2)硬质合金整体焊接式面铣刀。这种面铣刀由硬质合金刀片与合金钢刀体焊接而成, 结构紧凑,切削效率高。由于它的刀齿损坏后很也难修复,所机床电器以这种铣刀的应用也不多。 (3)硬质合金可转位式面铣刀。这种面铣刀是将硬质合金可转位刀片直接装夹在刀体槽 中,切削刃磨钝后,只需将刀片转位或更换新的刀片即可继续使用。硬质合金可转位式面铣刀具有加工质量稳定、切削效率高、刀具寿命长、刀片的调整和更换方便以及刀片重复定位精度高特点,所以该铣刀是生产上应用最广的刀具之一。 (三)立铣刀立铣刀是数控铣削加工中应用最广的一种铣加工中心刀。它主要用于 立式铣床上凹槽、台阶面和成型面等。立铣刀的主切削刃分布在铣刀的圆柱表面上,切削刃分布在铣刀的端面上,并且端面中心有中心孔,因此铣削时一般不能沿铣刀轴向作进给运动,而只能沿铣刀径向作进给运动。立铣刀也有粗机床电器齿和细齿之分,粗齿铣刀的刀齿为3—6个,一般用于粗加工;细齿铣刀的刀齿为5~10个,适合于精加工。 立铣刀的直径范围是2—80mm,其柄部有直柄、莫氏锥柄和7:24锥柄等多种形式。为了提高生产效率,除采用普通高速钢立铣刀外,数控铣床上还普遍采用硬质合金螺旋齿

mastercam二维零件设计及轮廓加工刀具路径

第2章二维零件设计及轮廓加工刀具路径二维零件设计是MasterCAM造型设计的基础,应用非常广泛。本章通过一个典型零件说明MasterCAM的零件造型、设计方法、编辑技巧及二维轮廓刀具路径的生成方法。 2.1 零件设计过程及典型编辑方法的应用 图2-1 图2-2 图2-1a为零件的立体图,图2-1b为此零件的标注尺寸,图2-2为加工过程仿真后的效果

图。 以下操作步骤为图2-1a中零件的设计、编辑过程。 步骤一基本设置 层(Level):1 颜色(Color):绿色(10) Z向深度控制:0 线型(Style):实线(Solid) 线宽(Witdth):2 绘图面(Cplane):俯视图(T) 视图面(Gview):俯视图(T) 步骤二建立工件设计坐标系,绘制一矩形 按功能键F9,在屏幕中间出现一个十字线,即为工件设计坐标系。 绘制矩形方法如下:选择主菜单(Main Menu)-绘图(Create)-矩形(Rectangle)-两点(2 points) 输入左上方端点:-40,50 回车 右下方端点:0,-50 回车 结果如图2-3所示。

图2-3 图2-4 步骤三绘制圆 选择主菜单(Main Menu)-绘图(Create)-圆弧(Arc)-圆心、半径(Circ pt+rad) 输入半径:50 回车 圆心:-80,0 回车 按Esc键结束绘制圆。结果如图2-4所示。 步骤四打断圆与直线 选择主菜单(Main Menu)-修整(Modify)-打断(Break)-两段(2 pieces) 用鼠标拾取图2-4中的圆C1,并拾取断点位置于圆上P1位置,则圆被打断为两段,断点分别为P1和P2,如图2-4所示; 拾取图2-4中的直线L1,并拾取断点位置于直线中点P3位置; 打断后的图素与原图素只有拾取图素时才能分辨出,拾取选中的部分,颜色会发生变化。 步骤五修剪 选择主菜单(Main Menu)-修整(Modify)-修剪(Trim)-两图素(2 entities) 用鼠标分别拾取图2-4所示的直线L1上位置P4和圆C1上位置P5,得到图2-5;

Mastercam X4路径刀具加工参数设置

第Ⅲ部分Mastercam CAM 第九章数控加工通用设置

本章学习目标 了解数控编程的基本过程 了解数控编程中坐标系的含义以及相关的术语 掌握刀具设置的方法 掌握材料设置的功能 掌握工作设置中的基本内容和方法 掌握操作管理的基本内容和方法

9.1 数控编程的基本过程 数控编程是从零件设计得到获得合格的数控加工程序的全过程数控加工程序的全过程,,其最主要的任务是计算得到加工走刀中的刀位点计算得到加工走刀中的刀位点,,即获得刀具运动的路径运动的路径。。对于多轴加工还要给出刀轴的矢量矢量。。 数控编程中的关键技术包括数控编程中的关键技术包括::零件几何建模技术建模技术、、加工参数合理设定加工参数合理设定、、刀具路径仿真和后处理技术

CAD 零件设计 获取CAD 零件信息 参数设定 刀具轨迹规划 刀具轨迹仿真 满意否? 后处理,生成NC 代码 检查NC 代码 否 是 加工毛坯设置 切削方式设置 机床/刀具选择 CAD 模型完善

9.1.1零件几何建模技术 CAD 模型是数控编程的前提和基础模型是数控编程的前提和基础,,其首要环节是建立被加工零件的几何模型首要环节是建立被加工零件的几何模型。。复杂零件建模的主要技术是以曲面建模技术为基础的基础的。。Mastercam 的CAM 模块获得CAD 模型的方法途径有以下三种型的方法途径有以下三种::直接获得直接获得、、直接造型和数据转换造型和数据转换。。

9.1.2加工参数合理设定 数控加工的效率和质量有赖于加工方案和加工参数的合理选择和加工参数的合理选择。。加工参数合理的设定包含两方面的内容定包含两方面的内容,,加工工艺分析规划和参数设置参数设置。。

cnc加工中心刀具大全及如何选择【全解】

cnc加工中心刀具大全及如何选择 内容来源网络,由深圳机械展收集整理! 更多相关内容,就在深圳机械展刀具展区! 首先我们来认识一下常用的cnc加工中心刀具: 平底刀:也称平刀或端铣刀。周围有主切削刃,底部为副切削刃。可以作为开粗及清角,精加工侧平面及水平面。有D16,D12,D1O,D8,D6,D4,D3,D2 ,D1.5,D1等。D表示切削刀刃直径。一般情况下,开粗时尽量选较大直径的刀,装刀时尽可能短,以保足够的刚度,避免弹刀。在选择小刀时,要结合被加工区域,确定刀锋长及直身部分长,选择现有的合适的刀。 圆鼻刀:也称平底R刀。可用于开粗、平面光刀和曲面外形光刀。一般角半径为R0.8和R5。一般有整体式和镶刀粒式的刀把刀。带刀粒的圆鼻刀也称飞刀,主要用于大面积的开粗,水平面光刀。有D50R5,D30R5, D25R5, D25R0.8, D21R0.8,D17RO.8等。飞刀开粗加工尽量选大刀,加工较深区域时,先装短加工较浅区域,再装长加工较深区域,以提高效率且不过切。 球刀:也称R刀。主要用于曲面中光刀(即半精加工)及光刀(即精加工)。常用的球刀有D16R8, D12R6, D10R5, D8R4, D6R3, D5R2.5(常用于加工流道),D4R2, D3R1.5, D2R1, D1R0.5。一般情况下,要通过测量被加工图形的内圆半径来确定精加工所用的刀具,选大刀光刀,小刀补刀加工。

如何选择cnc加工中心刀具: 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素选用刀具及刀柄。 刀具选择总的原则:安装调整方便刚性好,耐用度和精度高。在加工要求的前提下,选择较短的刀柄以提高刀具加工的刚性。选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。 1.平面零件周边轮廓的加工,常采用立铣刀。 2.铣削平面时,应选硬质合金刀片铣刀。 3.加工凸台、凹槽时,选高速钢立铣刀。 4.加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀。 5.对一些立体型面和变斜角轮廓外形的加工,采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。 6.在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保加工精度,切削行距一般取得很能密,故球头常用于曲面的精加工。 7.平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优选择平头刀。 8.在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标zhun刀柄以便使钻、镗、扩、铣削等工序用的标zhun 刀具,迅速准确地装到机床主轴或刀库上去。应尽量减少刀具数量;一把刀具装夹后应完成其所能进行的所有加工部位;粗精加工的刀具应分开使用即使是相同尺寸规格的刀具;先铣后钻;先进行曲面精加工再进行二维轮廓精加工;在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。

自由曲面加工理论与应用(第03讲--刀具路径生成算法概述)

自由曲面加工理论与应用 第03讲--刀具路径生成算法概述

刀具路径生成方法的分类 (Taxonomy of tool-path generation) ?刀具路径生成方法包含的要素(Tool-path generation (TPG) mechanism) ?1)刀具路径规划的区域(Path-planning domain) 在二维区域内规划走刀模式(toolpath patterns),生成刀 具路径 (2D domain where tool-path patterns are planned) ?2)刀具路径生成的曲面(Path-generation surface) 在CC-surface或CL-surface等3D surface上生成刀具路径 (3D surface →CC-surface or CL-surface)。

三种刀具路径规划的区域(Three types of Path-planning domains) 1)参数区域(Parameter-domain(PD)): tool-paths are planned on the u,v-domain of the 3D surface r(u, v), and then they are mapped back to r(u, v). 2)导动平面(Guide-plane(GP)): tool-paths are planned on a separate “guide-plane”, and then they are projected on the surface. 3)导动曲面(Drive-surface(DS)): tool-path are defines as a series of intersection curves between “drive surfaces”and the pare-surface

基于PowerMILL曲面加工刀具路径优化方案研究

2016年1月 第44卷第2期 机床与液压 MACHINETOOL&HYDRAULICS Jan 2016 Vol 44No 2 DOI:10.3969/j issn 1001-3881 2016 02 018 收稿日期:2014-11-11 基金项目:云南省科技厅应用基础研究基金资助项目(2013FD062) 作者简介:叶选林(1984 ),男,硕士,讲师,研究方向为先进制造技术二CAD/CAM集成技术三E-mail:yexuanlin@ 126 com三 基于PowerMILL曲面加工刀具路径优化方案研究 叶选林 (云南开放大学机电工程学院,云南昆明650223) 摘要:在曲面加工中,刀具路径是影响切削效率和加工质量的关键因素之一,刀具路径是否合理至关重要三结合上气盖的加工工艺,对PowerMILL软件生成的刀具路径进行研究,发现在加工过程中有抬刀过多二陡峭的部分有尖角存在及刀路分布不均匀的情况,这严重影响了零件加工效率和表面质量三针对这一问题,提出刀具路径的优化方案,提高产品加工效率和表面质量,对实际生产有一定的借鉴意义三 关键词:PowerMILL软件;曲面加工;刀具路径优化;工艺方案 中图分类号:TH164一一文献标志码:B一一文章编号:1001-3881(2016)2-059-3 ResearchontheOptimizationSchemeofSurfaceProcessing ToolPathBasedonPowerMILL YEXuanlin (CollegeofMechanicalandElectricalEngineering,YunnanOpenUniversity,KunmingYunnan650223,China) Abstract:Insurfacemachining,thetoolpathisoneofthekeyfactorsaffectingthemachiningefficiencyandquality,whetherthe toolpathisreasonableisveryimportant.Combiningwiththeprocessofgascap,thetoolpathgeneratedbyPowerMILLsoftwarewasstudied.Itwasfoundthatintheprocessingprocess,toomuchliftingcutter,pointedtoolpathexistinginsteeppart,uneventoolpath distributionseriouslyaffectedthepartsmachiningefficiencyandsurfacequality.Tosolvethisproblem,optimizationschemeoftoolpath wasputforward,productsprocessingefficiencyandsurfacequalitywereimproved.Ithascertainreferencesignificancetoactualpro? duction. Keywords:PowerMILLsoftware;Surfacemachining;Toolpathoptimization;Processscheme 一一PowerMILL是世界上著名的功能最强大二加工策略最丰富的数控加工编程软件系统,同时也是CAM软件技术最具代表性的加工软件,具有集成一体的加工实体仿真,方便用户在加工前了解整个加工过程及加工结果,节省加工时间三CAM系统与CAD分离,在网络下实现一体化集成,更能适应工程化的要求,代表着CAM技术最新的发展方向[1]三下面以上气盖为载体,对上气盖在PowerMILL软件编程中刀具路径等进行研究,并提出优化方案三 1一零件模型的工艺分析及模拟加工1 1一零件模型的工艺分析 图1一上气盖模型图 图1可知,该零件的结构并不复杂,但局部的加工精度和表面粗糙度要求很高,加工的部分包括曲面和平面,零件的毛坯下半部分已经加工底 面作为基准,所以只考虑上半部分的加工,采用毛坯的加工尺寸210mm?100mm?32mm,数控加工中,按开粗?二次开粗?半精加工?精加工?清角精加工进行三 1 2一零件模拟加工 通过对上气盖的综合分析后,从实际应用研究和 积累的相关经验出发,建议在PowerMILL的区域清除粗加工中优先选用偏置加工策略[2]三选取?20mm圆鼻刀开粗,选取?10mm球刀二次开粗,让零件的余量均匀0 3mm,这样有效地保护了刀具三选取? 10图2一上气盖精加工刀具路径mm的球头刀半精加 工,计算残留边界时所用的余量三选取?8mm的球头刀精加工,余量0,设置加工参数 得到精加工刀具路径,如图2所示三因粗加

加工中心刀具选择技巧

加工中心刀具選擇技巧 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。 二、数控加工刀具的选择

五轴数控加工的刀具路径规划与动力学仿真

五轴数控加工的刀具路径规划与动力学仿真 【摘要】五轴数控作为航天、航空、国防、能源加工的重要方法,对提高制造水平以及工业技术具有重要作用。近年来,被广泛应用于各军事工业以及民用工业中,由于它在传统三轴加工的基础上增加两个自由度,所以用五轴加工能获得更好的加工质量与生产效率。本文结合五轴数控加工,对刀具路径规划以及动力学仿真进行了简要的探究和阐述。 【关键词】五轴数控加工;刀具路径;规划;动力学仿真 传统的三轴数控加工通过刀具平动实现各零件加工;五轴数控在三轴机床的基础上,增加了两个旋转轴,让刀具能在工作空间向任意方向移动。五轴数控加工的优势是通过控制刀轴,在改变刀轴方向的同时,从源头上避免零件与刀具干涉,进行叶轮整体与螺旋桨等相对复杂的零件加工,更好的匹配工件曲面以及刀具几何,在有效切宽的同时,进一步实现大型敞口曲面零件加工;在转变加工环境的同时,用刚度相对较低的刀具,减小刀具伸量。另外,控制刀轴方向还可以有效控制切削区域,在减小刀具磨损以及切削力的过程中,确保表面加工质量。但是由于旋转运动的引入,在刀轴更加灵活的同时,也增加了刀具规划的难度;由于进给速度不同,在瞬时变化的过程中,切削力与动力学等问题越来越复杂。 一、五轴数控加工的刀具路径规划 刀具路径规划作为整个数控的核心技术,在复杂的五轴刀具加工中,除了必须满足几何约束外,还必须整合物理因素以及动态特性。对于加工较难的工件,物理因素与动态特性主要取决于加工质量与效率,这也是刀具路径必须考虑的方面。在规划刀具路径时,必须在无干扰的基础上,通过改善刀轴方向,进一步扩大切削面积。 (一)干涉避免 目前,没有干涉的刀位规划可以分成:可达性以及后检测先规划的方法。干涉避免作为复杂曲面加工必须考虑几何约束。先生成后检测,是先生成刀具路径,再进行对应的干涉规划,通过改善刀轴方向,进一步避免干涉;而在可达性的基础上进行刀具规划,则是直接形成刀具路径的重要方法。先生成后检测的工作重心集中在调整刀轴方向以及检查干涉中。数控程序的刀位点通常有几万到十几万行,在检查中需要花费大量资源以及计算时间。所以研究重点必须放在检查干涉效率上。在复杂零部件加工时,后检测的方法需要不断调整刀轴方位,在干涉检查中,根据几何约束,进一步强化刀轴方向。 可达性规划方法,首先,应该在离散的触点中计算出对应的方向,再规划刀具路径,这种方法不仅可以正确判断零件的加工性,还可以有效减少刀具路径检测与调整。在刀具无干涉优化路径中,也可以根据机床刀轴方向,在努力克服刀轴方向难题的同时,计算刀轴需要的时间与资源。因此,研究重点必须放在刀具可达方向上。主要有:可视锥法与空间法,空间法的关键是映射到对应的空间。 (二)加工效率 到目前为止,五轴数控加工的重点仍是球头刀,由于效率不高,规划简单,所以必须调整姿态、位置,让刀触点轨迹接近理论曲面,进而不断扩大给定精度的宽度。对于敞口、平坦的曲面,如何充分利用五轴机床的潜力已逐渐成为当今研究的热点。在研究集中性圆环刀、平底刀加工,或者圆锥刀、圆柱刀加工时,根据数控加工要求,在靠点成形的过程中,有效控制刀具切削面积,提高加工效率,或者直接“宽行加工”。在这个过程中,单参数包络原理也就是五轴数控的加工成形原理,真实的加工误差就是包络面与工件曲面的法向误差。因此,怎样在单个刀位规划中,整合工件曲面与刀具包络面就成了非常重要的问题,甚至直接影响刀位精度。由于操作复杂性以及难度,很多数控加工单位都使用了简化处理的方法,把刀位规划成单个刀位,在工件曲面与刀具曲面优化中,根据优化模型真实反映加工进程,对刀位

一种基于路段惩罚法的合理路径集生成算法

第26卷 第9期2009年9月 公 路 交 通 科 技 Journal of Highway and Transportation Research and Development Vol 26 No 9 Sep 2009 文章编号:1002 0268(2009)09 0107 05 收稿日期:2008 08 02 基金项目: 十一五 国家科技支撑计划资助项目(2006BAG01A04) 作者简介:龚峻峰(1981-),男,广东韶关人,博士,研究方向为智能交通系统 (floydgong@hotmai l com) 一种基于路段惩罚法的合理路径集生成算法 龚峻峰,余 志,何兆成 (中山大学 智能交通研究中心,广东 广州 510275) 摘要:为了给路径选择模型提供合理的路径集输入,使路径集能够包含更多驾驶员实际选择的路径,提出了一种基于路段惩罚法的路径集生成算法。根据发生拥堵的频率定义路段的拥堵指数,然后根据拥堵指数确定新算法的惩罚规则:在上一次计算的最优路径中需要增加阻抗的路段,是拥堵指数较大路段,而不是原始算法提出的所有路段。通过定义合理的指标评价路径集生成算法的有效性,根据实测的驾驶员出行路径数据评价改进的路段惩罚算法、原始的路段惩罚法以及应用较广泛的随机分类组合法。结果表明,在几种算法中本文提出算法生成的路径与实测路径完全一致的比例最大。 关键词:智能运输系统;合理路径集;路段惩罚;路径集生成算法;路径选择中图分类号:U491 文献标识码:A A Reasonable Route Choice Set Generation Algorithm Based on Link Penalty Method GONG Junfeng,YU Zhi,HE Zhaocheng (Research Center of Intelligent Transport Systems,Sun Yat sen University,Guangzhou Guangdong 510275,China) Abstract:To input a reasonable route choice set containing more routes of drivers !real choices into the route choice model,a route choice set generation algorithm based on link penalty method was proposed According to congestion frequency,link congestion index was defined to establish the penalty rule of the algorithm The impedances of the links with large congestion indexes in the shortest path of last iteration,which is different from all of the links in the original algorithm,were increased in the proposed algorithm Reasonable indexes were defined to evaluate the efficiency of route choice set generation algorithm According to measured data of drivers !real travel routes,an evaluation of the proposed link penalty algorithm,the original link penalty algorithm and the widely used Monte Carlo labeling combination algorithm was performed The results show that the proposed algorithm reproduces better observed behavior Key words:Intelligent Transport Systems;reasonable route choice set;link penalty;route choice set generation algorithm;route choice 0 引言 驾驶员的路径选择模型是微观交通仿真的核心模型之一,同时也是研究路径诱导的基础。对路径选择的建模通常分为两步:第1步是根据给定的路网生成有限的路径集,作为驾驶员可能选择的路径;第2步是在上一步生成的路径集中计算选择每条路径的概 率。因此,生成合理的路径集,使其尽量多的包含驾驶员实际选择的路径,对路径选择建模有重要的意 义。路径选择模型中的路径集生成算法大致可分为两大类:带约束的路径枚举法与基于最优路径的迭代搜索法[1-2]。 带约束的路径枚举法包括分支界限法(Branch &Bound)[3]与分层定向法(Multilevel Orientation)[4],从

相关文档
相关文档 最新文档