文档库 最新最全的文档下载
当前位置:文档库 › 高中数学竞赛专题讲座---平面几何选讲

高中数学竞赛专题讲座---平面几何选讲

高中数学竞赛专题讲座---平面几何选讲
高中数学竞赛专题讲座---平面几何选讲

平面几何选讲 反演变换

基础知识 一. 定义

1. 设O 是平面π上的一个定点,k 是一个非零常数.如果平面π的一个变换,使得对于平面π上任意异

于O 的点A 与其对应点'A 之间,恒有(1)'

,,A O A 三点共线;(2)'OA OA k ?=,则这个变换称为平面π

的一个反演变换,记做(,)I O k .其中,定点O 称为反演中心,常数k 称为反演幂,点'A 称为点A 的反点. 2. 在反演变换(,)I O k 下,如果平面π的图形F 变为图形'F ,则称图形'F 是图形F 关于反演变换(,)I O k 的反形.反演变换的不动点称为自反点,而反演变换的不变图形则称为自反图形.

3. 设两条曲线u v 、相交于点A ,l 、m 分别是曲线u v 、在点A 处的切线(如果存在),则l 与m 的交角称为曲线u v 、在点A 处的交角;如果两切线重合,则曲线u v 、在点A 处的交角为0.特别地,如果两圆交于点,那么过点作两圆的切线,则切线的交角称为两圆的交角.当两圆的交角为90时,称为两圆正交;如果直线与圆相交,那么过交点作圆的切线,则切线与直线的交角就是直线与圆的交角.当这个交角为90时,称为直线与圆正交. 二. 定理

定理1. 在反演变换下,不共线的两对互反点是共圆的四点.

定理2. 在反演变换(,)I O k 下,设A B 、两点(均不同于反演中心O )的反点分别为'

'

A B 、,则有'

'B A =

''

k A B AB OA OB

=?.

定理3. 在反演变换下,过反演中心的直线不变.

定理4. 在反演变换下,不过反演中心的直线的反形是过反演中心的圆;过反演中心的圆的反形是不过反演中心的直线.

定理5. 在反演变换下,不过反演中心的圆的反形仍是不过反演中心的圆. 定理6. 在反演变换下,两条曲线在交点处的交角大小保持不变,但方向相反.

定理7. 如果两圆或一圆一直线相切于反演中心,则其反形是两条平行直线;如果两圆或一圆一直线相切于非反演中心,则其反形(两圆或一圆一直线)相切.

定理8.

典型例题 一. 证明点共线

例1. ABC 的内切圆与边BC 、CA 、AB 分别相切于点D 、E 、F , 设L 、M 、N 分别是EF 、FD 、DE 的中点.求证:ABC 的外心、 内心与LMN 的外心三点共线.

证明:如图,设ABC 的内心为I ,内切圆半径为r .以内心I 为反演中心,内切圆为反演圆作反演变换2

(,)I I r ,则A 、B 、C 的

反点分别为L 、M 、N ,因而ABC 的反形是LMN 的外接圆.故

ABC 的外心、内心和LMN 的外心三点共线.

二. 证明线共点

例2. 四边形ABCD 内接于

O ,对角线AC 与BD 相交于P ,设

外心分别为1O 、2O 、3O 、4O .求证:OP 、13O O 、24O O 证明:作反演变换(,)I P PC PA ?,则A 、C 互为反点,B 、

D 互为反点,O 不变,直线1PO 不变,ABP 的外接圆的反形

是直线CD .由于直线1PO 与ABP 的外接圆正交,因而1PO 与CD

正交,即有1PO CD ⊥.又3OO CD ⊥,所以13//PO O O ;同理31//PO O O ,所以四边形13PO OO 为平行四边形,从而13O O 过PO 的中点;同理24O O 也过PO 的中点.故OP 、13O O 、24O O 三线共点. 三. 证明点共圆

例3. 设半圆的直径为AB ,圆心为O ,一直线与半圆交于C 、D 两点,且与直线AB 交于M .再设AOC 与DOB 的外接圆的第二个交点为N .求证:ON MN ⊥.

证明:以O 为反演中心作反演变换2

(,)I O r ,其中,r 为半圆的半径,则半圆上的每一点都不变,

()AOC 与()DOB 的反形分别为直线AC 、BD .且设M 、N 的反点分别为'M 、'N ,则'N 为直线

AC 与BD 的交点,'M 在直径AB 上,直线MN 的反形为的反形为

CDO 的外接圆.而'ON NM ON ⊥?是''OM N 外'''M N OM ?⊥.于是问题转化为证明'''M N OM ⊥.O

4

'AD BN ⊥,'BC AN ⊥,O 是AB 的中点,所以过O 、C 、D 三点的圆是'N AB 的九点圆,而'M 在

九点圆上,又在边AB 上(不同于O 点),故'

'

M N AB ⊥,因此ON MN ⊥.

四. 证明一些几何(不)等式

例4. 设六个圆都在一定圆内,每一个圆都与定圆外切,并且与相邻的两个小圆外切,若六个小圆与大圆的切点依次为1A 、2A 、3A 、4A 、5A 、6A .证明:123456234561A A A A A A A A A A A A ??=??

证明:如图以6A 为反演中心作反演变换6(,1)I A ,则

O 与6O 的反形为两条平行线,其余5个圆

的反形皆是与两条平行线中一条相切的圆;且反形中第一个圆与第五个圆均与两平行线相切,而其余三圆均与相邻的两圆相切.设1A 、2A 、3A 、4A 、5A 的反点分别为'

1A 、'

2A 、'

3A 、'

4A

、'

5A ,则其反形中的

五个圆与两平行线中的一条(即

O 的反形)依次切于'1A 、'2A 、'3A 、'4A 、'5A ;再设这五个圆的半径依

次为1r 、2r 、3r 、4r

、5r ,则由勾股定理可得''

12A A

==同理''

23A A =,

''34A A =''

45A A =15r r =,于是''''''''12

342345A A A A A A A A ?=?.但''12

126162

A A A A A A A A =?,

''34346364A A A A A A A A =

?,''23236263A A A A A A A A =?,''

45456465A A A A A A A A =?.所以1234234561626364626364

A A A A A A A A A A A A A A A A A A A A A A ??=?????

342345

636462636465

A A A A A A A A A A A A A A A A A A ?=????故123456234561A A A A A A A A A A A A ??=??.

'

5A 4

A 3A '2

A 1A

练习:

1. (2002土耳其数学奥林匹克)两圆外切于点A ,且内切于另一

Γ于点B 、C ,另D 是小圆内公切线

割Γ的弦的中点,证明:当B 、C 、D 不共线时,A 是BCD 的内切圆圆心.

2. (第30届IMO 预选题)双心四边形是指既有内切圆又有外接圆的四边形.证明双心四边形的两个圆心与对角线的交点共线.

3. (1997全国高中数学联赛)已知两个半径不等的圆1O 与圆2O 相交于M 、N 两点,圆1O 与圆2O 分别于圆O 内切于S 、T .求证:OM MN ⊥的充分必要条件是S 、N 、T 三点共线.

1212O O M N O O O S T OM MN S N T ⊥如图,已知两个半径不相等的圆和圆相交于、两点,且圆、圆分别与圆内切于、两点,求证:的充分必要条件是、、三点共线;1212O O M N O O O S T OM MN S N T ⊥如图,已知两个半径不相等的圆和圆相交于、两点,且圆、圆分别与圆内切于、两点,求证:的充分必要条件是、、三点共线;1212O O M N O O O S T OM MN S N T ⊥如图,已知两个半径不相等的圆和圆相交于、两点,且圆、圆分别与圆内切于、两点,求证:的充分必要条件是、、三点共线;

相关文档
相关文档 最新文档