文档库 最新最全的文档下载
当前位置:文档库 › 分形几何与分形艺术

分形几何与分形艺术

分形几何与分形艺术
分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术

作者:

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。

一、分形几何与分形艺术

什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。

"分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

图 1 Mandelbrot集合

图 2 Mandelbrot集合局部放大

图 3 Mandelbrot集合局部放大

用数学方法对放大区域进行着色处理,这些区域就变成一幅幅精美的艺术图案,这些艺术图案人们称之为"分形艺术"。"分形艺术"以一种全新的艺术风格展示给人们,使人们认识到该艺术和传统艺术一样具有和谐、对称等特征的美学标准。这里值得一提的是对称特征,分形的对称性即表现了传统几何的上下、左右及中心对称。同时她的自相似性又揭示了一种新的对称性,即画面的局部与更大范围的局部的对称,或说局部与整体的对称。这种对称不同于欧几里德几何的对称,而是大小比例的对称,即系统中的每一元素都反映和含有整个系统的性质和信息。这一点与上面所讲的例子:"一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息",完全吻合。不管你是从科学的观点看还是从美学的观点看,她都是那么富有哲理,她是科学上的美和美学上的美的有机结合。

二、复平面中的神奇迭代

Mandelbrot集合是Mandelbrot在复平面中对简单的式子 Z <- Z^2 + C 进行迭代产生的图形。虽然式子和迭代运算都很简单,但是产生的图形出现那么丰富多样的形态及精细结构简直令人难以置信以至于不可思议。在传统几何学中难以找到如此简单的规律隐藏着如此复杂而生动的例子。Mandelbrot集合告诉我们自然界中简单的行为可以导致复杂的结果。例如,大型团体操中每个人穿的衣服只有几种颜色中的一种,每个人的动作也只是导演规定的几种之一。但是整体上可以显示出多种多样的复杂形态。

Julia 集合

在复平面上,水平的轴线代表实数,垂直的轴线代表虚数。每个Julia集合(有无限多个点)都决定一个常数C,它是一个复数。现在您在复平面上任意取一个点,其值是复数Z。将其代入下面方程中进行反复迭代运算:

就是说,用旧的Z自乘再加上C后的结果作为新的Z。再把新的Z作为旧的Z,重复运算。当你不停地做,你将最后得到的Z值有3种可能性:

1、Z值没有界限增加(趋向无穷)

2、Z值衰减(趋向于零)

3、Z值是变化的,即非1或非2

趋向无穷和趋向于零的点叫定常吸引子,很多点在定常吸引子处结束,被定常吸引子所吸引。非趋向无穷和趋向于零的点是"Julia集合"部分,也叫混沌吸引子。

问题是我们怎样才能让计算机知道哪一个点是定常吸引子还是"Julia集合"。一般按下述算法近似计算:

n=0;

while ((n++ < Nmax) && (( Real(Z)^2 + Imag(Z)^2) < Rmax))

{

Z=Z*Z+C;

其中:Nmax为最大迭代次数

Rmax为逃离界限

退出while循环有两种情况,第一种情况是:

(Real(Z)^2 + Imag(Z)^2) >= Rmax

属于这种情况的点相当于"1、Z值没有界限增加(趋向无穷)",为定常吸引子,我们把这些区域着成白色。第二种情况是:

n >= Nmax

属于这种情况的点相当于"2、Z 值衰减(趋向于零)"或"3、Z 值是变化的",我们把这些区域着成黑色。黑色区域图形的边界处即为"Julia集合"。"Julia集合"有着极其复杂的形态和精细的结构。

黑白两色的图形艺术感染力不强。要想得到彩色图形,最简单的方法是用迭代返回值n来着颜色。要想获得较好的艺术效果,一般对n做如下处理:

Red = n*Ar+Br;

Grn = n*Ag+Bg;

Blu = n*Ab+Bb;

if ((Red & 0x1FF) > 0xFF) Red = Red ^ 0xFF;

if ((Grn & 0x1FF) > 0xFF) Grn = Grn ^ 0xFF;

if ((Blu & 0x1FF) > 0xFF) Blu = Blu ^ 0xFF;

其中:Ar、Ag、Ab及Br、Bg、Bb为修正量

获得的Red、Grn、Blu为RGB三基色,着色效果为周期变化,具有较强的艺术感染力,而且等位线也蕴藏在周期变化的色彩之中。

你可以想象得出,在屏幕上顺序的试用每个像素点来反复迭代方程要花费很长的时间。一幅 1024x768 屏幕尺寸的画面有786432个点。其中一些点在计算机上要反复迭代方程次数达1000次(取决于Nmax的取值)或更多次才放弃运算。运算产生一幅Julia集合需要花费很长的时间,有时需要产生一幅做海报用的大图像时,如 10240x7680,要花几天的时间。当然,你使用高速计算机会缩短这个时间。图 4、5、6是三幅Julia集合:

图 4 象尘埃一样的结构

图 5 稳定的固态型

图 6 象树枝状

Mandelbrot 集合

将Mandelbrot集合和Julia集合联系在一起,Julia集合有若干类型,都包含在Mandelbrot集合之中。Julia集合中的C是一个常量,而Mandelbrot集合的C是由进入迭代前的Z值而定。迭代结果,Z值同样有3种可能性,即:

1、Z值没有界限增加(趋向无穷)

2、Z值衰减(趋向于零)

3、Z值是变化的,即非1或非2

Mandelbrot集合是所有的朱莉娅集合的合并,Mandelbrot集合的某个区域放大后就是这个点的Julia集合。 Mandelbrot集合有着一些很异国情调并且古怪的形状(见图1)。你能不停地永远放大Mandelbrot集合,但是受到计算机精度的限制。

Newton/Nova 分形

Newton奠定了经典力学、光学和微积分学的基础。但是除了创造这些自然科学的基础学科外,他还建立了一些方法,这些方法虽然比不上整个学科那么有名,但已被证明直到今天还是非常有价值的。例如,牛顿建议用一个逼近方法求解一个方程的根。你猜测一个初始点,然后使用函数的一阶导数,用切线逐渐逼近方程的根。如方程 Z^6 + 1 = 0有六个根,用牛顿的方法"猜测"复平面上各点最后趋向方程的那一个根,你就可以得到一个怪异的分形图形。和平常的Julia分形一样,你能永远放大下去,并有自相似性。牛顿分形图形中的颜色显示每个答案的种类及性质,即迭代到目的地花费的时间,如图7所示:

图7 Newton分形

Paul Derbyshire研究牛顿分形图形时,他把Julia集合的常值C加入进去改变了一下算法,并用同样的方法去估算Z,逼近答案,产生奇特的并称之为"Nova"的分形图形。"Nova"类型分形图形如图8所示:

图 8 Nova分形

三、关于分形艺术的争论

把计算机产生的图形看成是艺术,有人可能要提出一些疑问。这些图形可以利用高品质的打印机产生任意多幅同样质量的"原作",从而在商业化的艺术市场上造成混乱,因此她没有收藏价值,没有收藏价值的作品还能算得上是艺术吗

这是一个十分敏感的问题。早在六十年代初有些数学家和程序设计人员就开始利用计算机及绘图设备从事这方面的工作。但他们大部分人避免将自己的工作与"艺术"一词挂起钩来,以免与艺术界的人们发生冲突。但是有一些人还是挺着腰杆去面对批评,承认计算机是视觉艺术的一种新工具,称他们自己的方法为"计算机艺术"。在批评面前,他们没有受到影响。他们不顾理论界的反对而继续自己的探索。他们积累了大量令人难忘的成果。正因为他们的努力才出现了今天的PhotoShop、Corel DRAW等等着名的软件,以及各种计算机艺术团体组织。PhotoShop也成了某些美术专业学生的必修课。

当今时代出现的充满科技含量的"分形艺术"又不同于运用PhotoShop从事的计算机艺术创作。 "分形艺术"是纯数学产物,是否能算得上艺术必然会引起新的争论。争论最活跃的问题是:分形图形是纯数学产物能算得上艺术吗既然学习数学和程序设计就可以从事艺术创作了,学习美术专业还有什么用处呢

这个问题提的好。从事分形艺术创作的人要研究产生这些图形的数学算法,这些算法产生的图形是无限的。他们没有结束,你永远不能看见它的全部。你不断放大她们的局部,也许你可能正在发现前人没曾见到过的图案。这些图案可能是非常精彩的。她们与现实世界相符合,从浩瀚广阔的宇宙空间到极精致的细节,是完全可以用数学结构来描述的。另一个的问题是颜色,好的颜色选择,就可以得到一幅奇妙的图形。糟糕的选择,你得到的就是垃圾。所以说,创造分形艺术,最好再学一点绘画基础、色彩学等,那将是大有益处。

分形几何冲击着不同的学术领域,她在艺术领域显示出非凡的作用。创作精美的分形艺术是国内外分形艺术家们的人生追求,总有一天分形艺术会登上大雅艺术殿堂。

分形:数学与艺术结合的明珠(上)

文章来源:

大家注意到最近 google 图标变成这个样子

很多人不明白,这是什么意思,其实这是为了纪念法国数学家Gston Julia是,他发现了在数论中有名的julia序列,就是在这个google LOGO上面看到的数学公式。通过这个数学公式可以在解析几何上实现很多不规则边的图形。学名,也叫做分形。我们在网上搜索了一些资料,为大家做一下分形这个图形学上的概念普及。

认识分形

作为一门新兴学科,分形不但受到了科研人员的青睐,而且因为其广泛的应用价值,正受到各行各业人士的关注。那么,在我们开始学习分形之前,首先应该明白的一件事情是:什么是分形

严格地而且正式地去定义分形是一件非常复杂而且困难的事情。但是,有一些不太正规的定义却可以帮助我们理解分形的含义。在这些定义中,最为流行的一个定义是:分形是一种具有自相似特性的现象、图象或者物理过程。也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已。

让我们来看下面的一个例子。下图是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。而枝杈的枝杈也和整体相同,只是变得更加小了。那么,枝杈的枝杈的枝杈呢自不必赘言。

如果你是个有心人,你一定会发现在自然界中,有许多景物和都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。其实,远远不止这些。从心脏的跳动、变幻莫测的天气到股票的起落等许多现象都具有分形特性。这正是研究分形的意义所在。例如,在道·琼斯指数中,某一个阶段的曲线图总和另外一个更长的阶段的曲线图极为相似。

上图中的风景图片又是说明分形的另一很好的例子。这张美丽的图片是利用分形技术生成的。在生成自然真实的景物中,分形具有独特的优势,因为分形可以很好地构建自然景物的模型。

除了自相似性以外,分行具有的另一个普遍特征是具有无限的细致性。上面的动画所演示的是对Mandelbrot集的放大,只要选对位置进行放大,就会发现:无论放大多少倍,图象的复杂性依然丝毫不会减少。但是,注意观察上图,我们会发现:每次放大的图形却并不和原来的图形完全相似。这告诉我们:其实,分形并不要求具有完全的自相似特性。

不管你信不信,上面的这张月球表面的照片也是用分形技术生成的。如果你把图片放大观看,也可以看到更加细致的东西。因为,分形能够保持自然物体无限细致的特性,所以,无论你怎么放大,最终,还是可以看见清晰的细节。

Kohn雪花和Sierpinski三角形也是比较典型的分形图形,它们都具有严格的自相似特性(仔细看看,是不是这样)。但是在前面说述的Mandelbrot集合却并不严格自相似。所以,用“具有自相似”特性来定义分形已经有许多局限了。

分形:数学与艺术结合的明珠(下)

文章来源:

分形实用

经常有朋友问我“分形有何用”。是的,分形作为一个新兴的基础理论有待于开发它的实用价值,而且分形的实用是分形理论得以普及的重要一步。

着名的鲁卡斯电影公司,在利用分形方法创造出与众不同的景观方面已做了一些开拓性的工作。这体现在影片《杰蒂的轮回》的剧情中,以及《星际旅程Ⅱ:可汗的愤怒》中的许多分形风景画上,其中最着名的是行星起源的演变序列图。而由理查德·沃斯在计算机上制作的分形山已被IBM公司广泛地应用于宣传广告中。不仅如此,在美国分形明信片和分形广告在市场上也于1986年底首次推出,随后又推出了分形年历和分形贺年卡,甚至在青年人穿的T恤衫、街道上的招贴画上也都印上了分形。在学术界,许多世界性刊物如《美国科学家》、《科学》、《自然》、《今日物理》、《研究与发展》、《科学美国人》以及《非线性》等等杂志的封面上或一些着作的封面上都出现过分形图案。在国内,我曾在公共汽车上看到过印有分形图案的棉衣和连衣裙,现在又出现了分形IC卡和分形扑克,至于分形用在书面设计上也已屡见不鲜。分形图形的错综、美丽和富于表现,不仅唤起一科学世界的想象力,同时也使人感受到它们与真实世界之间深奥的关系。

苑玉峰老师认为分形图像有如下用途:

1、制作成各种尺寸的装饰画(用卡纸装裱,可获得很好的装饰画效果)。

2、用作包装材料图案,效果新颖。

3、可以制作成各种尺寸的分形挂历、台历、贺卡等。

4、应用于印染行业。

5、装点科技馆、少年宫、旅游景点等。

刘华杰博士认为:

1、将高精度分形图形具体应用在建筑设计中,可以考虑将整面墙壁用一幅分形图装饰。

2、研究分形建筑陶瓷纹样、分形纺织纹样设计及其印染工艺。

3、设计分形时装。

4、将分形图形用于信息加密防伪。

5、印制分形贺卡、明信片和小台历。

分形软件

分形设计师

是用于IBMPC及其兼容机的交互式分形图象设计系统。使用者不必具有分形几何学的艰深知识,便可轻松绘制出精美的分形图象来。

主要特点:①界面友好,使用方便。软件所有编辑功能都以按扭的方式设置在界面上。②功能强大,绘图丰富。软件内设150个分形生成器,以及〈放大〉〈参数〉〈调色〉〈变色〉〈闪烁〉〈色粗化〉〈二值图〉等编辑功能,几乎可生成无数幅分形图象。③兼容性强,所生成的图象可被常用图像软件读取。本系统所生成的图案可用〈存盘〉功能存贮,其文件格式为.pcx,此类文件可方便地被Photoshop等图像处理软件读出,以便进行实用编辑。

另外还有一个软件

分形作品欣赏 ]

分形欣赏来自:

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

迭代与分形

实验名称:迭代与分形 专业:信息工程 班级:09级四班 姓名: 序号:29,38 提交日期:2011年4月29日 一、实验目的与要求 1.认识Fibonacci数列,体验发现其通项公式的过程; 2.了解matlab软件中进行数据显示与数据拟合的方式; 3.掌握matlab软件中plot, polyfit等函数的基本用法; 4.提高对数据进行分析与处理的能力。 二、问题描述 几何学研究的对象是客观世界中物体的形状。传统欧氏几何学的研究对象,都是规则并且光滑的,比如:直线、曲线、曲面等。但客观世界中物体的形状,并不完全具有规则光滑等性质,因此只能近似当作欧氏几何的对象,比如:将凹凸不平的地球表面近似为椭球面。虽然多数情况下通过这样的近似处理后,能够得到符合实际情况的结果,但是对于极不规则的形态,比如:云朵、烟雾、树木等,传统的几何学就无能为力了。 如何描述这些复杂的自然形态?如何分析其内在的机理?这些就是分形几何学所面对和解决的问题。 三、问题解决 (1)对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。 (2)自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘制出它的图形,并计算其分形维数。 1、程序如下: function plottrkoch(a,k)%函数,a为迭代0次的三角形的边长,k为迭代 次数

p=[0 0;a 0;a/2 a/2*sqrt(3);0 0]; n=3; A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; for s=1:k j=0; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A'; j=j+1;r(j,:)=q1+2*d; end n=4*n; clear p p=[r;q2]; end mianji=sqrt(3)*(1+3*(1-(4/9)^k)/5)/4*a^2%计算迭代k次后的面积大小weishuD=log(4)/log(3)%计算维数 plot(p(:,1),p(:,2)) axis equal 当k=1时 当k=3时

Matlab实验报告:分形迭代

数学实验报告:分形迭代 练习1 1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。 4.实验步骤: (1)Koch曲线 function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数 if (n==0) plot([real(p);real(q)],[imag(p);imag(q)]); hold on; axis equal else a=(2*p+q)/3; % 求出从p 到q 的1/3 处端点a b=(p+2*q)/3; % 求出从p 到q 的2/3 处端点b c=a+(b-a)*exp(pi*i/3);% koch(p, a, n-1); % 对pa 线段做下一回合 koch(a, c, n-1); % 对ac 线段做下一回合 koch(c, b, n-1); % 对cb 线段做下一回合 koch(b, q, n-1); % 对bq 线段做下一回合 end (2)Sierpinski三角形 function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数 if (n==0) fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abc hold on; axis equal else a1=(b+c)/2; b1=(a+c)/2; c1=(a+b)/2; sierpinski(a,b1,c1,n-1); sierpinski(a1,b,c1,n-1); sierpinski(a1,b1,c,n-1); end (3)树木花草 function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

数学实验迭代:分形

迭代:分形 姓名: 学号: 班级:数学与应用数学4班

实验报告 实验目的:以迭代的观点介绍分形的基本特性以及生成分形图形的基本方法,使读者在欣赏美丽的分形图案的同时对分形几何这门学科有一个直观的了解,并从哲理的高度理解这门学科诞生的必然,激发读者探寻科学真理的兴趣。 实验环境:Mathematica软件 实验基本理论和方法: 在19世纪末及20世纪初,一些数学家就构造出一些边界形状极不光滑的图形,而这类图形的构造方式都有一个共同的特点,即最终图形F都是按照一定的规则R通过对初始图形不断修改得到的。其中最有代表性的图形是Koch曲线,Koch曲线的构造方式是:给定一条直线段,将该直线段三等分,并将中间的一段用以该线段为边的等边三 角形的另外两条边代替,得到图形,然后再对图形中的每一小段都按上述方式修改,以至无穷。则最后得到的极限曲线即是所谓的Koch曲线。 生成元:Koch曲线的修改规则R是将每一条直线段用一条折线代替,我们称为该分形的生成元。 分形的基本特性完全由生成元确定,因此,给定一个生成元,我们就可以生成各种各样的分形图形。 Julia集绘制方法:(1)设定初值p,q,一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度 级L);(2)设定一个上界值;(3)将矩形区域

分成的网格,分别以每个网格点, ,,,作为初值利用riter做迭代(实际上,只需对满足的初值点做迭代)。如果对所有,,则将图形的像素点用黑 色显示,否则,如果从迭代的某一步开始有,则用 modK种颜色显示相应像素(或者用相应的灰度级显示)。Mandelbrot集绘制方法:设定一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度级L);(2) 设定一个上界值;(3)将矩形区域分成 的网格,分别以每个网格点,,, ,作为参数值利用riter做迭代(实际上,只需对的初值点做迭代),每次迭代的初值均取为。如果对所有,,则将图形的像素点用黑色显示,否则,如果从迭代的某一步开始有,则用modK种颜色显示相应像素(或者用相应的灰度级显示)。IFS迭代绘制分形:设计算机屏幕的可视窗口为 , 按分辨率大小的要求将分成的网格,网格点为,这里 ,, ,, 用表示矩形区域,假设我们采取具有

迭代·混沌·分形

迭代·混沌·分形 柴文斌 (四川省遂宁中学校629000) 一、课例背景 在20世纪下半叶,计算机的“魔杖”不断制造出新的数学分支,它最拿手的迭代计算引出了“混沌学”,接着又导致了分形几何的产生. 分形的思想和方法在模式识别,自然图象的模拟,信息讯号的处理,以及金融模型,艺术的制作等领域都取得了极大的成功. 二、教学目标 ①本课例按《新课标》的要求,通过分形为载体,引起学生深厚的兴趣,在探究过程中,浅介数学新思想、新发展,同时让学生发现数学美,激发他们勇敢地追求美,主动地创造美,从而陶冶他们的情操,培养他们创新的精神. ②总结平常练习过的从迭代、分形为背景数学试题,让他们用联系、发展的眼光,体会“背景深刻,方法独到”高考压轴题设计意图,明白“基础扎实,能力到位”明确要求. 三、教学重点 ①应用计算机让学生感受分形图之美妙及形成数学原理. ②分析分形为背景数学试题,形成高观点下审视数学问题. 四、教学难点 ①迭代、混沌、分形定义度的把握. ②Julia集、Mandelbrot集及其特征. 五、教学过程 (一)美丽的分形图形 运用多媒体展放《孔雀开屏》等11幅分形艺术作品. 师:这些美丽图形自然而优美,纷繁而有序,放射出诱人的色彩,在绚丽的色彩变化背后有几分神秘,似乎没有人会对这些图形无动于衷,你们相信,这些

美妙的图形是运用数学知识,通过计算机构造出来的吗?是如何构造的呢?我们还得从函数迭代说起! (二)函数的迭代 问题1: 计算:①x n n sin lim ∞→ ②=∞ →x n n cos lim 问题2: 211n n x x +=- 11=x 轨道:1,0,-1,0,-1,…… 5.02=x 轨道:0.5,―0.75,―0.4375,―0.80859,…―1,0,―1,0,-1 问题3:①有没有这样一个初态把它代入211-+=n n x x ,结果不变吗? · · A B 251- 2 51+ ②618.11=x 写出系统轨道 ③619.11=x 写出系统轨道 问题4:二次函数2)(z z f =进行迭代 ①i z 2 11=,写出系统轨道 ②i z +=11,写出系统轨道 问题5:2)(z z f =且1||0

分形几何与斐波那契数列的对比

摘 要 分形是美籍法国应用数学家蒙德布罗特所提出的,它和英文中的 fracture(断裂)和fraction (分数)有一定联系,体现出蒙德布罗特创立这 个新的几何思想。分形几何作为一门新兴的交义学科,正在被越来越多的人 所认识和学习。据美国科学家情报所调查,八十年代,全世界有1257种重要 学术刊物所发表的论文中,有37.5%与分形有关。美国著名的物理学家Wheeler 说:“可以相信,明天谁不熟悉分形,谁就不能被认为是科学上的文化人”】16【。 传统的欧式几何主要研究对象是规则图形和光滑曲线,对自然景物的描述却 显得无能为力。而分形几何的创立,就是用来描述那些欧式几何无法描述的 几何现象和事物的,被誉为“大自然本身的几何学”,使自然景物的描绘得以 实现,这也是分形几何得到高度重视的原因之一。 斐波那契数列产生于一个关于兔子繁殖后代的问题:某人有一对兔子饲 养在围墙中,如果它们每个月生一对兔子,且新生的兔子在第二个月后也是 每个月生一对兔子,问一年后围墙中共有多少对兔子?斐波那契数列从问世 到现在,不断显示出它在数学理论和应用上的重要作用。如今,斐波那契数 列渗透到了数学的各个分支中。同时,在自然界和现实生活中斐波那契数列 也得到了广泛的应用。如一些花草长出的枝条会出现斐波那契数列现象,大 多数植物的花的花瓣数都恰是斐波那契数列等等。 斐波那契数列又被称为是黄金分割数列,而黄金分割本身就是一种分形 的例子。二者都可以解决一些传统数学所不能解决的问题,所不同的是分形 几何是通过几何的角度来解决问题,而斐波那契数列则是通过代数的角度来 解决实际问题。 作为一门新兴的对现实生活有重要影响的两个定义,研究两者的对比关 系,探讨如何更好地运用这两个定义来解决现实中的一些实际问题,具有重要 意义。 关键字:斐波那契数列;分形几何;应用;对比 ABSTRACT Fractal is first put forward by French-American applied mathematician Mandelbrot. It relates to the words “fracture” and “fraction”, reflecting Mandelbrot’s opinion on creating the new definition. As a rising interdiscipline subject, Fractal is being understood and learned by more and more people. According to the survey of

分形与迭代

实验三迭代与分形 一、实验目的与要求 1.了解分形几何的基本情况; 2.了解通过迭代方式产生分形图的方法; 3.了解matlab软件中简单的程序结构; 4.掌握matlab软件中plot, fill等函数的基本用法; 二、问题描述 1.对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch 雪花的面积,以及它的分形维数。 2.自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘制出它的图形,并计算其分形维数。 三、问题分析 1.第一题要求我们利用一个等边三角形然后在三角形的基础上利用

理论课上的Koch曲线的画法,产生一朵Koch雪花,由于Koch 雪花的产生相当于将三条等长的直线分别产生的Koch曲线按照 等边三角形的坐标形式组合起来然后在同一个坐标系中表示出来, 这就形成了Koch雪花图案。 四、背景知识介绍 1.什么是迭代 迭代法是常用的一种数学方法,就是将一种规则反复作用在某个对象上,它可以产生非常复杂的行为。我们这里介绍图形迭代和函数迭代两种方式。 (1)图形迭代。给定初始图形F0,以及一个替换规则R,将R反复作用在初始图形F0上,产生一个图形序列: R(F )=F1,R(F1)=F2,R(F2)=F3,… (2)函数迭代。给定初始值x0,以及一个函数f(x),将f(x)反复作用在初始值x0上,产生一个数列: f(x 0)=x 1 ,f(x1)=x2,f(x2)=x3,… 2.p lot函数介绍 plot是最重要最基本的二维曲线绘图指令,基本功能是画折线和曲线。基本调用格式如下: (1)plot(Y,LineSpec)。其中,Y一般是数组;而LineSpec是用来指定线型、色彩等的选项字符串,可省略。本功能是以数组Y作为竖坐标,以数组元素的下标为横坐标,画出一条折线。当数组元素很多时,就出现连续曲线的效果。 (2) plot(X,Y)。其中,X、Y一般是相同长度的数组。本功能是以数组Y作为

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

中学数学中的分形几何.

中学数学中的分形几何 广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502) 桂林市第十八中学数学组蒋雪祥(541004) 内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。 关键字:容量维 Sierpinski三角毯 Koch曲线 Koch岛 Sierpinski-Menger海绵 1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。笔者试对此进行一点探讨,以抛砖引玉尔。 一、规则图形的容量维 为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。维数是描述客体的重要几何参量。也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。这种维数称为拓扑维,用字母"d"表示。维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就

第6讲分形几何学

实用标准文案 第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分

koch迭代分形

《数学实验》报告 学院:电子与信息学院 专业班级: 学号: 姓名: 实验名称:迭代与分形 实验日期

一、实验目的与要求 1.了解分形几何的基本情况; 2.了解通过迭代方式产生分形图的方法; 3.了解matlab软件中简单的程序结构; 4.掌握matlab软件中plot, fill等函数的基本用法; 二、练习 1.对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。 2.自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘制出它的图形,并计算其分形维数。 三、过程 1. 图一:1次迭代图二:2次迭代图三:6次迭代 原始三角形的边长d=10cm 面积S= S0=√3/4d^2 S1=S0+3*√3/4(d/3)^2 S2=S1+12*√3/4(d/9)^2

Sn=Sn-1+3*4^(n-1)*√3/4*(d/3^n)^2 根据等比数列求和可得,n—>∞,Sn=2√3/5d^2 边长放大倍数c=3,相似形个数m=12 所以分维数d=lnm/lnc=ln12/ln3=2.26介于2和3之间 代码如下: function plotkocht(k) %显示迭代k次后的Koch曲线图 p=[0,0;10,0]; %存放结点坐标,每行一个点,初始值为两结点的坐标 n=3; %存放线段的数量,初始值为3 A=[cos(pi/3),-sin(pi/3);sin(pi/3),cos(pi/3)]; %用于计算新的结点 r=[]; r(1,:)=(p(2,:)-p(1,:))*A'; p=[0,0;r;10,0;0,0]; %存放首次迭代的坐标 for s=1:k %实现迭代过程,计算所有的结点的坐标 j=0; % 思考:可否取为1 for i=1:n %每条边计算一次 q1=p(i,:); %目前线段的起点坐标 q2=p(i+1,:); %目前线段的终点坐标 d=(q2-q1)/3; %取中点坐标 j=j+1; r(j,:)=q1; %原起点存入r j=j+1; r(j,:)=q1+d; %新1点存入r j=j+1; r(j,:)=q1+d+d*A'; %新2点存入r j=j+1; r(j,:)=q1+2*d; %新3点存入r end %原终点作为下条线段的起点,在迭代下条线段时存入r n=4*n; %全部线段迭代一次后,线段数量乘4 clear p %清空p ,注意:最后一个终点q2不在r中 p=[r;q2]; %重新装载本次迭代后的全部结点 end figure plot(p(:,1),p(:,2)) %显示各结点的连线图 axis equal %各坐标轴同比例 2. 迭代规则:对一个正三角形,首先将它分成4个小正方形,然后挖掉中间的一个。无限次迭代下去,最终形成的图形就是了。具体的实现如下:

几何画板迭代详解之迭代与分形几何

几何画板迭代详解之:迭代与分形几何 佛山市南海区石门中学谢辅炬 分形的特点是,整体与部分之间存在某种自相似性,整体具有多种层次结构。分形图片具有无可争议的美学感召力,特别是对于从事分形研究的科学家来说。欣赏分形之美当然也要求具有一定的科学文化知识,但相对而言,分形美是通俗易懂的。分形就在我们身边,我们身体中的血液循环管道系统、肺脏气管分岔过程、大脑皮层、消化道小肠绒毛等等都是分形,参天大树、连绵的山脉、奔涌的河水、漂浮的云朵等等,也都是分形。人们对这些东西太熟悉了,当然熟悉不等于真正理解。分形的确贴近人们的生活,因而由分形而来的分形艺术也并不遥远,普通人也能体验分形之美。 因为分形几何的迭代的原像一般不止一个,而且均为多映射迭代,为了叙述的方便,我们先作以下两个约定。 1.用(A,B,C)表示有顺序的两点A、B和C。 2.(A,B,C)(D,E,F,),(G,H,I) ?表示A映射到D,B映射到D,C映射到F,然后添加映射A映射到G,B映射到H,C映射到I,如此类推。 【Sierpinski三角形】 波兰著名数学家谢尔宾斯基在1915-1916年期间,为实变函数理论构造了几个典型的例子,这些怪物常称作“谢氏地毯”、“谢氏三角”、“谢氏海绵”、“谢氏墓垛”。如今,几乎任何一本讲分形的书都要提到这些例子。它们不但有趣,而且有助于形象地理解分形。 著名的Sierpinski三角形,它是很有代表性的线性分形,具有严格的自相似特点。不断连接等边三角形的中点,挖去中间新的小三角形进行分割---随着分割不断进行Sierpinski三角形总面积趋于零,总长度趋于无穷。Sierpinski 三角形在力学上也有实用价值,Sierpinski三角形结构节省材料,强度高,例如埃菲尔铁塔的结构与它就很相似。 【步骤】 1.在平面上任意画一个三角形ABC,取三边中点为D、E、F,连接DEF。 2.新建参数n=3 3.顺次选择B,C,A三点和参数n,作深度迭代,(B,C,A)(D,F,A) ?。

论分形几何学在首饰设计中的应用

论分形几何学在首饰设计中的应用 论分形几何学在首饰设计中的应用作者:来源:浏览次数:5909标签:分形设计饰设 随着人们生活水平的提高和消费观念的改变,珠宝首饰在人们心目中的地位越来越高。传统的首饰是由设计人员先在头脑中构思,再通过图纸和计算机表现出来。设计者往往在阅读大量资料的基础上,对传统的图形进行修改和变换,设计思路受到较大的限制,越来越难以满足人们求新、求美、求异的要求。 针对目前首饰设计领域的“瓶颈”,亟待在艺术构思、图案设计、制作工艺等方面进行创新。如果将分形图形与首饰设计结合起来,把抽象的分形理论应用到实际的首饰设计中去,可以给首饰设计人员提供新的创作灵感。 1 分形几何学理论及应用 分形几何学简称分形,分形一词由法国数学家B. B. Mandelbrot在1967年的“英国的海岸线有多长———统计自相似性与分数维数”论文中首次提出。作为分形,其最显著的特征就是自相似性,即在分形上任选一个局部,无论是将其放大或缩小,其形态、复杂程度、不规则性等均不会发生变化,所得到的图形仍显示原图的特征。这种自相似性可以是近似的,也可以是统计意义的。 分形大致可分为两类:一类是几何分形,它不断地重复同一种图案;另一类是随机分形,它抽象地描述了大自然的许多不规则形态。应用分形理论既可以产生由直线、圆、多边形等构成的较为规则的图形,体现出传统美学中的平衡与对称,还可以产生奇妙的非线性图形,超越标准的新的表现形式。分形图案作为技术与美学的结合,对首饰设计具有特别重要的意义,把它引入首饰设计领域,将挑战传统的设计理念,使设计者的思路和视野得到更广泛的拓展。作为研究和处理不规则图形的强有力工具, 目前分形几何学已在物理学、化学、地质学、生物学、材料学等领域取得了较大的进展。近年来,随着对准晶体物质的深入研究,分形理论在微观领域的应用也逐渐引起了人们的重视。分形理论在计算机仿真、艺术设计、室内装饰等领域也逐渐显示出其极高的应用价值,特别是分形几何学在服装设计领域取得了突破性进展,为分形理论在首饰设计领域的应用奠定了基石。 2 在首饰设计中的应用 首饰设计一般分为手绘和电脑设计,前者主要是用手工绘制的方法将设计思想在图纸上表现出来,后者则是借助计算机辅助设计软件得以实现。无论采用哪种方式,设计者在整个设计过程中都必须遵循对比与调和或者对立与统一的原则,因为首饰设计作为一种艺术创作,它不单是造型元素的简单叠加,更多的是通过对不同材质与色彩的有机组合,营造整体的和谐与统一,从而真正体现首饰的艺术价值。 2.1 作为构成元素参与首饰设计 传统首饰设计的构成元素主要是欧氏几何中描述的具有整数维数的规则图形,设计出的首饰往往比较单一、朴素。而分形作为大自然的几何抽象,能给设计者提供一种新的设计思路。把分形中自相似性的某一重复单元作为一种新的构成要素参与首饰设计。当经过与传统几何要素相同的拉伸、旋转、变形后,新的首饰将呈现出一个更加复杂、精美的分形式造型,从而实现首饰设计的创造性和新颖性。和传统的首饰设计相比,分形首饰的特点[5 ] 在于: (1) 和谐性分形表现最多的是形状的重复,应用到首饰设计中就是造型元素的重复。这就打破了完全对称产生的呆板,给人和谐统一的视觉感。当然,仅仅借助单一结构不能达到对比的效果,

分形几何中的数列问题

分形几何中的数列问题 发表时间:2011-02-22T10:43:53.960Z 来源:《中学课程辅导●教学研究》2011年第3期供稿作者:李玲 [导读] 本文借助简单分形几何图形总结求数列通项公式的常用方法,从而培养学生观察、发现、归纳、总结的能力 李玲 摘要:本文借助简单分形几何图形总结求数列通项公式的常用方法,从而培养学生观察、发现、归纳、总结的能力。 关键词:分形几何;欧氏几何;数列 作者简介:李玲,任教于甘肃兰州兰炼三中。 通俗一点说,分形几何就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学,与欧氏几何学在研究对象等诸多方面迥然不同。数列与分形的结合,就是把抽象的符号语言转换为直观的图形语言,把数量关系问题转化为图形性质去讨论,形成“以形助数,数形结合”的数学思想。分形与数列的结合,不仅为我们解决数列问题提供了一种新的思路,而且对发展学生的实践能力,拓展学生的几何思维有很大帮助。 在一些综合性比较强的数列问题中,通项公式的求解往往是解决数列难题的瓶颈,如何让学生熟练掌握常用的求通项公式的方法如累积法、累加法等,是教学中必须思考的问题。下面通过几个例题对简单分形几何图形中的数列问题展开研究。 1. 曲线“生长”过程中有哪些数量特征可以研究? 边数、边长、周长、顶点数、尖角的个数、面积等变化规律。 2. 应用的知识与方法: (1)公式法(适合于等差、等比数列); (2)差项法; (3)观察、归纳、猜想、证明(数学归纳法) 例1、下列四个图形中,小三角形(小正方形)的个数依次构成一个数列的前四项,则这个数列的一个通项公式是什么? 例2、Cantor集—— Cantor在1883年构造了如下一类集合:取一段欧式长度为1的直线段,将该线段三等分,去掉中间的一段,剩下两段。再将剩下的两段分别三等分,各去掉中间的一段,剩下四段。将这个操作进行下去,直至无穷,可得到一个离散的点集,点数趋于无穷多,而长度趋于零。经无限次操作所得到的离散点集称为Cantor集。在这个操作中,可以形成哪些数列,并找出它们的通项公式。 例4、Koch雪花曲线 设等边三角形的边长为1,经过n次分形后,曲线的边数、边长、尖角、周长,依次构成如下数列。 曲线的边数由3开始增加,各边每次增加为4条边,以此类推,直至无穷;边长由1开始减少,后面的边长都是前面边长的三分?之一;尖角数等于边数加前一次的尖角数,由3开始递增;周长等于边数乘以边长,递增至无穷大。

相关文档
相关文档 最新文档