文档库 最新最全的文档下载
当前位置:文档库 › 用运放构成电压跟随器应注意的几个问题

用运放构成电压跟随器应注意的几个问题

用运放构成电压跟随器应注意的几个问题
用运放构成电压跟随器应注意的几个问题

题外话:用运放构成电压跟随器的电路,传统教科书仅就是简单的把输出与反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文就是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。

(

电压跟随器,顾名思义,就就是输出电压与输入电压就是相同的,就就是说,电压跟随器的电压放大倍数恒小于且接近1。

电压跟随器的显著特点就就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆就是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。

在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。

电压跟随器的另外一个作用就就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路就是不能很好的工作的。但就是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但就是,由于放大器的末级的工作电流变化很大,其失真度很难保证。

)

图一

Q、用电压跟随器使运算放大器保持稳定,须注意哪些问题?

A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(Fig1、)

运算放大器理想的运行状态就是输出电压与输入电压为同相,即,当负输入端的

印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端与输出端的相位总有差异。当输出与输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率与振荡状态将一直持续下去。

FIg1、电压跟随器与反馈环路

2、输入输出端出现相位差的主要原因

其原因大致可分为两种:

1,由于运算放大器固有的特性

2,由于运算放大器以外的反馈环路的特性

2、1、运算放大器的特性

Fig2a 及Fig2b分别代表性地反映了

运算放大器的电压增益—频率特性

与相位—频率特性。数据手册中也有

这两张曲线图。

如图所示,运算放大器的电压增益与

相位随频率变化。运算放大器的增益

与反馈后的增益(使用电压跟随器时

为0dB)之差,即为反馈环路绕行一周

的增益(反馈增益)。如果反馈增益不

足1倍(0dB),那么,即使相位变化

180o,回到正反馈状态,负增益也将

在电路中逐渐衰减,理论上不会引起

震荡。

反而言之,当相位变化180o后,如频

率对应的环路增益为1倍,则将维持

原有振幅;如频率对应的环路增益为

大于1倍时,振幅将逐渐发散。在多

数情况下,在振幅发散过程中,受最

大输出电压等非线性要素的影响,振

幅受到限制,将维持震荡状态。

为此,当环路增益为0dB时的频率所

对应的相位与180o之间的差就是判

断负反馈环路稳定性的重要因素,该

参数称为相位裕度。(Fig2b、)

如没有特别说明,单个放大器作为电

压跟随器时,要保持足够相位裕度

的。

注:数据手册注明「建议使用6dB以上的增益」的放大器,不可用作电压跟随器。

2、2、运算放大器周边电路对反

馈环路的影响

在实际应用中,构成电压跟随器

并非象Fig1、那样简单地将输入

端与输出端直接连接在一起。至

少输出端就是与某个负载连接在

一起的。因此,必须考虑到该负载

对放大器的影响。

例如,如Fig3、所示,输出端与接

地之间接电容时,这一容量与运

算放大器的输出电阻构成的常数

造成相位滞后。

(Fig2b、所示之状态可能变化为

Fig2c所示之状态)这时,环路增

益在输出电阻与C的作用下降低。同时,相位与增益之间不再有比

例关系,相位滞后成为决定性因

素,使反馈环路失去稳定,最糟糕

时可能导致震荡。单纯地在输出

端与接地之间连接电容,构成电

压跟随器时,每种运算放大器之

间的稳定性存在差异。

Fig4、为输入端需要保护电阻的

运算放大器可能发生的问题。

为解决Fig3、出现的问题,可采用Fig5、(a)、(b)所示之方法。(a)

图中插入R,消除因CL而产生的反

馈环路相位滞后。(在高频区,R作

为运算放大器的负荷取代了CL而

显现出来。) (b)则用C1来消除

CL造成的相位滞后。

为解决Fig4、的问题,则可在输入

保护电阻上并联一个尺寸适当的

电容。一般被叫做“输入电容取

消值”的近似值约为10pF~

100pF。

电压跟随器全解

电压跟随器全解 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

电压跟随器(共集电极电路)电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。 那么电压跟随有什么作用呢?概括地讲,电压跟随器起缓冲、隔离、提高带载能力的作用。 共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗匹配,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。 电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点。 电压跟随器的输入阻抗高、输出阻抗低特点,可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路;当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。

一.LED点阵书写显示屏 光笔电路主要就是一个门限可调的比较器[5],具体电路图如图6所示。 在图6的光笔电路图中,运放AR4组成一同向放大电器,将采集的电压放大2倍,之所以要将信号放大2倍,主要是在设计光敏二极管探头时,已经在探头上套了一层黑色的橡胶管,放大倍数和探头陷入橡胶管的深度有关,在测试中发现放大2倍时效果是最好的。运放AR2组成的电路就是一个比较器,而且这个比较器的门限电压可以通过调节R5改变,以适应环境光线的改变。在放大器和比较器的输出端都设计了一个跟随器,进一步减小下级电路对前级电路的影响。 图15作品展示图 二.红外车辆检测电路 红外车辆检测电路原理已经在前面做了详细的叙述,电路如图3-2所示: 图3-2红外车辆检测电路 三.音频功率放大器 人耳朵听觉的范围是2HZ~20KHZ,称之为可听声,单只喇叭要覆盖这么宽的频带范围,并且要很好的兼顾高低频两端的延伸、达到低失真、高瞬态、大功率承载能力的话是不可能的,所以就需要分频了,一般低音在300HZ以下,中音在300HZ~3KHZ,高音在3KHZ以上,本作品就是按照2HZ~300HZ,300HZ~3KHZ,大于3KHZ三个频率段来做的。分频电路主要是由RC滤波器和比例放大器组成。工作过程如下:音源器材输入的较微弱信号经过比例放大器后,放大到一定的程度(此放大是对整个信号进行放大),再进行分频。因为信号是由高、中、低频混在一起的,为了达到把原音还原出来的效果,就必须把三个频率段分离出来。分频以后还有一个信号放大电路,作用是将分频后的信号进行放大。这样就可以对高、中、低音进行分别放大,以求达到不同的听觉效果。原理图如下:

三运放组成的仪表放大器电路分析

三运放组成的仪表放大器电路分析 仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 ?。其输入偏置电流也应很低,典型值为 1 nA至 50 nA。与运算放大器一样,其输出阻抗很低, 在低频段通常仅有几毫欧(m?)。运算放大器的闭环增益是由其反向输入端和输 出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施 加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。 使用三个普通运放就可以组成一个仪用放大器。电路如下图所示: 输出电压表达式如图中所示。 看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 = R3,R2 = R4,则VOUT = (VIN2—VIN1)(R2/R1) 这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于 100 k?,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 k?。因此,当电压施加到一个输入端而另一端接

地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于 1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有 0.1% 失配,其CMR便下降到 66 dB(2000:1)。同样,如果源阻抗有 100 ?的不平衡将使CMR下降 6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示: 输出电压表达式如上图所示。上图所示的电路增加增益(A1 和 A2)时, 它对差分信号增加相同的增益,也对共模信号增加相同的增益。也就是说,上述电路相对于原电路共模抑制比并没有增加。 下面,要开始最巧妙的变化了!看电路先:

电压跟随器全解完整版

电压跟随器全解标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电压跟随器(共集电极电路) 电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。 那么电压跟随有什么作用呢?概括地讲,电压跟随器起缓冲、隔离、提高带载能力的作用。 共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗匹配,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。 电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点。 电压跟随器的输入阻抗高、输出阻抗低特点,可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路;当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。 一.LED点阵书写显示屏 光笔电路主要就是一个门限可调的比较器[5],具体电路图如图6所示。

在图6的光笔电路图中,运放AR4组成一同向放大电器,将采集的电压放大2倍,之所以要将信号放大2倍,主要是在设计光敏二极管探头时,已经在探头上套了一层黑色的橡胶管,放大倍数和探头陷入橡胶管的深度有关,在测试中发现放大2倍时效果是最好的。运放AR2组成的电路就是一个比较器,而且这个比较器的门限电压可以通过调节R5改变,以适应环境光线的改变。在放大器和比较器的输出端都设计了一个跟随器,进一步减小下级电路对前级电路的影响。 图15 作品展示图 二.红外车辆检测电路 红外车辆检测电路原理已经在前面做了详细的叙述,电路如图3-2所示: 图3-2 红外车辆检测电路 三.音频功率放大器 人耳朵听觉的范围是2HZ~20KHZ,称之为可听声,单只喇叭要覆盖这么宽的频带范围,并且要很好的兼顾高低频两端的延伸、达到低失真、高瞬态、大功率承载能力的话是不可能的,所以就需要分频了,一般低音在300HZ以下,中音在300HZ~3KHZ,高音在 3KHZ以上,本作品就是按照2HZ~300HZ,300HZ~3KHZ,大于3KHZ三个频率段来做的。分频电路主要是由RC滤波器和比例放大器组成。工作过程如下:音源器材输入的较微弱信号经过比例放大器后,放大到一定的程度(此放大是对整个信号进行放大),再进行分频。因为信号是由高、中、低频混在一起的,为了达到把原音还原出来的效果,就必须把三个频率段分离出来。分频以后还有一个信号放大电路,作用是将分频后的信号进行放大。这样就可以对高、中、低音进行分别放大,以求达到不同的听觉效果。原理图如下:

由运放组成的VI IV变换电路

由运放组成的V/I、I/V变换电路 1、0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi 与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I 转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以 V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf =Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实

电压跟随器

电压跟随器实验测试 1. 原理及作用:电压跟随器具有很高的输入阻抗和很低的输出阻抗,是最常用的阻抗变换和匹配电路。电压跟随器常用作电路的输入缓冲级和输出缓冲级,如图所示。作为整个电路的高阻抗输入级,可以减轻对信号源的影响。作为整个电路的低阻抗输出级,可以提高带负载的能力。 由于集成运放具有极高的开环增益,所以集成运放电压跟随器的性能非常接近理想状态,并且无外围元件,无须调整,这是晶体管电压跟随器(射级跟随器)所无法比拟的。集成运放电压跟随器得到了越来越广泛的应用。 集成运放电压跟随器电路如图所示。它实际上就是Rf=0,R1=∞,反馈系数F=l时的同相输入放大器。由于集成运放本身的高增益特性,用集成运放构成的电压跟随器具有极高的输入阻抗,几乎不从信号源汲取电流,同时具有极低的输出阻抗,向负裁输出电流时几乎不在内部引起电压降,可视为电压源。

电压跟随器的等效电路: 若在同相放大器中的置R1=∞和R2=0,就是成为单位增益放大器,或电压跟随器如图1.8(a)所示。值得注意的是,这个电路有运算放大器和将输出完全反馈到输入的一根导线所组成。这种闭环参数是: 等效电路如图(b)所示,作为一个电压放大器,这个跟随器并没有尽职,因为它的增益仅仅为1。然而,它的特长是起到一个阻抗变换的作用。因为从它的输入看进去,它是一个开路;而从它的输出端看进去是短路,源值为V0=Vi。 为了领会这个特点,现在考虑一个源,其电压为Vs,要将其跨接在某一个负载

RL上。如果这个源始理想的,那么要做的就是用一根导线将两者连接起来。然而,就是这个源有非零输出电阻Rs,如下图(a)所示,那么Rs和RL将构成电压分压器,VL的幅度一定会小于Vs的幅度,这是由于在Rs上的压降关系。现在用一个电压跟随器来替换这跟导线如图(b)所示,因为这个跟随器有Ri=∞,在输入端部存在加载,所以VI=VS。再者,因为跟随器有Ro=0,从输出端口也不存在加载,所以VL=VI=VS,这表明现在RL接受了全部原电源电压而且无任何损失。因此,这个电压跟随器的作用就是在源和负载之间起到一个缓冲作用。 还能观察到,现在源没有输送出任何电流,所以也不存在功率损耗,而在上图(a)电路中却存在。由RL所吸收的电流和功率现在是由运算放大器提供的,而则个还是从运算放大器的电源取得的,不过在图中并没有明确表示出来。因此,除了将UL完全恢复到VS值之外,跟随器还免除了Vs提供任何功率。 2.实验器材: (1):函数信号发生器(2):双踪示波器 (3):UA741 (4):直流稳压电源(+12V,-12V)(5):导线若干 3.性能测试: (1)测量电压放大倍数Au 在IN+端接入不同正弦信号,调输入信号幅度,用示波器测量输出端的信号频率及幅度,在不失真情况下,通过公式Au=Vo/Vi计算增益。测量数据计入下表。 (2)根据以上结果,分析设计跟随器的跟随特性。

运放组成的VIIV变换电路

由运放组成的V/I、I/V变换电路(☆☆☆) 2011/06/07 18:41 来自:电子开发网 1、 0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi 与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA 的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、 0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL= Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi 满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、 1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】

反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。

运放组成电压跟随器-要注意的问题

用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 (电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。 电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多

数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。) 图一 Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题? A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原

用运放构成电压跟随器应注意的几个问题

题外话:用运放构成电压跟随器的电路,传统教科书仅就是简单的把输出与反相输入端连接起来 完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文就是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 ( 电压跟随器,顾名思义,就就是输出电压与输入电压就是相同的,就就是说,电压跟随器的电压放大 倍数恒小于且接近1。 电压跟随器的显著特点就就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆就 是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电 阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器 的另外一个好处就就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的 电容提供了前提保证。 电压跟随器的另外一个作用就就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路就是不能很好的工作的。但就是由于引入了 大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除 大环路负反馈的带来的弊端。但就是,由于放大器的末级的工作电流变化很大,其失真度很难保证。 ) 图一 Q、用电压跟随器使运算放大器保持稳定,须注意哪些问题? A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(Fig1、) 运算放大器理想的运行状态就是输出电压与输入电压为同相,即,当负输入端的

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

使用运放构成电压跟随器的稳定性问题

[转载]使用运放构成电压跟随器的稳定性问题[转载]使用运放构成电压跟随器的稳定性问题题外话: a: 对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(fig 1.) 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。 fig 1.电压跟随器和反馈环路 2.输入输出端出现相位差的主要原因 其原因大致可分为两种: 1,由于运算放大器固有的特性 2,由于运算放大器以外的反馈环路的特性 2.1.运算放大器的特性 fig2a及fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。 数据手册中也有这两张曲线图。

如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0db)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0db),那么,即使相位变化 180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。 反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。 为此,当环路增益为0db时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。(fig2b.) 如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。注: 数据手册注明「建议使用6db以上的增益」的放大器,不可用作电压跟随器。 2.2.运算放大器周边电路对反馈环路的影响 在实际应用中,构成电压跟随器并非象fig 1.那样简单地将输入端和输出端直接连接在一起。 至少输出端是与某个负载连接在一起的。因此,必须考虑到该负载对放大器的影响。 例如,如fig 3.所示,输出端和接地之间接电容时,这一容量与运算放大器的输出电阻构成的常数造成相位滞后。 (fig2b.所示之状态可能变化为fig2c所示之状态)这时,环路增益在输出电阻和c的作用下降低。同时,相位和增益之间不再有比例关系,相位滞后成为决定性因素,使反馈环路失去稳定,最糟糕时可能导致震荡。单纯地在输出端

运放电压跟随器注意问题

题外话:用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 ( 电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。 电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。 ) 图一 Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题? A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(Fig1.) 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印

使用运放构成电压跟随器的稳定性问题

使用运放构成电压跟随器的稳定性问题 题外话:用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿,而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题? A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(Fig1.) 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。 FIg1.电压跟随器和反馈环路 2. 输入输出端出现相位差的主要原因 其原因大致可分为两种: 1,由于运算放大器固有的特性 2,由于运算放大器以外的反馈环路的特性 2.1. 运算放大器的特性 Fig2a 及Fig2b分别代表性地反映了 运算放大器的电压增益—频率特性 和相位—频率特性。数据手册中也有 这两张曲线图。

如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0dB)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0dB),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上 不会引起震荡。 反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。为此,当环路增益为0dB时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。(Fig2b.) 如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度 的。 注:数据手册注明「建议使用6dB 以上的增益」的放大器,不可用作电 压跟随器。 2.2. 运算放大器周边电路对反 馈环路的影响 在实际应用中,构成电压跟随器 并非象Fig1.那样简单地将输入端 和输出端直接连接在一起。至少 输出端是与某个负载连接在一起的。因此,必须考虑到该负载对

用运放构成电压跟随器应注意的几个问题

题外话:用运放构成电压跟随器的电路, 传统教科书仅是简单的把输岀和反相输入端连接起来完 事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本 IC 厂家网 站上找到的,希望对实际应用有一点帮助。 ( 电压跟随器,顾名思义,就是输岀电压与输入电压是相同的,就是说, 数恒小于且接近1。 电压跟随器的显著特点就是,输入阻抗高, 而输岀阻抗低,一般来说,输入阻抗要达到几兆欧姆 是很容易做到的。输岀阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输岀阻抗一般比较高, 通常 在几千欧到几十千欧,如果后级的输入阻抗比较小, 那么信号就会有相当的部分损耗在前级的输 岀电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。 随器的另外一个好处就是,提高了输入阻抗,这样, 输入电容的容量可以大幅度减小, 为应用高 品质的电容提供了前提保证。 电压跟随器的另外一个作用就是隔离,在 如果真的没有负反馈的作用, 环路负反馈电路,扬声器的反电动 势就会通过反馈电路,与输入信号叠加。 造成音质模糊, 度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路, 消除大环路负反馈的带来的弊端。 保证。 图一 Q.用电压跟随器使运算放大器保持稳定,须注意哪些问题? A :对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电 压跟随器 电压跟随器的电压放大倍 应用电压跟 HI-FI 电路中,关于负反馈的争议已经很久了,其实, 相信绝大多数的 放大电路是不能很好的工作的。 但是由于引入 了大 试图通过断开负反馈回路来 但 是,由于放大器的末级的工作电流变化很大, 其失真度很难 Vout

三运放组成的仪表放大器原理分析

三运放组成的仪表放大器原理分析 仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。其输入偏置电流也应很低,典型值为1 nA至50 nA。与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。使用三个普通运放就可以组成一个仪用放大器。电路如下图所示: 输出电压表达式如图中所示。 看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)

这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。) 另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。同样,如果源阻抗有100 Ω的不平衡将使CMR下降6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示: 输出电压表达式如上图所示。上图所示的电路增加增益(A1 和A2)时,它对差分信号增加相同的增益,也对共模信号增加相同的增益。也就是说,上述电路相对于原电路共模抑制比并没有增加。 下面,要开始最巧妙的变化了!看电路先:

电压跟随器

问题:什么是电位器?电位器是什么意思? 电位器是可变电阻器的一种。通常是由电阻体与转动或滑动系统组成,即靠一个动触点在电阻体上移动,获得部分电压输出。 电位器的作用——调节电压(含直流电压与信号电压)和电流的大小。 电位器的结构特点——电位器的电阻体有两个固定端,通过手动调节转轴或滑柄,改变动触点在电阻体上的位置,则改变了动触点与任一个固定端之间的电阻值,从而改变了电压与电流的大小。 电位器是一种可调的电子元件。它是由一个电阻体和一个转动或滑动系统组成。当电阻体的两个固定触电之间外加一个电压时,通过转动或滑动系统改变触点在电阻体上的位置,在动触点与固定触点之间便可得到一个与动触点位置成一定关系的电压。它大多是用作分压器,这是电位器是一个四端元件。电位器基本上就是滑动变阻器,有几种样式,一般用在音箱音量开关和激光头功率大小调节电位器是一种可调的电子元件。它是由一个电阻体和一个转动或滑动系统组成。当电阻体的两个固定触电之间外加一个电压时,通过转动或滑动系统改变触点在电阻体上的位置,在动触点与固定触点之间便可得到一个与动触点位置成一定关系的电压。 电位器的分类和相关型号 (一)按电阻体材料分类: 1.线绕电位器:它的电阻体是用电阻丝绕在涂有绝缘材料的金属或非金属板上制成的。它又可分为通用、精密、大功率、预调试线绕电位器—型号为WX; 2.非线绕电位器:可分为实心电位器、膜式电位器。 实心电位器:它又可分为①有机合成—WS,②无机合成—WN,③导电塑料—WD; 膜式电位器:它又可分为①碳膜电位器—WT,②金属膜电位器—WJ。

(二)按调节方式分类:①旋转式,②推拉式,③直滑式电位器 (三)按电阻值变化规律分类:①直线式,②指数式,③对数式 (四)按结构特点分类:单圈,多圈,单联,双联,多联,抽头式,带开关,锁紧型,非锁紧型,贴片式电位器; (五)按驱动方式不同分类:①手动调节电位器,②电动调节电位器。 (六)其它分类方式:①普通,②磁敏,③光敏,④电子,⑤步进电位器。 电压跟随器是用一个三极管构成的共集电路,它的电压增益是一,所以叫做电压跟随器。那么电压跟随有什么作用呢?共集电路是输入高阻抗,输出低阻抗,这就使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。举一个应用的例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。电路的特点是:高输入电阻、低输出电阻、电压增益近似为1,因此它可以完成上述功能。 电压跟随器具有输入阻抗高、输出阻抗低的特点,你可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路,当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。 电压跟随器如何计算? 我看到的一个电压跟随器电路如下: 其输入为负温度系数的电阻,如何计算输出电压?即输出电压和负温度系数电阻的函数关系是怎样的?小弟没学过模电,还请大虾赐教!

使用运放构成电压跟随器的稳定性问题

使用运放构成电压跟随器的稳定性问题 本文介绍了使用运放构成电压跟随器的稳定性问题及解决方法。 用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。 (电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。) 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。) Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题? 1

使用运放构成电压跟随器的稳定性问题

[转载]使用运放构成电压跟随器的稳定性问题 [转载]使用运放构成电压跟随器的稳定性问题题外话:用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿,而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本ic厂家网站上找到的,希望对实际应用有一点帮助。q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题? a:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。(fig1.) 运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。 fig1.电压跟随器和反馈环路 2. 输入输出端出现相位差的主要原因 其原因大致可分为两种: 1,由于运算放大器固有的特性 2,由于运算放大器以外的反馈环路的特性 2.1. 运算放大器的特性 fig2a 及fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。数据手册中也有这两张曲线图。 如图所示,运算放大器的电压增益和相位随频率变化。运算放大器的增益与反馈后的增益(使用电压跟随器时为0db)之差,即为反馈环路绕行一周的增益(反馈增益)。如果反馈增益不足1倍(0db),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。 反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。 为此,当环路增益为0db时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。(fig2b.) 如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。

几种常用运算放大器举例

运算放大器分类总结报告

1、通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。 下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V) 常用性能指标:

性能图表: 大信号频率响应 大信号电压开环增益 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知: 1 ( 1)2 R Vo Vi R =+ (2)、高阻抗差分放大器

电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C ,因此得到结果: 0(21)(1)e C e e a b =-++ (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 12 1 ( )()O REF IN R R V V V R +=- ,则: 1 12 1 12 ()()inL OL REF REF inH OH REF REF R V V V V R R R V V V V R R =-++=-++

相关文档
相关文档 最新文档