文档库 最新最全的文档下载
当前位置:文档库 › 基于粒子群算法的控制系统PID参数优化设计

基于粒子群算法的控制系统PID参数优化设计

基于粒子群算法的控制系统PID参数优化设计
基于粒子群算法的控制系统PID参数优化设计

基于粒子群算法的控制系统

PID 参数优化设计

摘 要

本文主要研究基于粒子群算法控制系统PID 参数优化设计方法以及对PID 控制的

改进。PID 参数的寻优方法有很多种,各种方法的都有各自的特点,应按实际的系统特点选择适当的方法。本文采用粒子群算法进行参数优化,主要做了如下工作:其一,选择控制系统的目标函数,本控制系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现;其二,本文先采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数p K ,i K ,d K ,再利用粒子群算法进行寻优,得到更好的PID 参数;其三,采用SIMULINK 的仿真工具对PID 参数优化系统进行仿真,得出系统的响应曲线。从中发现它的性能指标,都比原来有了很大的改进。因此,采用粒子群算法的优越性是显而易见的。

关键词 目标函数;PID 参数;粒子群算法;优化设计;SIMULINK

Optimal design of PID parameter of the control

system based on Particle Swarm Optimization

Abstract

The main purpose of this paper is to study the optimal design of PID parameter of the

control system based on Particle Swarm Optimization and find a way to improve the PID control. There are a lot of methods of optimization for the parameters of PID, and each of them has its own characteristics. The proper methods need to be selected according to the actual characteristics of the system. In this paper we adopt the Particle Swarm Optimization to tune the parameters. To finish it, the following tasks should be done. First, select the target function of the control system. The target function of the control system should be chosen as the absolute value of the error multiplied by time. Then we simulate the control system gradually, and analyze the results of the process. Because the solution of the target function cannot be worked out directly, this design adopts simulation gradually. Second, this paper adopts the engineering method (the critical ratio method) to determine its initial parameters p K ,i K ,d K , then uses the Particle Swarm Optimization to get a series better PID parameters. Third, this paper uses the tool of SIMULINK to optimize the parameters of PID and gets the response curve of the system. By contrast with the two response curves, it is clearly that the performance has improved a lot than the former one. Therefore, it is obviously to find the advantages in using the Particle Swarm Optimization.

Key word : target function; PID parameters; Particle Swarm Optimization; optimal design; SIMULINK

目录

摘要 ...................................................................................................... 错误!未定义书签。Abstract................................................................................................... 错误!未定义书签。第1章绪论 ........................................................................................ 错误!未定义书签。

1.1 研究背景和课题意义 ..................................................................... 错误!未定义书签。

1.2 基本的PID参数优化方法 (1)

1.3 常用的整定方法 (2)

1.4 本文的主要工作 (4)

第2章粒子群算法的介绍 ................................................................ 错误!未定义书签。

2.1 粒子群算法思想的起源 (5)

2.2 算法原理 (5)

2.3 算法流程 (6)

2.4 全局模型与局部模型 (7)

2.5 算法特点 (8)

2.6 带惯性权重的粒子群算法 (8)

2.7 粒子群算法的研究现状 (9)

第3章用粒子群方法优化PID参数 (10)

3.1 PID控制原理 (10)

3.2 PID控制的特点 (11)

3.3 优化设计简介 (11)

3.4 目标函数选取 (12)

3.5 大迟滞系统 ..................................................................................... 错误!未定义书签。

3.6加热炉温度控制简介 ..................................................................... 错误!未定义书签。

3.7 加热炉系统的重要特点 ................................................................. 错误!未定义书签。

3.8 加热炉的模型结构 ......................................................................... 错误!未定义书签。第4章系统仿真研究 ........................................................................ 错误!未定义书签。

4.1工程上的参数整定 ......................................................................... 错误!未定义书签。

4.2 粒子群算法参数整定 ..................................................................... 错误!未定义书签。

4.3 结果比较 ......................................................................................... 错误!未定义书签。

4.4 P、I、D参数对系统性能影响的研究........................................... 错误!未定义书签。

4.5 Smith预估补偿器............................................................................ 错误!未定义书签。结论 ........................................................................................................ 错误!未定义书签。致谢 ........................................................................................................ 错误!未定义书签。参考文献 ................................................................................................ 错误!未定义书签。附录A(程序清单).. (29)

附录B(外文文献) (32)

附录C(中文译文) (49)

第 1 章 绪论

1.1 研究背景和课题意义

在现代工业控制领域,PID 控制器由于其结构简单、鲁棒性好、可靠性高等优点

得到了广泛应用。PID 的控制性能与控制器参数d i p K K K ,,的优化整定直接相关。在工业控制过程中,多数控制对象是高阶、时滞、非线性的,所以对PID 控制器的参数整定是较为困难的。优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题。为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、神经算法和遗传算法等。优化问题有两个主要问题。一是要求寻找全局最小点,二是要求有较高的收敛速度。爬山法精度较高,但是易于陷入局部极小。遗传算法、神经网络算法等也还存在某些不足,前者要涉及到繁琐的编码解码过程和很大的计算量,后者的编程和解码过程需要大量CPU 时间,算法易早熟,收敛易陷入局部最优,往往不能同时满足控制系统的速度和精度,且隐含层数目、神经元个数以及初始权值等参数选择都没有系统的方法。

1.2 基本的PID 参数优化方法

目前PID 参数整定优化方法有很多,比如单纯形法、最速下降法、误差积分准则

ISTE 最优设定方法、遗传算法、蚁群算法等。单纯形法是一种求解多变量无约束最优化问题的直接搜索法,是求解非线性函数的无约束极值的一种经验方法;最速下降法是一种以梯度法为基础的多维无约束最优化问题的数值计算法,它的基本思想是选取目标函数的负梯度方法(最速下降方向)作为每步迭代的搜索方向,逐步逼近函数的极小值点;误差积分准则ISTE 最优设定方法是针对一类特定被控对象的,如果被控对象形式已知,可以考虑使用这种ISTE 误差积分准则作为目标函数进行参数优化;遗传算法借鉴了自然界优胜劣汰的进化思想,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解的方法。其基本思想是:先初始化一个种群(种群是由经过基因编码的一定数目的个体组成的,每个个体代表所求问题的一种解决方案),然后按照生物进化理论中的适者生存和优胜劣汰的原理,逐代演化产生出越来越好的个体。在每一代,根据个体的适应度大小挑选

出较好的个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。经过数代的演化,将使得最终的种群更加适应环境,种群中的个体更加优质,把最后种群中的最优个体经过解码后作为问题的近似最优解;蚁群算法是受到自然界中真实蚁群集体行为的研究成果的启发而提出的基于种群的模拟进化算法。蚂蚁从蚁巢出发寻找食物源,找到食物后在从食物源原路返回蚁巢的路上释放信息素,觅食的蚂蚁会跟随这个信息素踪迹找到食物源。信息素按照一定的比例释放的。路径越短,释放的信息素越多,浓度也越高;而信息素浓度越高,吸引的蚂蚁也越多;吸引的蚂蚁越多,遗留下的信息素也越多。最后所有的蚂蚁都集中到信息素浓度最高的一条路径上,这条路径就是从蚁巢到食物源的最短路径。为解决最优化问题人们提出过许多新技术和新方法,但工业和科学领域大量实际问题的困难程度正在日益增长,它们大多是根本无法在可接受的时间内找到解的问题。这类优化问题的困难性不仅体现在具有极大的规模,更为重要的是,它们多数是非线性的、动态的、多峰的、具有欺骗性的或者不具有任何导数信息。因此,发展通用性更强、效率更高的优化算法总是需要的。

1.3 常用的整定方法

这里列举在过程控制系统中常用的参数整定方法:经验法、衰减曲线法、临界

比例度法、反应曲线法。用衰减曲线法整定调节器参数的方法是:在纯比例作用下,i T 为∞,d T 为0,目的是要得到4:1,衰减振荡过度过程曲线。根据所得曲线,若衰减大于4:1 应调整δ朝小比例带方向;若小于4:1,应调整δ朝大比例带方向。记下4:1的比例带δ,并在记录曲线上求得4:1衰减时的调节周期P T ,然后计算δ,i T ,d T 各值。

临界比例度法考虑的实质是通过现场试验找到等幅振荡的过渡过程,得到临界比

例度和等幅振荡周期。当操纵变量作阶跃变化时,被控变量随时间变化的曲线称为反应曲线。对有自衡的非振荡过程,广义对象传递函数常可用()()()exp 1s G s K s T τ=-+近似。K ,τ和T 可用图解法等得出。

调节器参数整定的反应曲线是依据广义对象的K ,τ和T 确定调节器参数的方法。

在这些指标中,不同的系统有不同的侧重:强调快速跟踪的系统要求调节时间尽

可能短些,强调稳定平稳的系统则要求超调量小,但基本上都要保证系统稳定收敛,即衰减比大于1,超调量必须在允许值的范围内,另外余差尽可能小至最后为零。影响控制系统指标的因素除了对象的时间常数、放大系数及滞后常数外,还有调节器的参数整定情况。调节器的参数整定是一个复杂的问题,这是因为这些参数的整定要考虑控制对象的各种特性,以及一些会影响系统运行过程的未知干扰;而且,调节器参数本身的调整也会对系统的特性产生重大影响[1-3]。调节器的各参数对控制指标的具体影响主要体现在:

比例带δ:比例带δ越小,上升时间减小,衰减比S 减小,稳定度下降。在工程

上,比例带常用比例度P 来描述。

微分作用:微分作用的大小由微分时间d T 来决定。d T 越大,越能克服系统的容

量滞后和测量滞后,对缩短调节时间有一定作用。

积分作用:积分作用通过积分时间i T 来体现。i T 越小,消除余差越快,稳定度下

降,振荡频率变高。

要实现PID 参数的自整定,首先要对被控制的对象有一个了解,然后选择相应的

参数计算方法完成控制器参数的设计。据此,可将PID 参数自整定分成两大类:辨识法和规则法。基于辨识法的PID 参数自整定,被控对象的特性通过对被控对象数学模型的分析来得到,在对象数学模型的基础上用基于模型的一类整定法计算PID 参数。基于规则的PID 参数自整定,则是运用系统临界点信息或系统响应曲线上的一些特征值来表征对象特性,控制器参数由基于规则的整定法得到[4]。

尽管当今出现了许多高级控制方法,但是实际控制系统仍然是以比例积分微分

(PID) 控制为主,即使已经有了一些行之有效的整定规则,但是手动整定PID 控制器参数仍是一件复杂和费时的工作。因此出现了许多自整定算法[5]。无论那种整定方法,都不是万能的,它们各有长处和不足,都有一定的适应范围。

为了提高传统PID 整定技术的适应能力,好多新的方法,如遗传算法,模糊逻辑

控制等在最近几年里获得了很快的发展,并广泛地应用于PID 控制器参数整定中[6]。每种控制方法都有各自的优点以及适用范围,在实际的操作中不同的方法来实现同一控制模型,其精确度也会有差别。

在工程实践中,总希望所选的方案是一切可能的方案中最优的方案,这就是最优

控制的问题。解决最优控制的数学方法称为最优化方法,近几十年来,它已经是一门迅速发展的学科。在自动控制方面,将优化技术用于系统设计,能使设计出来的控制系统在满足一定的约束条件下,达到某种性能指标的函数为最小(或最大),这就是控制系统的最优化问题。

1.4 本文的主要工作

本文采用粒子群算法对PID 参数进行寻优。先选择控制系统的目标函数,本控制

系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现,然后采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数,,p i d K K K ????,并以此进行寻优,得到较好的PID 参数。再利用MATLAB 编制粒子群算法寻优程序。通过粒子群算法优化系统性能最佳的PID 参数后采用SIMULINK 的仿真工具对PID 参数优化系统进行仿真,得出系统的响应曲线。从中发现它的性能指标,都比原来的曲线有了很大的改进。

第 2 章粒子群算法的介绍

2.1 粒子群算法思想的起源

自然界中各种生物体均具有一定的群体行为,而人工生命的主要研究领域之一是探索自然界生物的群体行为,从而在计算机上构建其群体模型。自然界中的鸟群和鱼群的群体行为一直是科学家的研究兴趣,生物学家Craig Reynolds在1987年提出了一个非常有影响的鸟群聚集模型[7],在他的仿真中,每一个个体遵循:

(1)避免与邻域个体相冲撞。

(2)匹配邻域个体的速度。

(3)飞向鸟群中心,且整个群体飞向目标。

仿真中仅利用上面三条简单的规则,就可以非常接近的模拟出鸟群飞行的现象。1990年,生物学家Frank Heppner也提出了鸟类模型[8],它的不同之处在于:鸟类被吸引飞到栖息地。在仿真中,一开始每一只鸟都没有特定的飞行目标,只是使用简单的规则确定自己的飞行方向和飞行速度(每一只鸟都试图留在鸟群中而又不相互碰撞),当有一只鸟飞到栖息地时,它周围的鸟也会跟着飞向栖息地,这样,整个鸟群都会落在栖息地。

1995年,美国社会心理学家James Kennedy和电气工程师Russell Eberhart共同提出了粒子群算法,其基本思想是受对鸟类群体行为进行建模与仿真的研究结果的启发。他们的模型和仿真算法主要对Frank Heppner的模型进行了修正,以使粒子飞向解空间并在最好解处降落。Kennedy在他的书中描述了粒子群算法思想的起源:自20世纪30年代以来,社会心理学的发展揭示:我们都是鱼群或鸟群聚集行为的遵循者。在人们的不断交互过程中,由于相互的影响和模仿,他们总会变得更相似,结果就形成了规范和文明。人类的自然行为和鱼群及鸟群并不类似,而人类在高维认知空间中的思维轨迹却与之非常类似。思维背后的社会现象远比鱼群和鸟群聚集过程中的优美动作复杂的多:首先,思维发生在信念空间,其维数远远高于3;其次,当两种思想在认知空间会聚于同一点时,我们称其一致,而不是发生冲突。

2.2算法原理

在一个D维的目标搜索空间中,有n个微粒组成一个粒子群,其中每个微粒是一

个D 维的向量,它的空间位置表示为x i =(x i1,x i2,…,x iD ),i=1,2,…n 。微粒的空间位置是目标优化问题中的一个解,将它代入适应度函数可以计算出适应度值,根据适应度值的大小衡量微粒的优劣;第i 个微粒的飞行速度也是一个D 维的向量,记为v i =(v i1,v i2,…,v iD );第i 个微粒所经历过的具有最好适应值的位置称为个体历史最好位置,记为p i =(p i1,p i2,…,p iD );整个微粒群所经历过的最好位置称为全局历史最好位置,记为p g =(p g1,p g2,…,p gD ),粒子群的进化方程可描述为:

()()()()()()()()()()t x t p t r c t x t p t r c t v t v ij gj ij ij ij ij -+-+=+22111 (2.1)

()()()11++=+t v t x t x ij ij ij (2.2)

其中:下标j 表示微粒的第j 维,下标i 表示微粒i ,t 表示第t 代,c 1,c 2为加速常量,

通常在(0,2)间取值,r 1 ~U(0,1),r 2 ~U(0,1)为两个相互独立的随机函数。从上述微粒进化方程可以看出,c 1调节微粒飞向自身最好位置方向的步长,c 2调节微粒向全局最好位置飞行的步长。

通过分析基本粒子群的一些特点,可以知道式(2.1)中其第一部分为微粒先前的速

度;其第二部分为“认知”部分,表示微粒本身的思考;其第三部分为“社会”部分,表示微粒间的社会信息共享。目前,虽然模型的社会部分和认知部分的相对重要性还没有从理论上给出结论,但有一些研究已经表明对一些问题,模型的社会部分显得对认知部分更重要。

2.3 算法流程

基本粒子群算法的流程如下:

(1)初始化粒子群,随机初始化各粒子。

(2)根据适应度函数计算各粒子的适应度值。

(3)对每个粒子,将它的适应度值与它的历史最优的适应度值比较,如果更好,

则将其作为历史最优。

(4)对每个粒子,比较它的适应度值和群体所经历的最好位置的适应度值,如

果更好,则将其作为群最优。

(5)根据方程(2.1)和方程(2.2)对粒子的速度和位置进行进化。

(6)如果达到结束条件(足够好的解或最大迭代次数),则结束,否则转步骤(2)。

粒子群优化算法的流程如图2.1所示

开始

初始化每个粒子的速度和位置

计算每个粒子的适应值

求出每个粒子的个体最优

求出整个群体的全局最优值

根据方程(2.1)对粒子的速度进行进化

根据方程(2.2)对粒子的位置进行进化

是否满足结束条件

输出结果

图2.1 基本粒子群算法流程图

2.4 全局模型与局部模型

在2.2描述的算法中,粒子的行为是受自身最优pbest和全局最优gbest的影响,这种版本称为全局版本PSO算法,如图2.2所示。另一种为局部版本PSO算法,在该算法中,粒子的行为是不受全局最优gbest影响的,而是受自身最优pbest和拓扑结构中邻

近粒子中的局部最优lbest 影响的,如图2.3所示。对局部版本,式(2.1)改为:

()()()()()()()()()()t x t p t r c t x t p t r c t v t v ij ij ij ij ij ij -+-+=+22111 (2.3) 其中,p ij 为邻近粒子的局部最优。

比较两种版本的算法,我们可以发现:因为全局版本PSO 算法中所有粒子信息是

共享的,所以算法收敛到全局最优的速度比局部版本PSO 算法快。但全局PSO 算法易陷入局部最优;局部PSO 算法允许粒子与邻近粒子比较,相互施加影响,虽然算法收敛速度慢,但不易陷入局部最优。

图2.2 gbest 模型 图2.3 lbest 模型 2.5 算法特点

粒子群算法具有以下主要优点:

◆ 易于描述

◆ 设置参数少

◆ 容易实现

◆ 收敛速度快

粒子群算法很容易实现,计算代价低且占用计算机硬件资源少。粒子群算法已被

证明能很好地解决许多全局优化问题。当然,PSO 算法也和其它全局优化算法一样,有易陷入局部最优,收敛精度不高,后期收敛速度慢等缺点。

2.6 带惯性权重的粒子群算法

探索是偏离原来的寻优轨迹去寻找一个更好的解,探索能力是一个算法的全局搜

索能力。开发是利用一个好的解,继续原来的寻优轨迹去搜索更好的解,它是算法的局部搜索能力。如何确定局部搜索能力和全局搜索能力的比例,对一个问题的求解过

程很重要。1998年,Yuhui Shi [9]提出了带有惯性权重的改进粒子群算法。其进化过程为:

()()()()()()()()()()t x t p t r c t x t p t r c t wv t v ij gj ij ij ij ij -+-+=+22111 (2.4)

()()()11++=+t v t x t x ij ij ij (2.5)

在式(2.1)中,第一部分表示粒子先前的速度,用于保证算法的全局收敛性能;第

二部分、第三部分则是使算法具有局部收敛能力。可以看出,式(2.4)中惯性权重w 表示在多大程度上保留原来的速度。w 较大,全局收敛能力强,局部收敛能力弱;w 较小,局部收敛能力强,全局收敛能力弱。

当w=1时,式(2.4)与式(2.1)完全一样,表明带惯性权重的粒子群算法是基本粒子

群算法的扩展。实验结果表明,w 在[0.8,1.2]之间时,PSO 算法有更快的收敛速度,而当w>1.2时,算法则易陷入局部极值。

2.7 粒子群算法的研究现状

在算法的理论研究方面。目前PSO 算法还没有成熟的理论分析,少部分研究者对

算法的收敛性进行了分析,大部分研究者在算法的结构和性能改善方面进行研究,包括参数分析,拓扑结构,粒子多样性保持,算法融合和性能比较等。PSO 由于有简单、易于实现、设置参数少、无需梯度信息等特点,其在连续非线性优化问题和组合优化问题中都表现出良好的效果。

第 3 章 用粒子群方法优化PID 参数

PID 控制是最早发展起来的控制策略之一,是指将偏差的比例(P)、积分(I)和微分

(D)通过线性组合构成控制量,对被控对象进行控制。随着计算机的普及,数字PID 控制在生产过程中已成为一种最常用的控制方法,在机电、冶金、机械、化工等诸多行业中获得了广泛的应用。

3.1 PID 控制原理

图3.1给出PID 控制系统的原理框图,该控制系统由模拟PID 控制器和被控对象组

成。

图3.1 PID 控制系统原理框图

PID 控制是一种线性控制器,它根据给定值r(t)与实际输出值y(t)构成控制偏差:

)()()(t y t r t e -= (3.1) PID 的控制规律为:

()()()???? ?

?++=?t d i p dt t de T dt t e T t e K t u 0)(1 (3.2) 或写成传递函数的形式:

()()()s K s

K K s E s U s G d i p ++== (3.3) 比例

积分 微分

被控对象 r(t) e(t)

u(t) y(t) + +

+ –

其中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。PID 控制器中的

各个校正环节的作用如下:

1、比例环节:成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立

即产生控制作用,以减小偏差;

2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于

积分时间常数凡,凡越大,积分作用越强,反之则越弱;

3、微分环节:反映偏差信号的变化趋势(变化速率),并能在误差信号变得太大

之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

3.2 PID 控制的特点

PID 控制器原理简单、鲁棒性好、可靠性高,因此一直是工业过程控制中应用最

广的策略,尤其适用于可建立精确数学模型的确定性系统。

但是实际工业生产过程往往具有非线性、时变不确定性等困难性,难以建立精确

的数学模型,应用常规PID 控制器不能达到理想的控制效果。此外,在实际生产的现场中,常规PID 控制器往往会受到参数整定过程繁杂的困扰,出现整定不良、性能欠佳的情况,对运行工况的适应性也很差。

3.3 优化设计简介

所谓优化设计就是一种对问题寻优的过程,人们所从事的任何工作都希望尽可能

做好,以期得到一个理想的目标。在日常的设计过程中,常常需要根据产品设计的要求,合理地确定各种参数,以达到最佳的设计目标。实际上,在任何一项设计工作中都包含着寻优过程,但这种寻优在很大程度上带有经验性,多根据人们的直觉、经验及不断试验而实现的,由于受到经验、时间、环境等条件的限制,往往难以得到最佳的结果。

优化设计是20世纪60年代发展起来的一门新的学科,它是最优化技术和计算机技

术在设计领域应用的结果。优化设计为工程设计提供了一种重要的科学设计方法,在解决复杂设计问题时,它能从众多的设计方案中找到尽可能完善的设计方案。要实现问题的优化必须具备两个条件,一是存在一个优化目标;另一是具有多个方案可供选

择。

工程设计问题的最优化,可以表达为一组优选的设计参数,在满足一系列限制条

件下,使设计指标达到最优。因而,优化设计的数学模型可由设计变量、目标函数和设计约束条件三部分组成。

(1) 设计变量:在工程设计中,为区别不同的设计方案,通常是以被称为设计

变量的不同参数来表示。

(2) 目标函数:每一个设计问题,都有一个或多个设计中所追求的目标,它们

可以用设计变量的函数来表示,被称为目标函。

(3) 设计约束:优化设计不仅要使所选择方案的设计指标达到最佳值,同时还必须满足一些附加的设计条件,这些附加设计条件都构成对设计变量取值的限制,在优化设计中被称为设计约束。

工程设计中的优化方法有多种类型,有不同的分类方法。若按设计变量数值的不

同,可将优化设计分为单变量(一维)优化和多变量优化;若按约束条件的不同,可分为无约束优化和有约束优化;若按目标函数数量的不同,又有单目标优化和多目标优化[10]。

3.4 目标函数选取

在参数最优化的问题中要涉及性能指标函数,性能指标函数是被寻参数的函数,

称为目标函数。选择不同的目标函数的出发点是使它即能比较明确的反映系统的品质,又便于计算。当然选择不同的目标函数,即使对于同一系统,寻优最后得到的优化参数也是会有所不同的。

目标函数的选择分为两大类:第一类是特征型目标函数,它是按照系统的输出响

应的特征提出的。第二类是误差型目标函数,它是采用期望响应和实际响应之差的某个函数作为目标函数。这种目标函数实际上是对第一类目标函数的几个特征向量做数学分析,把它们包含在一个目标函数的表达式中。因此它反映整个系统的性能。

几种常用的误差型目标函数:

(1)误差平方的积分型。这种目标函数的表达式为

()20t

J e t dt =? (3.4) 其中e(t)=r(t)-y(t)表示系统误差。一般要求e(t)越小越好,即要求控制系统的输出

响应y(t)尽可能的接近输入r(t)。由于在过度过程中e(t)时正时负,故取误差的平方进行积分。这种目标函数在数学上是很容易实现的,常常可以得到比较简单的解析式。但是在过度过程中,不同时期的误差是不完全相同的,如果全部用误差的平方再积分显然是不怎么合理的,不能很好的反映系统的最终品质指标的要求。

(2)时间乘以平方误差型。这种目标函数的表达式为

20t J te dt =? (3.5)

由于在误差平方上乘以了t ,相当加上了时间权。这样过度过程的初始误差考虑

比较少,而着重权衡过度过程中后期出现的误差。这种目标函数的选取不止一种方法可以更精确地反映系统的最终品质要求。

(3)误差绝对值积分型。这种目标函数的表达式为

()0t

J e t dt =? 或者为 ()0t

J t e t dt =? (3.6)

其寻优方法显然要比其他两种方法优点突出。一方面加了绝对值,它克服了在过

度过程中e(t)时正时负的缺点,另外加了时间t ,这样过度过程中后期出现的误差也基本上能消除。因此本文在选择目标函数的表达式取()0t

J t e t dt =?。 3.5 大迟滞系统

在生产过程中,被控制对象除了具有容积延迟外,往往有不同程度的纯迟滞。例如在交换器中,被测量是被加热物料的出口温度,而控制量是载热介质,当改变载热介质流量后,对物料的出口温度必然有一个迟滞的时间,即介质经过管道的时间。此外,如反应器,管道混合,皮带传输,多容量,多个设备串联以及用分析仪表测量流体成分过程等等都存在着比较大的滞后。在这些过程中,由于纯滞后的存在,使得被调量不能及时反映系统所受的扰动,即使测量信号达到调节器,调节机关接受调节信号后立即动作,也需要经过纯滞后时间τ以后,才波及被调量,使之受到控制。因此,这样的过程必然会产生比较明显的超调量和较长的调节时间。所以具有纯滞后的系统认为是最难控制的系统。其控制难度将随着滞后时间τ占整个过程的时间动态的分配份额的增加而增加。一般认为纯滞后的时间τ与过程时间常数T 之比的值大于0.3,则说明该过程具有大滞后的工艺过程。当τ/T 增加,过程中的相位滞后增加,使上述现

象更为突出,有时甚至会因为超调量严重而出现聚爆,结焦等停产事故;有时则可能引起系统不稳定,被调量超出安全限,从而危及设备及人身安全。因此大迟滞系统一直被受人们的关注,成为重要的课题之一。

解决的方法很多,最简单的是利用常规调节器适应性强,调整方便的特点,经过仔细个别的调整,在控制要求不太苛刻的情况下,满足生产过程的要求。当对系统进行特别调整后还不能获得满意的结果时,还可以在常规控制的基础上稍微加以改动。可以采用微分先行的控制方案,即将微分作用移动到反馈前面,以加强微分作用,达到减小超调量的目的。

在大迟滞系统中采用的补偿方法不同于前馈补偿,它是按照过程的特性设想的一种模型加入到反馈控制系统中,以补偿过程的动态特性。这种补偿反馈也因其构成模型的方法形成不同而有不同的方案。常用的有史密斯(Smith)预估补偿方法,当然还有一些改进过的史密斯(Smith)预估补偿方法,比如1977年甲而思和巴特利在史密斯方法的基础上提出了增益的自适应补偿方案。它们在模型匹配的条件下均可以获得比较好的效果。

通过理论分析可以证明改进型方案的稳定性优于未改进的史密斯方案,而且对模型精度的要求也有所降低,有利于改善系统的控制性能。尽管史密斯(Smith)预估补偿方案中多了一个调节器,其整定参数还是比较简单的。为了保证系统输出响应无残差,一般要求两个PID动作调节器。其中主调节器只需要按照模型完全精确的情况进行整定。至于辅助调节器的整定,只要在辅助调节器的反馈通道上与模型传递函数的模型相匹配即可。无论在设定值扰动或者负荷扰动下,史密斯(Smith)预估器对模型精度都是十分敏感的,另外改进型的方案有很好的适应能力。

1959年由Smith率先提出了大滞后系统的预估补偿方案,其主要原理是预先估计出被控过程的动态模型,然后将预估器并联在被控过程上,使其对过程中的纯滞后特性进行补偿,力图将被延迟的时间 的被控量提前送入调节器,因而调节器能提前动作,这样就通过补偿装置消除了纯滞后特性在闭环中的影响。从而可明显地减少过程的超调量、缩短过渡过程时间,有效地改善控制品质,所以它是一种比较理想的大滞后系统控制方案。Smith预估补偿器方案原理如图3.2所示。

图3.2 Smith 预估补偿器方案原理框图

图中 ()s W c ——PID 调节器;

()s e s W 00τ-——广义被控对象的数学模型,()s W 0为不包括纯滞后时间0τ的对象模

型;

()s W s ——Smith 预估补偿器。

显然,在未进行Smith 预估补偿情况下,系统闭环传递函数为

()()()()()()()s

c s c e s W s W e s W s W s R s C s 00001ττφ--+== (3.7)

故其闭环特征方程式为

()()s c e s W s W 001τ-+=0 (3.8)

由于在系统特征方程式中出现了纯时间滞后项s e 0τ-,这就在系统中引入了易造成

不稳定的相角滞后,因此增加了系统的控制难度。引入Smith 预估补偿器的目的,是使调节器()s W c 所控制的等效对象中能消除纯滞后部分,即图3.2中应该满足如下关系

()s e s W 00τ-+()s W s =()s W 0 (3.9) 由此可得Smith 预估补偿器的数学模型为 ()s W c ()s e s W 00τ-

()s W s

R E C

M +

()s W s =()()s e s W 010τ-- (3.10)

于是,图3.2所示之Smith 预估补偿系统方框图可由图3.3表示。

图3.3 Smith 预估补偿系统一般型框图

图3.3经方框图通过等效变换,可转为如图3.4所示的方框图。

由图3.4显然可得等效Smith 预估系统闭环传递函数为

()()()()()()()

s W s W e s W s W s R s C s c s

c 0010+==-τφ (3.11) 故闭环系统特征方程式为

()()s W s W c 01+=0 (3.12)

图3.4 Smith 等效预估补偿系统框图

这就是Smith 预估补偿的基本思路,即从系统特征方程式中消除纯滞后因素,因

而可消除过程纯滞后特性对系统稳定性的不利影响。 ()s W c ()s W 0s

e 0τ-C

R ()s W c ()s e s W 00τ-

()s W 0R C

s

e 0τ-

粒子群优化算法及其参数设置

毕业论文 题目粒子群算法及其参数设置专业信息与计算科学 班级计算061 学号3060811007 学生xx 指导教师徐小平 2016年 I

粒子群优化算法及其参数设置 专业:信息与计算科学 学生: xx 指导教师:徐小平 摘要 粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。论文介绍了粒子群优化算法的基本原理,分析了其特点。论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。最后对其未来的研究提出了一些建议及研究方向的展望。 关键词:粒子群优化算法;参数;方差分析;最优解 II

Particle swarm optimization algorithm and its parameter set Speciality: Information and Computing Science Student: Ren Kan Advisor: Xu Xiaoping Abstract Particle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed. Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solution III

粒子群优化算法综述

粒子群优化算法综述 摘要:本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述。侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题和实际工业对象中的应用,并给出了粒子群算三个重要的网址,最后对粒子群算做了进一步展望。 关键词;粒子群算法;应用;电子资源;综述 0.引言 粒子群优化算法]1[(Particle Swarm Optimization ,PSO)是由美国的Kenned 和Eberhar 于1995年提出的一种优化算法,该算法通过模拟鸟群觅食行为的规律和过程,建立了一种基于群智能方法的演化计算技术。由于此算法在多维空间函数寻优、动态目标寻优时有实现容易,鲁棒性好,收敛快等优点在科学和工程领域已取得很好的研究成果。 1. 基本粒子群算法]41[- 假设在一个D 维目标搜索空间中,有m 个粒子组成一个群落,其中地i 个粒子组成一个D 维向量,),,,(21iD i i i x x x x =,m i ,2,1=,即第i 个粒子在D 维目标搜索空间中的位置是i x 。换言之,每个粒子 的位置就是一个潜在的解。将i x 带入一个目标函数就可以计算出其适 应值,根据适应值得大小衡量i x 的优劣。第i 个粒子的飞翔速度也是一个D 维向量,记为),,,(21iD i i i v v v v =。记第i 个粒子迄今为止搜索到的最优位置为),,,(21iD i i i p p p p =,整个粒子群迄今为止搜索到的最优位置为),,,(21gD gi g g p p p p =。 粒子群优化算法一般采用下面的公式对粒子进行操作

)()(22111t id t gd t id t id t id t id x p r c x p r c v v -+-+=+ω (1) 11+++=t id t id t id v x x (2) 式中,m i ,,2,1 =;D d ,,2,1 =;ω是惯性权重, 1c 和2c 是非负常数, 称为学习因子, 1r 和2r 是介于]1,0[间的随机数;],[max max v v v id -∈,max v 是常数,由用户设定。 2. 粒子群算法的改进 与其它优化算法一样PSO 也存在早熟收敛问题。随着人们对算 法搜索速度和精度的不断追求,大量的学者对该算法进行了改进,大致可分为以下两类:一类是提高算法的收敛速度;一类是增加种群多样性以防止算法陷入局部最优。以下是对最新的这两类改进的总结。 2.1.1 改进收敛速度 量子粒子群优化算法]5[:在量子系统中,粒子能够以某一确定的 概率出现在可行解空间中的任意位置,因此,有更大的搜索范围,与传统PSO 法相比,更有可能避免粒子陷入局部最优。虽然量子有更大的搜索空间,但是在粒子进化过程中,缺乏很好的方向指导。针对这个缺陷,对进化过程中的粒子进行有效疫苗接种,使它们朝着更好的进化方向发展,从而提高量子粒子群的收敛速度和寻优能力。 文化粒子群算法]6[:自适应指导文化PSO 由种群空间和信念空间 两部分组成。前者是基于PSO 的进化,而后者是基于信念文化的进化。两个空间通过一组由接受函数和影响函数组成的通信协议联系在一起,接受函数用来收集群体空间中优秀个体的经验知识;影响函数利用解决问题的知识指导种群空间进化;更新函数用于更新信念空间;

基于蚁群算法的PID控制参数优化Matlab源码

基于蚁群算法的PID控制参数优化Matlab源码 (2009-07-26 12:31:02) 除了蚁群算法,可用于PID参数优化的智能算法还有很多,比如遗传算法、模拟退火算法、粒子群算法、人工鱼群算法,等等。 function [BESTX,BESTY,ALLX,ALLY]=ACOUCP

(K,N,Rho,Q,Lambda,LB,UB,Num,Den,Delay,ts,StepNum,SigType,PIDLB,PIDUB) %% 此函数实现蚁群算法,用于PID控制参数优化 % GreenSim团队原创作品,转载请注明 % Email:greensim@https://www.wendangku.net/doc/5c2493088.html, % GreenSim团队主页:https://www.wendangku.net/doc/5c2493088.html,/greensim % [color=red]欢迎访问GreenSim——算法仿真团队→[url=https://www.wendangku.net/doc/5c2493088.html,/greensim] https://www.wendangku.net/doc/5c2493088.html,/greensim[/url][/color] %% 输入参数列表 % K 迭代次数 % N 蚁群规模 % Rho 信息素蒸发系数,取值0~1之间,推荐取值0.7~0.95 % Q 信息素增加强度,大于0,推荐取值1左右 % Lambda 蚂蚁爬行速度,取值0~1之间,推荐取值0.1~0.5 % LB 决策变量的下界,M×1的向量 % UB 决策变量的上界,M×1的向量 % Num 被控制对象传递函数的分子系数向量 % Den 被控制对象传递函数的分母系数向量 % Delay 时间延迟 % ts 仿真时间步长 % StepNum 仿真总步数 % SigType 信号类型,1为阶跃信号,2为方波信号,3为正弦波信号 % PIDLB PID控制输出信号限幅的下限 % PIDUB PID控制输出信号限幅的上限 %% 输出参数列表 % BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优蚂蚁 % BESTY K×1矩阵,记录每一代的最优蚂蚁的评价函数值 % ALLX K×1细胞结构,每一个元素是M×N矩阵,记录每一代蚂蚁的位置 % ALLY K×N矩阵,记录每一代蚂蚁的评价函数值

粒子群算法综述

粒子群算法综述 【摘要】:粒子群算法(pso)是一种新兴的基于群体智能的启发式全局搜索算法,具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已得到广泛研究和应用。为了进一步推广应用粒子群算法并为深入研究该算法提供相关资料,本文对目前国内外研究现状进行了全面分析,在论述粒子群算法基本思想的基础上,围绕pso的运算过程、特点、改进方式与应用等方面进行了全面综述,并给出了未来的研究方向展望。 【关键词】:粒子群算法优化综述 优化理论的研究一直是一个非常活跃的研究领域。它所研究的问题是在多方案中寻求最优方案。人们关于优化问题的研究工作,随着历史的发展不断深入,对人类的发展起到了重要的推动作用。但是,任何科学的进步都受到历史条件的限制,直到二十世纪中期,由于高速数字计算机日益广泛应用,使优化技术不仅成为迫切需要,而且有了求解的有力工具。因此,优化理论和算法迅速发展起来,形成一门新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。这些优化技术在诸多工程领域得到了迅速推广和应用,如系统控制、人工智能、生产调度等。随着人类生存空间的扩大,以及认识世界和改造世界范围的拓宽,常规优化法如牛顿法、车辆梯度法、模式搜索法、单纯形法等已经无法处理人们所面的复杂问题,因此高效的

优化算法成为科学工作者的研究目标之一。 1.粒子群算法的背景 粒子群算法(particle swarm optimization,pso)是一种新兴的演化算法。该算法是由j.kennedy和r.c.eberhart于1995年提出的一种基于群智能的随机优化算法。这类算法的仿生基点是:群集动物(如蚂蚁、鸟、鱼等)通过群聚而有效的觅食和逃避追捕。在这类群体的动物中,每个个体的行为是建立在群体行为的基础之上的,即在整个群体中信息是共享的,而且在个体之间存在着信息的交换与协作。如在蚁群中,当每个个体发现食物之后,它将通过接触或化学信号来招募同伴,使整个群落找到食源;在鸟群的飞行中,每只鸟在初始状态下处于随机位置,且朝各个方向随机飞行,但随着时间推移,这些初始处于随机状态的鸟通过相互学习(相互跟踪)组织的聚集成一个个小的群落,并以相同的速度朝着相同的方向飞行,最终整个群落聚集在同一位置──食源。这些群集动物所表现的智能常称为“群体智能”,它可表述为:一组相互之间可以进行直接通讯或间接通讯(通过改变局部环境)的主体,能够通过合作对问题进行分布求解。换言之,一组无智能的主体通过合作表现出智能行为特征。粒子群算法就是以模拟鸟的群集智能为特征,以求解连续变量优化问题为背景的一种优化算法。因其概念简单、参数较少、易于实现等特点,自提出以来已经受到国内外研究者的高度重视并被广泛应用于许多领域。

基于粒子群算法的控制系统PID参数优化设计

基于粒子群算法的控制系统 PID 参数优化设计 摘 要 本文主要研究基于粒子群算法控制系统PID 参数优化设计方法以及对PID 控制的 改进。PID 参数的寻优方法有很多种,各种方法的都有各自的特点,应按实际的系统特点选择适当的方法。本文采用粒子群算法进行参数优化,主要做了如下工作:其一,选择控制系统的目标函数,本控制系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现;其二,本文先采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数p K ,i K ,d K ,再利用粒子群算法进行寻优,得到更好的PID 参数;其三,采用SIMULINK 的仿真工具对PID 参数优化系统进行仿真,得出系统的响应曲线。从中发现它的性能指标,都比原来有了很大的改进。因此,采用粒子群算法的优越性是显而易见的。 关键词 目标函数;PID 参数;粒子群算法;优化设计;SIMULINK

Optimal design of PID parameter of the control system based on Particle Swarm Optimization Abstract The main purpose of this paper is to study the optimal design of PID parameter of the control system based on Particle Swarm Optimization and find a way to improve the PID control. There are a lot of methods of optimization for the parameters of PID, and each of them has its own characteristics. The proper methods need to be selected according to the actual characteristics of the system. In this paper we adopt the Particle Swarm Optimization to tune the parameters. To finish it, the following tasks should be done. First, select the target function of the control system. The target function of the control system should be chosen as the absolute value of the error multiplied by time. Then we simulate the control system gradually, and analyze the results of the process. Because the solution of the target function cannot be worked out directly, this design adopts simulation gradually. Second, this paper adopts the engineering method (the critical ratio method) to determine its initial parameters p K ,i K ,d K , then uses the Particle Swarm Optimization to get a series better PID parameters. Third, this paper uses the tool of SIMULINK to optimize the parameters of PID and gets the response curve of the system. By contrast with the two response curves, it is clearly that the performance has improved a lot than the former one. Therefore, it is obviously to find the advantages in using the Particle Swarm Optimization. Key word : target function; PID parameters; Particle Swarm Optimization; optimal design; SIMULINK

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

基于自适应果蝇优化算法的PID参数优化

2018年10月 第46卷第20期 机床与液压 MACHINETOOL&HYDRAULICS Oct 2018 Vol 46No 20 DOI:10.3969/j issn 1001-3881 2018 20 033 收稿日期:2017-05-09 基金项目:陕西省重点研发计划资助项目(2018GY?042);咸阳市科技局资助项目(2017K02?05) 作者简介:李明辉(1972 ),男,博士,教授,主要从事智能及高级过程控制的研究三E-mail:60334@sust edu cn三 基于自适应果蝇优化算法的PID参数优化 李明辉1,曹泽1,王玉洁2 (1 陕西科技大学机电工程学院,陕西西安710021;2 上海亚太计算机信息系统有限公司,上海200040) 摘要:针对基本果蝇优化算法(FOA)控制精度不高且易陷入局部最优的缺陷,提出一种自适应果蝇优化算法 (IFOA)的PID参数优化方案三该算法以控制偏差绝对值和输入平方项的时间积分作为适应度函数,经过迭代寻优得到最优的PID参数值三通过二阶时滞系统测试并与基本果蝇优化算法比较,结果表明:该算法控制精度高二响应速度快二鲁棒性好,为PID参数优化提供了参考三 关键词:自适应果蝇优化算法(IFOA);适应度函数;PID;参数优化 中图分类号:TP273一一文献标志码:A一一文章编号:1001-3881(2018)20-144-4 OptimizationofPIDParametersBasedonImprovedFruit?flyOptimizationAlgorithm LIMinghui1,CAOZe1,WANGYujie2 (1 CollegeofMechanicalandElectricalEngineering,ShaanxiUniversityofScience&Technology,Xi anShaanxi710021,China;2 ShanghaiAsia&PacificComputerInformationSystemCo.,Ltd.,Shanghai200040,China) Abstract:Aimingatthedefectsofthebasicfruit?flyoptimizationalgorithm(FOA),thecontrolaccuracywasnothighandeasy tofallintolocaloptimum,amethodforparameteroptimizationofPIDcontrollerbasedonimprovedfruit?flyoptimizationalgorithm(IFOA)wasproposed,inwhichabsoluteerrorandthesquareofcontrolinputwereusedasfitnessfunctionandtheoptimalPIDparametervaluewasobtainedthroughiterativeoptimization.Comparedwiththebasicfruit?flyoptimizationalgorithm,thesimulationresultsshowthatthealgorithmhashighcontrolprecision,fastresponseandrobustnessthroughtwoorderdelaysystemtest.ItprovidesareferenceforPIDparameteroptimization. Keywords:Improvedfruit?flyoptimizationalgorithm(IFOA);Fitnessfunction;PID;Parameteroptimization 0一前言 PID控制器由于其算法简单二鲁棒性好二可靠性 高,被广泛应用于工业过程控制中[1]三传统的PID 控制器参数整定采用人工经验,很难得到理想的最优值三目前,随着人工智能技术的发展,不少学者针对PID参数整定提出新的算法,如遗传算法二粒子群算法等得到了一定的效果[2]三这些算法灵活二简单二易理解,在解决工业过程控制的实际问题中具有非常广阔的应用前景[3]三然而,遗传算法编程复杂,参数较多;粒子群算法在进化后期收敛速度减慢,同时陷入局部最优的可能性加大三 果蝇优化算法(Fruit?flyOptimizationAlgorithm,FOA)是2011年台湾学者潘文超提出的一种新的全局优化进化算法[4]三该算法由于程序代码简单二易于 理解二参数较少,且全局寻优能力强二收敛速度快等优点,在近几年来引起广泛关注[5]三JHAN等[6]采用果蝇优化算法进行PID参数整定,得到FOA避免早熟的结论;YLIU等[7 -8] 采用混沌搜索的FOA算法整 定PID参数,减少了适应度波动;宋娟[9]采用FOA与PSO相结合的混合寻优来优化PID整定参数,使得控制器有较好的控制效果和收敛特性三 作者针对基本果蝇优化算法(FOA)寻优精度不高二容易陷入局部最优的缺陷,提出一种自适应果蝇优化算法[10]的PID参数优化方案三通过在果蝇搜索过程中引入半径调节系数以及选择合适的适应度函数,对PID的3个参数进行了优化三结果表明该算法能够快速高效地寻找到最优参数,有效提高了PID控制器的控制精度三 1一PID控制器基本原理 PID控制器是通过对偏差信号进行比例二积分二微分3个参数的控制,使得系统表现较好性能三PID控制原理如图1所示 三 图1一PID控制系统框图

粒子群算法基本原理

4.1粒子群算法基本原理 粒子群优化算法[45]最原始的工作可以追溯到1987年Reynolds 对鸟群社会系统Boids (Reynolds 对其仿真鸟群系统的命名)的仿真研究 。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体(鸟),避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48]和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中 。Kennedy 和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻食物。Kennedy 和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本的粒子群优化算法[49]。 假设在一个D 维搜索空间中,有m 个粒子组成一粒子群,其中第i 个粒子的空间位置为123(,,,...,)1,2,...,i i i i iD X x x x x i m ==,它是优化问题的一个潜在解,将它带入优化目标函数可以计算出其相应的适应值,根据适应值可衡量i x 的优劣;第i 个粒子所经历的最好位置称为其个体历史最好位置,记为123(,,,...,)1,2,...,i i i i i D P p p p p i m ==,相应的适应值为个体最好适应值 Fi ;同时,每个粒子还具有各自的飞行速度123(,,,...,)1,2,...,i i i i iD V v v v v i m ==。所有粒子经历过的位置中的最好位置称为全局历史最好位置,记为

粒子群优化算法及其应用研究【精品文档】(完整版)

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

粒子群算法(1)----粒子群算法简介

粒子群算法(1)----粒子群算法简介 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化

第一次更新位置 第二次更新位置

第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群算法的研究现状及其应用

智能控制技术 课程论文 中文题目: 粒子群算法的研究现状及其应用姓名学号: 指导教师: 年级与专业: 所在学院: XXXX年XX月XX日

1 研究的背景 优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。 对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。粒子群算法(PSO )就是其中的一项优化技术。1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。 粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。 目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为 T i i1i2im Gbest [,]g = ,g ,g 。 粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下: i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+?+?; i+1i+1i x x v =+, 式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

粒子群优化算法及其参数设置

附录 程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all ; %清除所有变量 clc; %清屏 format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); v=zeros(N,D); for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------显示群位置----------------------

figure(1) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始位置') tInfo=strcat('第',char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维'); end title(tInfo) end %------显示种群速度 figure(2) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始速度') tInfo=strcat('第,char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维); end title(tInfo) end figure(3)

粒子群算法优化模糊pid

本文选取常见的二阶惯性加纯滞后环节,传递函数为: )1)(1(21++=-s T s T e G s s τ 在这里,3.0,2,,121===τT T PID 参数取为2,1,2===i d p K K K 本设计中的模糊控制器采用两输入(e, ec),三输出(P,I,D)的形式来调整PID 参数。e 的论域为[-3,3],ec 的论域为[-3,3]。推理机使用 {,,,,,,}NB NM NS O PS PM PB ,表示{负大,负中,负小,零,正小,正中,正大}为了可以调节尽可能多的系统,此控制器选定在负边界处与正边界处分别选用平滑连续的Z 型隶属度函数与S 型隶属度函数,在中间部分采用灵敏度较强的三角形隶属度函数。规则表如下图所示: (1)主程序: clear clc %% 参数设置 w = 0、6; % 惯性因子 c1 = 1、414; % 加速常数 c2 = 1、623; % 加速常数 Dim = 5; % 维数 SwarmSize = 100; % 粒子群规模 ObjFun = @PSO_PID; % 待优化函数句柄

MaxIter = 100; % 最大迭代次数 MinFit = 0、01; % 最小适应值 Vmax = 2; Vmin =-2; Ub = [20 50 1 1 1]; Lb = [0 0 0 0 0]; %% 粒子群初始化 Range = ones(SwarmSize,1)*(Ub-Lb); Swarm = rand(SwarmSize,Dim)、*Range + ones(SwarmSize,1)*Lb; % 初始化粒子群 VStep = rand(SwarmSize,Dim)*(Vmax-Vmin) + Vmin; % 初始化速度 fSwarm = zeros(SwarmSize,1); for i=1:SwarmSize fSwarm(i,:) = feval(ObjFun,Swarm(i,:)); % 粒子群的适应值 end %% 个体极值与群体极值 [bestf,bestindex]=min(fSwarm); zbest=Swarm(bestindex,:); % 全局最佳 gbest=Swarm; % 个体最佳 fgbest=fSwarm; % 个体最佳适应值 fzbest=bestf; % 全局最佳适应值 %% 迭代寻优 iter = 0; y_fitness = zeros(1,MaxIter); % 预先产生4个空矩阵 K_p = zeros(1,MaxIter);

启发式优化算法综述【精品文档】(完整版)

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

相关文档
相关文档 最新文档