文档库 最新最全的文档下载
当前位置:文档库 › 丛枝菌根真菌名录及新科新属

丛枝菌根真菌名录及新科新属

丛枝菌根真菌名录及新科新属
丛枝菌根真菌名录及新科新属

This is an electronic version of the publication:

Schü?ler A, Walker C (2010)

The Glomeromycota. A species list with new families and new genera.

Arthur Schü?ler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.

Electronic version freely available online at

https://www.wendangku.net/doc/5e14568589.html,

This electronic version is 100% identical to the printed publication. This includes the errors; therefore the electronic version contains one additional, initial page as a corrigendum, giving corrections of some errors and typos.

Corrections, 2 FEB, 14 FEB, 19 JUL 2011. The corrections are highlighted in red.

p 7. FOR Claroidoglomeraceae READ Claroid e oglomeraceae

p 10. DELETE

Glomus pulvinatum (Henn.) Trappe & Gerd. [as 'pulvinatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974)

≡Endogone pulvinata Henn., Hedwigia 36: 212 (1897)

p 11. AFTER Botanical Code for formal descriptions after 1 Jan 1935 INSERT)

p 14. BELOW ≡ Endogone macrocarpa var. geospora T.H. Nicolson & Gerd., Mycologia 60(2): 318 (1968) INSERT ≡ Glomus macrocarpum var. geosporum (T.H. Nicolson & Gerd.) Gerd. & Trappe [as macrocarpus var. geosporus], Mycol. Mem. 5: 55 (1974)

p16. ABOVE Sclerocystis coccogenum (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910) INSERT

Sclerocystis clavispora Trappe, Mycotaxon 6(2): 358 (1977)

≡ Glomus clavisporum (Trappe) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 710 (1990)

p 19. FOR Rhizophagus irregulare READ Rhizophagus irregularis

p 19. FOR Rhizophagus proliferus (B?aszk., Kovács & Balázs) READ Rhizophagus proliferus (Dalpé & Declerck)

p 28. FOR Scutellospora arenicola Koske Koske & Halvorson READ Scutellospora arenicola Koske & Halvorson

p 29. FOR Scutellospora pernambucana Oehl, Oehl, D.K. Silva, READ Scutellospora pernambucana Oehl, D.K. Silva, p 30. FOR Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon: 334 (2009) READ Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon 106: 334 (2009)

p 35. FOR Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 689 READ Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 690 p 39. FOR Entrophospora nevadensis J. Palenzuela, N. Ferrol & Oehl, Mycologia 102(3): 627 (2010) READ Entrophospora nevadensis Palenz., N. Ferrol, Azcón-Aguilar & Oehl, in Palenzuela, Barea, Ferrol, Azcón-Aguilar &

Oehl, Mycologia 102(3): 627 (2010)

p 41. FOR

Generic type: Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A.

Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007)

≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker,

B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 717 (2004)

≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995)

READ

Generic type: Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007)

≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980)

≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, B?aszk., A. Schü?ler & Schwarzott, i n Walker,

B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 716 (2004)

=Glomus dominikii B?aszk., Karstenia 27(2): 37 (1988) [1987]

=Pacispora dominikii (B?aszk.) Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004)

Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007)

≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker,

B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 717 (2004)

≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995)

p 41. BELOW Pacispora robigina Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot. (Angew. Bot.) 78: 75 (2004) DELETE Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in

Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007)

≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker,

B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 716 (2004)

≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980)

=Pacispora dominikii (B?aszk.) Sieverd. & Oehl, in O ehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004)

p 43. FOR≡Glomus aurantium B?aszk., Blanke, Renker & Buscot, Mycotaxon 90: 540 (2004) READ≡Glomus aurantium B?aszk., Blanke, R enker & Buscot, Mycotaxon 90: 450 (2004)

p 43. FOR Genus name: Otospora Palenz., Ferrol & Oehl READ Genus name: Otospora Oehl, Palenz. & N. Ferrol

p 43. FOR Generic type: Otospora bareae Palenz., Ferrol & Oehl [as 'bareai'] READ Generic type: Otospora bareae Palenz., N. Ferrol & Oehl [as 'bareai']

p 50. FOR Ambispora granatensis J. Palenzuela, N. Ferrol READ Ambispora granatensis Palenz., N. Ferrol

p 53. FOR (Morton & Redecker 2001; Kaonongbua 2010). READ(Morton & Redecker 2001; Kaonongbua et al. 2010). Comment on the gender of the epithets in Redeckera.

In publishing the new genus Redeckera, in honour of Dirk Redecker, we treated the gender as neuter, thus giving the epithets as pulvinatum, megalocarpum, and fulvum. We had inadvertently missed the recommendation 20A.1(i) in the Botanical Code requesting that all such epithets should be made feminine, and we apologise for this. However, because the names have been formally published, the requirements of Article 62 apply, and the neuter gender must be retained.

The Glomeromycota

A species list with new families and

new genera

Arthur Schü?ler1 and Christopher Walker2

1 Dept. Biology, Biocenter of the Ludwig-Maximilian-University Munich, Grosshaderner Strasse 4, D-8215

2 Planegg-Martinsried, GERMANY

2 Honorary Research Associate, Royal Botanic Garden, Edinburgh

and

Honorary Research Fellow, University of Western Australia

CONTENTS

Introduction (3)

Glomerales (7)

Glomeraceae (7)

Glomus sensu stricto (7)

Species of uncertain position in Glomus sensu lato (8)

Funneliformis (13)

Sclerocystis (16)

Species of uncertain position in Sclerocystis (16)

Rhizophagus (19)

Claroideoglomeraceae (21)

Claroideoglomus (21)

Species of uncertain position in Claroideoglomus (22)

Species of uncertain position in Glomerales (22)

Diversisporales (24)

Gigasporaceae (24)

Gigaspora (26)

Scutellospora (28)

Species of uncertain position in Scutellospora (28)

Racocetra (30)

Species of uncertain position in Racocetra (31)

Species of uncertain position in Gigaspora ceae (31)

Acaulosporaceae (33)

Acaulospora (35)

Species of uncertain position in Acaulospora (36)

Entrophosporaceae (39)

Entrophospora (39)

Species of uncertain position Entrophospora (39)

Pacisporaceae (41)

Pacispora (41)

Diversisporaceae (43)

Diversispora (43)

Otospora (43)

Redeckera (44)

Paraglomerales (46)

Paraglomeraceae (46)

Paraglomus (46)

Archaeosporales (48)

Geosiphonaceae (48)

Geosiphon (48)

Ambisporaceae (50)

Ambispora (50)

Archaeosporaceae (53)

Archaeospora (53)

Literature cited (54)

INTRODUCTION

For many years, the molecular phylogeny of the Glomeromycota (Schü?ler et al. 2001) has been published in parts, and frequently updated on the webpage https://www.wendangku.net/doc/5e14568589.html,. We also provide the Species 2000 & ITIS Catalogue of Life (Schü?ler 2010) with those data. However, the International Code of Botanical Nomenclature (ICBN) does not allow solely electronic publication of taxonomic novelties, so formal changes could not be implemented on this widely used information source. Moreover, because it was not possible to establish the true phylogenetic placement of Glomus macrocarpum, which is the type species of Glomus, a deeply revised taxonomy for the Glomeromycota was impossible. Without knowing the phylogenetic position of this species, we lacked the evidence to classify our long proposed groupings at familial (Schwarzott et al. 2001) and generic levels (Schü?ler et al. 2011). We have recently established Glomus macrocarpum in pot culture and sequenced the SSU rRNA gene to allow us to anchor the position of this fungus and thus establish its natural phylogenetic position in relation to others in this ‘genus’. We can now restructure the systematics of the order Glomerales (Glomeromycota) and also the three other orders in the Glomeromycota. In this work, we have listed all glomeromycotan species presently described. We have created new families and genera based on recent phylogenetic analyses, established in large parts by our own research, and we have categorised those species for which the molecular identity is still unknown as ‘species of uncertain position’ in the taxonomic hierarchy, and listed them under their original genus. Also, a number of epitypes are established, all of which are based on living cultures available for scientific research.

The Glomeromycota consists of fungi that are generally considered to be obligately symbiotic. Although probably correct, this is an assumption based on analogy with the species for which the biology is known. Such species have been shown either (in one instance) to have a Nostoc (Cyanobacteria) species as a symbiont (Schü?ler 2002), or (in all other known instances) to form an intimate symbiosis, generally known as an arbuscular mycorrhiza (AM), with embryophytes (land plants). As well as vascular land plants, hornworts (Schü?ler 2000) and liverworts (Fonseca & Berbera 2008) also may form AM. Many glomeromycotan species are known to form AM, but many others have been described from field collected specimens for which the nutritional state of the fungus is unknown. Some species have been established in pot culture in the past, but are no longer available as living material, and consequently have not been subjected to molecular analysis. A few have had genetic markers DNA-sequenced before the demise of the cultures, or from adequately determined field material, and thus can be placed phylogenetically, but many remain to have their true phylogeny uncovered.

Historically, most species in this phylum have been described and named from the morphology of their spores. These are produced in the main ectocarpically in the substratum, or in the roots of their host plants. Some produce spores in unstructured dense masses or in structured sporocarps at or near the surface of the soil, and it was these that were first observed and named. However, Morton et al. (1998) argued cogently that the spore is uncoupled from other parts of the organism, and if this is so, variation among spores will not necessarily reflect the true phylogeny. This has been proven since molecular methods have been available, and it has been shown that ‘cryptic’ speciation exists. In fact, it is evident that sometimes spore morphology may be almost indistinguishable among species in different families or even orders (Morton and Redecker 2001; Walker et al. 2007; Walker 2008; Gamper et al. 2009).

For the most part, the phylogenetic base used here is the analysis of the small subunit (SSU) rRNA gene, but we consider also data from the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region (comprising the 5.8S rRNA gene and the ITS 1 and ITS2). For simplicity we refer to these as the SSU, LSU, and ITS region. Moreover, we take account of β-tubulin sequence data published in Msiska and Morton (2008) and Morton and Msiska (2010). The SSU subunit is too conserved for resolving species level in the Glomeromycota, but is an important marker for robust phylogenies down to (sub-) genus resolution. Sequences, considered sufficiently good to determine species level are in the region of 1500bp in length, covering part of the SSU and LSU and all of the ITS-region (Krüger et al. 2009; Stockinger et al. 2009) but are not yet available for most AM fungi. Generally speaking, family and generic resolution can be determined by using the SSU or parts of the LSU, and species level resolution can be obtained by additionally using further LSU and the ITS-region data (Stockinger et al. 2010).

Many AM fungal species are placed in genera without conclusive evidence. Because this work is based on a natural classification from molecular phylogeny combined with convincing morphological evidence when available, we have excluded species for which we lack such evidence, but have retained them in their original genera, as ‘species of uncertain position’. As a consequence, the phylogeny we offer is imperfect, but gradually it may be possible to move such species to their correct taxa, when living material that can confidently be assigned a name is discovered and DNA sequences of sufficient quality can be analysed with consequential study of phylogeny. We have tended to be conservative in our approach, and thus organisms that may appear from morphology to fall into well defined groups have sometimes been placed among the species of uncertain position, pending the production of further evidence. We provide a phylogenetic tree showing the clades with their associated genus names (page 5), which was computed by using a maximum likelihood method based on near full length SSU rRNA gene sequences. The numbers at the branches show the bootstrap support for the respective topologies.

Where possible, cultures of AM fungi cited are given an unique numerical identifier from a purpose designed database used by C. Walker. Such numbers may be notional if the culture is deduced from externally provided information in the literature or actual if the culture is known for certain to have existed. Notional numbers may include a series of subcultures if full details are unknown. The numbers have an Attempt number and an associated subculture number. An example is Attempt 1495-0, which is a first attempt to establish a culture with spores from a field-collected sporocarp as inoculum. Voucher specimens from the C. Walker collection in E are given a number preceded by W, e.g., W5288 was taken from Attempt 1495-0 on 04 Mar 2009. Herbarium abbreviations are from Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. https://www.wendangku.net/doc/5e14568589.html,/ih/

We are grateful for the help of Paul Kirk, CABI, and for the compilers of Index Fungorum, whose work made constructing this list much easier. However, we should stress that any errors or omissions are entirely our responsibility.

Order name: Glomerales J.B. Morton & Benny [as 'Glomales'], Mycotaxon 37: 473 (1990)

GLOMERACEAE

This monogeneric family formerly included all the species in Glomus sensu lato, a form-genus that has become a resting place for all of the species with purely glomoid (Glomus-like) spores but unknown phylogenetic affiliations. We made suggestions for separation into several genera and two families about a decade ago, but while we were establishing phylogenetic evidence, we refrained from making formal taxonomic separations. We now have the evidence to separate the order into taxa representing a natural classification, based mainly but not exclusively on molecular phylogenetic analyses. The family is now separated into two, Glomeraceae based on Glomus macrocarpum, and Claroidoglomeraceae fam. nov. based on the former Glomus claroideum.

Family name: Glomeraceae Piroz. & Dalpé [as 'Glomaceae'], Symbiosis 7: 19 (1989) emend C. Walker & A. Schü?ler Spores glomoid, produced at or near the soil surface, in sporocarps, usually with partial or complete peridium or as spores singly or in clusters in the soil or substrate. With the sequence TGTYADGGCAYYRCACYGG in the ribosomal RNA gene

GLOMUS SENSU STRICTO

This genus is based on the species Glomus macrocarpum Tul. & C. Tul. (1845), later lectotypified by Berch & Fortin (1983). For many years, this fungus has been known only from field collections or from unverified pot cultures that have not been available for taxonomic study. We have now established a pot culture and have consequently been able to obtain sequences from the type species for the genus Glomus. We also have molecular evidence from two other samples, one from a field collection, and the other from a pot culture, along with morphological comparison with the lectotype of the species. We define an epitype from our culture to allow future comparison. Some of the synonyms indicated by earlier authorities, should be considered as doubtful pending further studies.

Genus name:Glomus Tul. & C. Tul., G. Bot. Ital. 1 (7-8): 63 (1845) emend C. Walker & A. Schü?ler

≡Parapseudoglomus S.P. Gautam & U.S. Patel, The Mycorrhizae, Diversity, Ecology and Applications (Delhi): 11 (2007)

Spores glomoid, produced at or near the soil surface, in sporocarps, usually with partial or complete peridium or as spores singly or in clusters in the soil or substrate. With the sequences GGTACGYACTGGTATCATTGG and TCGGCTGTAAAAGGCYYTTG in the small subunit ribosomal RNA gene specific for the genus.

Included species:

Generic type:Glomus macrocarpum Tul. & C. Tul. [as 'macrocarpus'], G. Bot. Ital. 1(7-8): 63 (1845)

≡Endogone macrocarpa (Tul. & C. Tul.) Tul. & C. Tul., Fungi Hypog.: 182 (1851)

Specimens examined:

W941 lectotype (see below)

W5288 field collected from which Attempt 1495-0 established from which W5581 was taken for molecular analysis.

Type material

Lectotype. France, Forêt de Chinon, près Ussé, Oct. 1841, Tulasne, determined by Bucholtz, 17 Apr. 1911 to be Endogone macrocarpa Tul., No. 13, designated as lectotype by Berch & Fortin (1983), examined 21 Dec

1983 by C. Walker (W941).

Epitype. W5581; 4 Mar. 2009 lodged in the C. Walker collection at E, here designated. Derived from the pot culture (Attempt 1495-0); ex-epitype culture material is available on request.

SPECIES OF UNCERTAIN POSITION IN GLOMUS SENSU LATO

Glomus achrum B?aszk., D. Redecker, Koegel, Schützek, Oehl & Kovács, Botany 87(3): 262 (2009)

According to published rDNA sequences, this species clusters basal to the phylogenetic Glomus Group Ab and probably belongs to a separate genus that cannot yet be robustly defined.

Glomus aggregatum N.C. Schenck & G.S. Sm., Mycologia 74(1): 80 (1982)

According to a published β-tubulin sequence analysis, G. aggregatum clusters with Claroideoglomus, but this seems unlikely and to be potentially eroneous, so we classify it as of uncertain position, for now.

Glomus albidum C. Walker & L.H. Rhodes [as 'albidus'], Mycotaxon 12(2): 509 (1981)

Glomus ambisporum G.S. Sm. & N.C. Schenck, Mycologia 77(4): 566 (1985)

Glomus antarcticum Cabello, in Cabello, Gaspar & Pollero, Mycotaxon 51: 124 (1994)

Glomus arborense McGee, Trans. Br. Mycol. Soc. 87(1): 123 (1986)

Glomus arenarium B?aszk., Tadych & Madej, Acta Soc. Bot. Pol. 70(2): 97 (2001)

Glomus atrouva McGee & Pattinson, in McGee & Trappe, Aust. Syst. Bot. 15(1): 115 (2002)

Glomus aureum Oehl & Sieverd., in Oehl, Wiemken & Sieverding, J. Appl. Bot., Angew. Bot. 77: 111 (2003)

Glomus australe (Berk.) S.M. Berch, in Berch & Fortin, Can. J. Bot. 61(10): 2611 (1983)

≡Endogone australis Berk., in Hooker, Flora Tasman., Fungi 2: 282 (1859) [1860]

Glomus avelingiae R.C. Sinclair, in Sinclair, Greuning & Eicker, Mycotaxon 74(2): 338 (2000)

Glomus bagyarajii R.C. Sinclair, in Sinclair, Greuning & Eicker, Mycotaxon 74(2): 338 (2000)

Glomus bistratum B?aszk., D. Redecker, Koegel, Symanczik, Oehl & Kovács, Botany 87(3): 267 (2009)

According to published rDNA sequences, this species clusters basal to the phylogenetic Glomus Group Ab and probably belongs to a separate genus that cannot yet be robustly defined.

Glomus boreale (Thaxt.) Trappe & Gerd. [as 'borealis'], in Gerdemann & Trappe, Mycol. Mem. 5: 58 (1974) ≡Endogone borealis Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 318 (1922)

Glomus botryoides F.M. Rothwell & Victor, Mycotaxon 20(1): 163 (1984)

Glomus caesaris Sieverd. & Oehl, in Oehl, Wiemken & Sieverding, Mycotaxon 84: 381 (2002)

Glomus canadense (Thaxt.) Trappe & Gerd. [as 'canadensis'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Endogone canadensis Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 317 (1922)

Glomus candidum Furrazola, Kaonongbua & Bever, Mycotaxon 113: 103 (2010)

Glomus canum McGee, in McGee & Trappe, Aust. Syst. Bot. 15(1): 116 (2002)

Glomus cerebriforme McGee, Trans. Br. Mycol. Soc. 87(1): 123 (1986)

According to published rDNA sequences, this species clusters in the phylogenetic Glomus Group Ab, but the culture used to generate the sequences may not correspond to the species and is in need of verification, so we here refer to it as of uncertain position.

Glomus citricola D.Z. Tang & M. Zang [as 'citricolum'], Acta bot. Yunn. 6(3): 301 (1984)

Glomus convolutum Gerd. & Trappe [as 'convolutus'], Mycol. Mem. 5: 42 (1974)

Glomus corymbiforme B?aszk., Mycologia 87(5): 732 (1995)

Glomus cuneatum McGee & A. Cooper, in McGee & Trappe, Aust. Syst. Bot. 15(1): 117 (2002)

Glomus delhiense Mukerji, Bhattacharjee & J.P. Tewari, Trans. Br. Mycol. Soc. 81(3): 643 (1983)

Glomus deserticola Trappe, Bloss & J.A. Menge, Mycotaxon 20(1): 123 (1984)

The article in which the molecular evidence for this species is published (Chellappan et al. 2005) shows an illustration of a fungus, but it cannot be verified as G. deserticola. The ex-type culture of this species is available, and pending new molecular evidence, we retain this as a species of uncertain phylogenetic position.

Glomus dimorphicum Boyetchko & J.P. Tewari, Can. J. Bot. 64(1): 90 (1986)

Glomus dolichosporum M.Q. Zhang & You S. Wang, in Zhang, Wang & Xing, Mycosystema 16(4): 241 (1997)

Glomus flavisporum (M. Lange & E.M. Lund) Trappe & Gerd. [as 'flavisporus'], Mycol. Mem. 5: 58 (1974)

Glomus formosanum C.G. Wu & Z.C. Chen, Taiwania 31: 71 (1986)

Glomus fragile (Berk. & Broome) Trappe & Gerd. [as 'fragilis'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Paurocotylis fragilis Berk. & Broome, J. Linn. Soc., Bot. 14(2): 137 (1875)

Glomus fuegianum (Speg.) Trappe & Gerd. [as 'fuegianus'], in Gerdemann & Trappe, Mycol. Mem. 5: 58 (1974) ≡Endogone fuegiana Speg., Anal. Soc. Cient. Argent. 24(3): 125 [no. 5, reprint page 6] (1887)

Glomus gibbosum B?aszk., Mycologia 89(2): 339 (1997)

Glomus globiferum Koske & C. Walker, Mycotaxon 26: 133 (1986)

Glomus glomerulatum Sieverd., Mycotaxon 29: 74 (1987)

Glomus halonatum S.L. Rose & Trappe [as 'halonatus'], Mycotaxon 10(2): 413 (1980)

Glomus heterosporum G.S. Sm. & N.C. Schenck, Mycologia 77(4): 567 (1985)

Glomus hoi S.M. Berch & Trappe, Mycologia 77(4): 654 (1985)

Current DNA evidence for organisms that have been determined as G. hoi shows that two different cultures fall into two clades separated at the level at least of genus and possibly family. Consequently, we are retaining it in the species of uncertain position pending further clarification.

Glomus hyderabadensis Swarupa, Kunwar, G.S. Prasad & Manohar., Mycotaxon 89(2): 247 (2004)

Glomus indicum Blaszk., Wubet & Harikumar, Botany 88(2): 132-143 (2010)

According to published rDNA sequences, this species clusters basal to the phylogenetic Glomus Group Ab and probably belongs to a separate genus that cannot yet be robustly defined.

Glomus insculptum B?aszk., in B?aszkowski, Adamska & Czerniawska, Mycotaxon 89(2): 227 (2004)

Glomus invermaium I.R. Hall [as 'invermaius'], Trans. Br. Mycol. Soc. 68(3): 345 (1977)

Glomus kerguelense Dalpé & Strullu, in Dalpé, Plenchette, Frenot, Gloaguen & Strullu, Mycotaxon 84: 53 (2002)

Glomus lacteum S.L. Rose & Trappe [as 'lacteus'], Mycotaxon 10(2): 415 (1980)

Glomus magnicaule I.R. Hall [as 'magnicaulis'], Trans. Br. Mycol. Soc. 68(3): 345 (1977)

Glomus melanosporum Gerd. & Trappe [as 'melanosporus'], Mycol. Mem. 5: 46 (1974)

Glomus microaggregatum Koske, Gemma & P.D. Olexia, Mycotaxon 26: 125 (1986)

Glomus microcarpum Tul. & C. Tul. [as 'microcarpus'], G. Bot. Ital. 1(7-8): 63 (1845)

Glomus minutum B?aszk., Tadych & Madej, Mycotaxon 76: 189 (2000)

Glomus monosporum Gerd. & Trappe [as 'monosporus'], Mycol. Mem. 5: 41 (1974)

This has always been something of a problem. It was established in pot culture, but the culture was lost long before DNA sequencing methods were applied as markers for clades in the Glomeromycota. There have been several cultured organisms that have been given this name, but none seems properly to fit the species description of brown spores that have ornamentation of spines on the laminated wall component.

Glomus mortonii Bentiv. & Hetrick, Mycotaxon 42: 10 (1991)

Although this fungus has produced spores in soil traps in Finland, it has not yet been possible either to establish it in pure culture or to extract DNA. Consequently, it is unclear as to whether or not it belongs in any of the established clades.

Glomus multicaule Gerd. & B.K. Bakshi [as 'multicaulis'], Trans. Br. Mycol. Soc. 66(2): 340 (1976)

Glomus multiforum Tadych & B?aszk., in Blaszkowski & Tadych, Mycologia 89(5): 805 (1997)

Glomus nanolumen Koske & Gemma, Mycologia 81(6): 935 (1990) [1989]

Glomus pallidum I.R. Hall [as 'pallidus'], Trans. Br. Mycol. Soc. 68(3): 343 (1977)

Glomus pansihalos S.M. Berch & Koske, Mycologia 78(5): 832 (1986)

Glomus pellucidum McGee & Pattinson, in McGee & Trappe, Aust. Syst. Bot. 15(1): 120 (2002)

Glomus perpusillum B?aszk. & Kovács, in B?aszkowski, Kovács & Balázs, Mycologia 101(2): 249 (2009)

Glomus przelewicense B?aszk. [as 'przelewicensis'], Bulletin of the Polish Academy of Sciences, Biological Sciences 36(10-12): 272 (1988)

Glomus pulvinatum (Henn.) Trappe & Gerd. [as 'pulvinatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Endogone pulvinata Henn., Hedwigia 36: 212 (1897)

Glomus pustulatum Koske, Friese, C. Walker & Dalpé, Mycotaxon 26: 143 (1986)

Glomus radiatum (Thaxt.) Trappe & Gerd. [as 'radiatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 46 (1974) ≡Endogone radiata Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 316 (1922)

Glomus reticulatum Bhattacharjee & Mukerji [as 'reticulatus'], Sydowia 33: 14 (1980)

This has such a vague and inadequately illustrated species description that it is impossible to apply the name with any confidence to any organism. The type material seems not to exist, and it is thus a species name that exists but which cannot be usefully applied.

Glomus segmentatum Trappe, Spooner & Ivory [as 'segmentatus'], in Trappe, Trans. Br. Mycol. Soc. 73(2): 362 (1979) This is a truly sporocarpic fungus. It is known only from field collections, but no sequence exists that can be used to establish its true phylogeny.

Glomus spinosum H.T. Hu, Mycotaxon 83: 160 (2002)

The species description is more or less uninterpretable, and no type material exists for any of Hu’s species.

Glomus spinuliferum Sieverd. & Oehl, in Oehl, Wiemken & Sieverding, Mycotaxon 86: 158 (2003)

Glomus sterilum V.S. Mehrotra & Baijal [as 'sterile'], Philipp. J. Sci., C, Bot. 121(3): 306 (1992)

This is a nom. inval. (invalid name), having been published without a Latin description or diagnosis (a requirement of the Botanical Code for formal descriptions after 1 Jan 1935.

Glomus tenebrosum (Thaxt.) S.M. Berch, in Berch & Fortin, Can. J. Bot. 61(10): 2615 (1983)

≡Endogone tenebrosa Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 314 (1922)

Glomus tenerum P.A. Tandy [as 'tener'], Aust. J. Bot. 23(5): 864 (1975)

Glomus tenue (Greenall) I.R. Hall [as 'tenuis'], Trans. Br. Mycol. Soc. 68(3): 350 (1977)

≡Rhizophagus tenuis Greenall, N.Z. J. Bot. 1(4): 398 (1963)

A fungus was published under the name Rhizophagus tenuis and later transferred to the genus Glomus. As used, the

name is unlikely to refer to either a single fungus, or a member of Glomus. Fungi fitting the description have from time to time been established in pot culture, but it seems none has ever been purified and there is to date no molecular data with which to place it in its correct clade. It has almost no similarities with any other fungus in the phylum, even more so now that it is known that glomoid spores have been shown to occur in many widely separated taxa.

Glomus tortuosum N.C. Schenck & G.S. Sm., Mycologia 74(1): 83 (1982)

Glomus versiforme (P. Karst.) S.M. Berch, in Berch & Fortin, Can. J. Bot. 61(10): 2614 (1983).

≡Endogone versiformis P. Karst., Hedwigia 23: 39 (1884), non sensu Berch & Fortin, Can. J. Bot. 61: 2614 (1983).

This species is now confounded by its erroneous synonymisation with the former Glomus epigaeum. We have evidence to be published elsewhere showing that these two species are not synonymous, and therefore the species is re-defined through a lectotype.

Specimens examined: Finland, Nylandia, Helsinfors (Helsinki); from the substratum in a plant pot in a cold glasshouse, Cercocarpus ledifolia, ‘23. XI. 1860 - I. 1861’ [sic], leg. W. Nylander, Mus. Bot. Univ., Helsinki 3936 p.p., lectotype W4551 in H, here designated; isolectotype in E.

Glomus viscosum T.H. Nicolson, in Walker, Giovannetti, Avio, Citernesi & Nicolson, Mycol. Res. 99(12): 1502 (1995)

Although this fungus has ostensibly been placed next to G. claroideum from sequence data, it seems the culture from which the evidence came also contained spores of other AM fungi. Consequently, we wait to verify its position from a pure culture before placing it in any new genus.

Glomus warcupii McGee, Trans. Br. Mycol. Soc. 87(1): 125 (1986)

Glomus zaozhuangianus F.Y. Wang & R.J. Liu [as 'zaozhuangianus'], Mycosystema 21(4): 522 (2002)

The following were synonymised with G. macrocarpum by Gerdemann & Trappe (1974). Because we have no molecular evidence, we have moved them to the list of Glomus sensu lato of uncertain phylogenetic position.

Endogone australis Berk., in Hooker, Flora Tasman., Fungi 2: 282 (1859) [1860]

Paurocotylis fulva var. zealandica Cooke [as 'z?landica'], Grevillea 8 (no. 46): 59 (1879)

Endogone pampaloniana Bacc., G. Bot. Ital.,Part 2. 10: 79 (1903)

Endogone nuda Petch, Ann. R. Bot. Gdns Peradeniya 9: 322 (1925)

FUNNELIFORMIS

It has been clear for many years that the fungus, Glomus mosseae has characteristics quite different from those of Glomus macrocarpum. Now that the generic type of Glomus has been cultured and sequenced, the evidence is available to separate this fungus and other related organisms from that genus and place them in a newly named taxon at the generic level.

Funneliformis C. Walker & A. Schü?ler gen. nov.

Latin diagnosis:

A generibus ceteris in Glomeromycota combinatus sporophoro glomoideo et sequentio DNA differenti. Mycorrhizas

arbusculares formans. Sequentia typica acidi desoxyribonucleici monadis ‘SSU’ ribosomatum: CGGTCATGCCGTTGGTATGY.

Differs from other glomoid spore producing genera in the Glomeromycota by coloured spores formed in the soil or substratum in sporocarps of 1 to approx. 20 spores surrounded by an entire or partial coarse mycelial mantle, or ectocarpic spores singly or in loose clusters in the substratum. Spores often with a funnel-shaped spore base. Spore wall structure normally of two or three components in a single wall group. Outer component colourless, often disappearing as the spore matures. Spores normally occluded by a septum in the subtending hypha distal to the spore base. With the sequence CGGTCATGCCGTTGGTATGY of the small subunit ribosomal RNA gene specific for the genus. Forming arbuscular mycorrhizas.

Typus: Endogone mosseae T.H. Nicolson & Gerd. (1968)

Type material: holotype – Scotland, Perthshire, Benvie, October 1961 FH

Epitype: W5790; 23 Jun 2010 in the C. Walker collection in E, here designated. Derived from the culture with the designator Attempt 109-28 that had Attempt 109-20, a single spore isolate of C. Walker that originated from Attempt 109-0 (offspring of which became BEG12), a multi-spore culture from East Malling, known as the ‘Rothamst ed G.

mosseae’ in its ancestry); ex-epitype culture material is available on request and will be donated to at least one international collection.

Etymology: Funneliformis referring the often funnel-shaped spore base of species in the genus.

Included species

Generic type: Funneliformis mosseae(T.H. Nicolson & Gerd.) C. Walker & A. Schü?ler comb. nov.

≡Endogone mosseae T.H. Nicolson & Gerd., Mycologia 60(2): 314 (1968)

≡Glomus mosseae (T.H. Nicolson & Gerd.) Gerd. & Trappe, Mycol. Mem. 5: 40 (1974)

Funneliformis caledonium (T.H. Nicolson & Gerd.) C. Walker & A. Schü?ler comb. nov.

≡Endogone macrocarpa var. caledonia T.H. Nicolson & Gerd., Mycologia 60(2): 322 (1968)

≡Glomus caledonium (T.H. Nicolson & Gerd.) Trappe & Gerd. [as 'caledonius'], in Gerdemann & Trappe, Mycol.

Mem. 5: 56 (1974)

Funneliformis badium (Oehl, D. Redecker & Sieverd.) C. Walker & A. Schü?ler comb. nov.

≡Glomus badium Oehl, D. Redecker & Sieverd., J Appl Bot Food Qual 79: 39 (2005)

Funneliformis africanum (B?aszk. & Kovács) C. Walker & A. Schü?ler comb. nov.

≡Glomus africanum B?aszk. & Kovács Mycologia 102(6): 1452 (2010)

Funneliformis coronatum (Giovann.) C. Walker & A. Schü?ler comb. nov.

≡Glomus coronatum Giovann., in Giovannetti, Avio & Salutini, Can. J. Bot. 69(1): 162 (1991)

Funneliformis fragilistratum (Skou & I. Jakobsen) C. Walker & A. Schü?ler comb. nov.

≡Glomus fragilistratum Skou & I. Jakobsen, Mycotaxon 36(1): 276 (1989)

Funneliformis geosporum (T.H. Nicolson & Gerd.) C. Walker & A. Schü?ler comb. nov.

≡Endogone macrocarpa var. geospora T.H. Nicolson & Gerd., Mycologia 60(2): 318 (1968)

≡Glomus geosporum (T.H. Nicolson & Gerd.) C. Walker, Mycotaxon 15: 56 (1982) Funneliformis verruculosum (B?aszk.) C. Walker & A. Schü?ler comb. nov.

≡Glomus verruculosum B?aszk., in Blaszkowski & Tady ch, Mycologia 89(5): 809 (1997) Funneliformis vesiculiferum (Thaxt.) C. Walker & A. Schü?ler comb. nov.

≡Endogone vesiculifera Thaxt., Proc. Amer. Acad. Arts & Sci. 57: 309 (1922)

≡Glomus vesiculiferum (Thaxt.) Gerd. & Trappe [as 'vesiculifer'], Mycol. Mem. 5: 49 (1974) Funneliformis constrictum (Trappe) C. Walker & A. Schü?ler comb. nov.

≡Glomus constrictum Trappe [as 'constrictus'], Mycotaxon 6(2): 361 (1977)

Funneliformis xanthium (B?aszk., Blanke, Renker & Buscot) C. Walker & A. Schü?ler comb. nov.

≡Glomus xanthium B?aszk., Blanke, Renker & Buscot, Mycotaxon 90(2): 459 (2004)

SCLEROCYSTIS

This genus was described in 1875 (Berkeley & Broome 1873), but was united with Glomus (Almeida & Schenck 1990). We now separate it once more based on the published molecular evidence for two species (Redecker et al. 2000) and the basal phylogenetic placement basal to Glomus Group Ab (Rhizophagus). More evidence will be required before anything further can be concluded as to the natural phylogenetic position of the remaining species.

Genus name:Sclerocystis Berk. & Broome, J. Linn. Soc., Bot. 14(2): 137 (1875)

Forming glomoid spores in sporocarps with a peridium, radiating from a central sterile plexus of mycelium.

Included species

Generic type:Sclerocystis coremioides Berk. & Broome, J. Linn. Soc., Bot. 14(2): 137 (1875)

≡Glomus coremioides (Berk. & Broome) D. Redecker & J.B. Morton, in Redecker, Morton & Bruns 2000 Sclerocystis sinuosa Gerd. & B.K. Bakshi, Trans. Br. Mycol. Soc. 66(2): 343 (1976)

≡Glomus sinuosum (Gerd. & B.K. Bakshi) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 710 (1990)

=Sclerocystis pakistanica S.H. Iqbal & Perveen, Trans. Mycol. Soc. Japan 21(1): 59 (1980)

SPECIES OF UNCERTAIN POSITION IN SCLEROCYSTIS

Sclerocystis alba Petch, Ann. R. Bot. Gdns Peradeniya 9: 322 (1925)

≡Endogone alba (Petch) Gerd. & Trappe, Mycol. Mem. 5: 25 (1974)

This species was transferred to Endogone by Gerdemann & Trappe (1974), but from their description, it

may be worthwile to reconsider its position should it ever be possible to obtain molecular evidence. Sclerocystis dussii (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910)≡Ackermannia dussii Pat., Bull. Soc. Mycol. Fr. 18(2): 181 (1902)

≡Sphaerocreas dussii (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 118: 401 [127 repr.] (1909) Sclerocystis coccogenum (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910)≡Ackermannia coccogena Pat., Bull. Soc. Mycol. Fr. 18(2): 182 (1902)

≡Sphaerocreas coccogenum (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 118: 401 [127 repr.] (1909)

Sclerocystis microcarpus S.H. Iqbal & Perveen, Trans. Mycol. Soc. Japan 21: 58 (1980)

Sclerocystis liquidambaris C.G. Wu & Z.C. Chen, Trans. Mycol. Soc. Rep. China 2(2): 74 (1987)

=Glomus liquidambaris (C.G. Wu & Z.C. Chen) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 711 (1990)

=Glomus liquidambaris (C.G. Wu & Z.C. Chen) R.T. Almeida & N.C. Schenck ex Y.J. Yao, in Yao, Pegler & Young, Kew Bull. 50(2): 306 (1995)

=Sclerocystis cunninghamia H.T. Hu, Quarterly Journal of Chinese Forestry 21(2): 52 (1988)

Sclerocystis rubiformis Gerd. & Trappe, Mycol. Mem. 5: 60 (1974)

≡Glomus rubiforme (Gerd. & Trappe) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 709 (1990)

=Sclerocystis indica Bhattacharjee & Mukerji, in Bhattacharjee, Mukerji & Misra, Acta Bot. Indica 8(1): 99 (1980)

=Sclerocystis pachycaulis C.G. Wu & Z.C. Chen, Taiwania 31: 74 (1986)

Sclerocystis pubescens (Sacc. & Ellis) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910)≡Sphaerocreas pubescens Sacc. & Ellis, Michelia 2 (no. 8): 582 (1882)

≡Endogone pubescens (Sacc. & Ellis) Zycha, Krypt.-Fl. Brandenburg (Leipzig) 6a(2): 214 (1935)

≡Stigmatella pubescens (Sacc. & Ellis) Sacc., Syll. Fung. (Abellini) 4: 680 (1886)

≡Glomus pubescens (Sacc. & Ellis) Trappe & Gerd., in Gerdemann & Trappe, Mycol. Mem. 5: 57 (1974) Sclerocystis taiwanensis C.G. Wu & Z.C. Chen, Trans. Mycol. Soc. Rep. China 2(2): 78 (1987)

≡Glomus taiwanense (C.G. Wu & Z.C. Chen) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 711 (1990)

≡Glomus taiwanense (C.G. Wu & Z.C. Chen) R.T. Almeida & N.C. Schenck ex Y.J. Yao, in Yao, Pegler & Young, Kew Bull. 50(2): 306 (1995)

丛枝菌根真菌在园艺作物上的应用

丛枝菌根真菌在园艺作物上的应用1 邹英宁,吴强盛* 长江大学园艺园林学院,湖北荆州(434025) E-mail:wuqiangsh@https://www.wendangku.net/doc/5e14568589.html, 摘要:丛枝菌根是土壤中的丛枝菌根真菌与植物根系结合的互惠共生体,能帮助植物吸收矿质营养和水分、促进植物生长、提高抗逆性、改善果实品质等。提出了丛枝菌根真菌生产的技术流程,综述了丛枝菌根真菌在果树、蔬菜、花卉植物上的应用与效应。 关键词:丛枝菌根真菌;丛枝菌根;园艺作物;菌剂生产 中图分类号:Q939.96 1. 引言 菌根(Mycorrhizas)是一类与植物根系紧密结合互惠互利的联合体,其互惠互利表现在菌根通过其根系外的菌丝、根系内的丛枝及根内特殊的水分运输通道给寄主植物运送矿质营养和水分,而寄主植物将光合作用产生的碳水化合物通过物质流转运给菌根以维持其生长发育[1]。菌根按照形态学分为三类:外生菌根(Ectomycorrhizas)、丛枝菌根(Endomycorrhizas)和内外生菌根(Ectoendomycorrhizas)[2]。外生菌根指菌根真菌侵入到植物根系的皮层,在间隙里形成哈蒂氏网,大量的菌丝在根系外面形成一个菌套,主要与森林植物共生;丛枝菌根指菌根菌丝不仅侵入到根系皮层,而且还进入到细胞内部,形成丛枝(Arbuscules)结构,有的还在细胞间或者内部形成泡囊(Vesicles),在许多园艺作物如柑桔、桃、苹果、梨、番茄、西瓜、非洲菊、月季等都可以发现和找到这种结构;内外生菌根则同时具备外生菌根和丛枝菌根的特性,菌根菌丝在细胞间隙形成哈蒂氏网,根系表面形成菌套,菌丝在细胞内部也形成各种菌丝团,主要在一些松科和杜鹃花科植物存在。目前的研究表明,在园艺作物上接种丛枝菌根真菌能够促进园艺作物的生长,增强园艺作物对矿质营养的吸收,提高抗逆性,改善水分代谢,提高果树和蔬菜的品质等[3]。因此,在园艺作物根系上没有丛枝菌根的存在反而不正常[4],从而显示丛枝菌根在园艺作物上的重要性 2. 丛枝菌根真菌菌剂的生产 丛枝菌根真菌菌剂的生产是其应用于园艺作物的关键。尽管丛枝菌根真菌至今尚不能进行纯培养,但采用盆栽菌剂生产法[5]仍可以获得一定纯度的菌剂,其具体生产流程是:选择玉米或高梁为寄主植物,对其种子采用10%的次氯酸钠溶液表面消毒5~10 m,然后放置在一个湿巾上,用塑料袋包好进行催芽。一般玉米种子在2~3 d就能够发芽。选择3 mm大小的粉碎玄武岩为栽培基质,目的是基质含有非常低的营养水平,特别是P。然后对基质进行高压蒸汽灭菌,杀死土著丛枝菌根真菌。灭菌的基质与购买的纯菌剂(可以从北京市农林科学院植物营养与资源研究所“中国丛枝菌根真菌种质资源库(BGC)”购买)按照20:1(v/v)的比例混合均匀,装于15~25 cm直径的塑料盆中。将已经催芽的种子每盆播2~6粒,然后放置在温室或良好光照的避雨棚中以减少其他微生物通过风和雨水的污染。一般地,在正常水分管理的6 w后就能够观察到丛枝菌根真菌与寄主植物根系共生。14 w后开始控水,16 w时去除植物地上部分,将基质和根系倒在一个干净的盘中,把根系剪断,与栽培基质混合均匀,此菌剂即可应用于田间。如果菌剂不及时使用,可以保存在4 °C冰箱或凉爽干 1本课题得到长江大学科研发展基金(39210264)的资助。

AMF(丛枝菌根真菌)

AMF(丛枝菌根真菌)对香蕉试管苗的驯化日期:2011年5月24日 摘要:丛枝菌根真菌的影响(AMF)的香蕉试管苗上进行了评估在驯化期。植物接种无 梗scrobiculata,绣球clarum和Glomus etunicatum。在种植后温室3个月,株高,叶面积,鲜重和干物质的根,芽,AMF的殖民化的水平营养水平,光合作用和蒸腾率,水势和气孔导进行了测定。丛枝菌根真菌孢子的生产数量在每个治疗也决心。苗接种与丛枝菌根真菌具有更大的株高,叶面积和新鲜地上部和根系的重量,以及较高的光合作用和蒸腾比对照组。植物与血管球接种均优于在最评估参数。 关键词:穆萨菌,内生菌根,菌根菌,气候适应 引言:水果的营养快繁,观赏和森林物种,是一个良好的生产条件,转基因植物检疫植物 和均匀大量的主要工具。到温室栽培植物体外转移是在结构和生理适应的最重要的准备过程中试管苗的步骤之一。这一阶段,由于水土不服,是一种对植物自养的存在开始,以期为生存所必需的生理过程的开始。在这段时间内,必须增加水的试管苗和矿物质,光合速率的吸收。 试管苗,病免费的,但他们还缺乏丛枝(AMF)的菌根真菌。AMF的是众所周知的增加,增加水和矿物营养素的吸收,尤其是磷(P)植物的活力。此外,AMF的病原体可以保护寄主植物的根和减轻极端温度变化,pH值和水分胁迫(迪克森和马克思1987年的影响; Siqueira 1994年)。接种AMF的成功在驯化期间(格兰杰等人的开始。1983年; Brazanti等。1992年;罗杰古勒明等。1995年),甚至在体外培养已被证实。三是与从组织培养植物的根系形成共生互利的效果表现在蓬勃植物的光合作用和蒸腾速率高,养分和水分,提高抗逆性。 接种丛枝菌根真菌在植物组培苗生长初期当然可以对体外培养,通过积极对rootmeristem活动菌根共生效应,高殖利率。支持这个假说是由伯塔等人的结果。(1995年),谁表明,AMF的协会改变了红叶李根的分枝格局。接种类型的使用是很重要的驯化。福图纳等人(1992)建议的AMF的感染,高效品种的推广使用植物生长迅速增加。这些作者还表明,虽然在促进试管比较红叶李增长的2种AMF效率,该真菌感染影响其效力。更加新鲜,干物,高度增量被发现与血管球比与G. coronatum mosseae的接种植物,但在实验结束两组植物具有相似的增长。 我们工作的目的是评估的三个AMF的来自巴西的半干旱地区灌溉生长的香蕉种植园,营养和生理发展香蕉试管苗接种分离本土物种的影响作用。 材料与方法 植物材料和土壤性质 试管香蕉苗是根据生物技术。在植株形成的根在体外用MS液体培养基,后来转移到(500毫升的容量)与熏蒸基质:土,沙,有机质(1:1:1)。前沙混合料性能的土壤3.2克土壤有机质每公斤,马克土0.84毫克P每分米,pH值5.1(土:水=1:2.5)。接种量(约400每集装箱孢子)放置在以下5个香蕉植株根系与土壤接触面与熏蒸厘米,底层覆盖。滤液接种的土壤添加到所有的治疗方标准化微生物。植物在温室下保持12 h的800-1300勒克斯,光周期25B4 7C及70%-90%的相对湿度。 感染源

植物内生真菌

植物内生真菌 一、内生真菌的概念 内生真菌是在宿主植物的茎和叶内生存并完成生活周期的真菌。这类真菌中,有许多种类很少形成孢子,或者在宿生植物上形成的孢子(或者孢子果)不容易识别。真菌感染植物组织,菌丝存在于细胞内和细胞间。与病原菌不同,这些真菌对宿主植物几乎没有害处,它们和植物之间或者是相互依存的共生关系,或者是不太密切的共生关系。 草本植物内生真菌侵染种子内部,播种后,真菌随着幼苗的生长和植株的发育成熟而生长,这些真菌没有吸器,出现在茎、叶、花序组织,而不出现在根内,这一点与菌根真菌不同。受侵染的植株在营养生长阶段不表现出被内生真菌侵染的特点,但是,当植物开花的时候,就可以观察到浸染的真菌。 与内生真菌容易混淆的一个概念是内生菌根,菌根是高等植物的根与真菌形成的共生联合体,内生苗根是菌根当中的一种类型,内生菌根的共同特征是根的表面不产生菌套,仅有稀疏的外生菌丝,菌丝在根部皮层组织的细胞间延伸,但不产生哈蒂氏网,菌丝体可侵入细胞内部,并形成不同形状的吸器,而宿主植物的根一般无形态及颜色的变化。故内生菌根用肉眼很难识别。 二、内生真菌的一般特征 内生真菌存在于根以外的植物组织细胞,可以用显微镜观察,也可以通过纯培养把它们分离出来进行研究。分离内生真菌时要对植物组织进行表面消毒,然后切成小片放在培养基上培养3~5天,内生真菌就生长在培养基上,可根据孢子和菌丝的特征,对它们进行分类鉴定。 可以按常规方法把内生真菌从多种植物上分离出来,已经发现的内生真菌包括许多子囊菌和半知菌、一些担子菌及少量的卵菌。主要的内生真菌包括药用Chloroscypha和Lophodermium(散斑壳属)中的一些种类以及Cryptoxline、Cryptosporriopsis(拟隐孢菌属)、Phomopsis(拟茎点霉属)和 Phyllosticta(叶点霉属)中的一些种类。其中许多可以从植物组织中偶然分离到。这类真菌的共生生活方式与其占主导地位的腐生生活方式来讲,似乎是次要的。比如说,担子菌中有许多种类生长在木头上或粪堆上,但有时也可在植物细胞内发现。 苔鲜植物、蕨类植物、裸子植物和被子植物中都发现有内生真菌。Petrini(1986)在对热带、温带和阿尔卑斯山地区的200多种植物调查之后发现,几乎所有生活的植物体内均有内生真菌的存在。在内生真菌中,宿主的专一性变化很大,一些真菌能够从生长在不同的生态和地理条件下的属于不同科属的多种宿主植物内分离出来,但是其它一些内生真菌仅限于某一特殊种属的几种宿主植物,仅有少数几种内生真菌专一地出现在某一种特定的植物中。 内生真菌在一些植物及农作物中广泛传播具有重要意义,农业科学家对牧草的内生真菌有特别的兴趣,因为这些真菌会产生真菌毒素,从而对动物产生毒性。此外这些真菌也有潜在的应用价值,例如利用抗、感品种的植株或器官对病原真菌毒素的敏感性反应上的差异,人们可以应用毒素进行快速、准确地鉴定大批的品种资源,一则可以直接发现抗病材料,在生产上推广应用;二则可以选出一些农艺性状虽然不太理想,但具有抗病性的材料,作为今后常规育种的亲本材料。 三、草本植物的内生真菌 l.草本植物内生真菌的形成许多草本植物的内生真菌都是属于麦角菌科(Clavicipitaceae)的真菌,其中传播最广的可能是香柱菌(Epichloe typhina),它寄生在禾本科牧草上,在70多种草坪植物中均存在,它的无性世代是半知菌类的顶孢霉属(Acremonium)。香柱菌属真菌子座淡色,平铺状,包围在禾本科植物茎和叶上,像一个套子;子囊壳理生在子座内,子囊细长,单膜;顶端加厚,具有折光性的顶帽;子囊孢子丝状,无色,有隔膜。 麦角菌属( Claviceps)内生真菌,寄生在禾本科植物的子房内,后期在子房内形成圆形到香蕉形的黑色或白色的菌核,菌核越冬后,产生子座;子座直立,有柄,可孕头部近球形,子囊壳埋在整个可孕头部的表层内;子囊孢子无色,丝状,无隔膜。麦角菌(C.purpurea)寄生的患病植物在种子上形成紫色、弯曲的菌核,即表角;麦角内含有生

共生法培养外生菌根菌菌丝体

共生法培养外生菌根菌菌丝体 黄光文1,张 平2 (1.湖南科技学院生命科学与化学工程系,湖南 永州 425006; 2.湖南师范大学真菌研究室,长沙 410081) 摘要:首次报道外生菌根菌的共生培养法。初步研究了一个较好的外生菌根菌菌丝体培养方法,即将宿主的愈伤组织与外生菌根共同培养,可以明显地促进真菌菌丝的萌发和生长。愈伤组织匀浆液也可促进菌丝体早期生长。 关键词:共生培养法;鹅膏菌;外生菌根菌;菌丝体 中图分类号:S646 文献标识码:A 文章编号:1003-8310(2005)03-0016-02 1 材料与方法 111 材料 宿主植物:石栎(Lithocarpus glaber(Thunb.) Nakai),采自长沙县星沙镇,有鹅膏菌共生。 菌根真菌:假褐云斑鹅膏(Amanita pseudopor2 phyria H ong o)、黄盖鹅膏白色变种(A.subjunquillea var.alba Zhu L.Y ang)、欧氏鹅膏(A.ober winkler2 ana Zhu L.Y ang&Y oshim.D oi)。经组织分离纯培养而来,并经RAPD鉴定[1]。 112 培养基 11211 改良MS培养基:K NO3119g,NH4NO31165 g,K H2PO40117g,CaCl2?H2O0144g,MgS O4?7H2O 0137g,FeS O4?7H2O2718mg,Na2E DT A?H2O3713 mg,H3BO3612mg,ZnS O4?5H2O816mg,MnS O4?H2O1619mg,Na2M oO4?2H2O0125mg,KI0183mg, CaS O4?5H2O01025mg,C oCl201025mg,肌醇100 mg,甘氨酸210mg,盐酸硫氨素014mg,烟酸015 mg,盐酸吡哆醇015mg,琼脂18g,蔗糖23g,胡萝卜100g(煮汁),加水至1000m L。 11212 菌丝生长培养基:上述培养基中加入葡萄糖2g、蛋白胨2g、麦芽汁(12波美度)20m L。113 愈伤组织培养方法 改良MS培养基附加2,4-014mg?L-1或6-BA018mg?L-1,24℃/20℃(日/夜)下自然光照。详见文献[2]。 114 菌丝培养方法 对照:用打孔器打出直径为015cm的菌丝块接入装有40m L菌丝生长培养基的100m L三角瓶中,于20℃下培养,各设10瓶。测定萌发时间(以肉眼明显可见菌丝外伸为度),萌发后每10d 量一次菌丝长度。(下同) 方法A:在改良MS培养基中加入经过过滤除菌的菌根浸出液(菌根重量与组织块重量一致)作为生长刺激因子。 方法B:菌丝块接种于(紧贴)愈伤组织旁(即共培养方法)。 方法C:将愈伤组织全部挑出,在剩下的改良MS培养基上接入菌丝块。 方法D:无菌状态下将愈伤组织研磨成匀浆,加入到新的菌丝生长培养基中后接种真菌。 2 结果与分析 实验结果显示,四种方法培养的菌丝在萌发速度(图1)和生长速度(图2)上比对照均有不同程度的提高,其中方法B即共培养方法的效果最为显著。 从图3可以看出,菌丝在改良培养基上的生长比较均衡,在前30d逐渐缓缓加快,然后缓缓减慢。愈伤组织匀浆、菌根提取液和愈伤组织分泌物对菌丝的前期生长有较好的刺激效果,效果依次减小,但相关不大。三种刺激物作用一段时间后失去影响。而共培养的菌丝生长速度比其他四者均高,而且在生长后期效果依然显著。不同的菌株对刺激因子的反映程度略有不同,但总的趋势一致 。 图1 菌丝萌发时间的比较 注: A.pse=假褐云斑鹅膏(A.pseudoporphyria); A.sub=黄盖鹅膏白色变种(A.subjunquillea); A.obe=欧氏鹅膏(A.oberwinklerana) 3 讨论 从实验结果看,菌丝体的共培养法是促进外生 收稿日期:2004-10-18 基金项目:国家科委重点课题项目(96-C02-03-07);湖南省教育厅课题(03C358) 61中国食用菌 E DI BLE FUNGI OF CHI NA V ol124,N o13

丛枝菌根真菌名录及新科新属

This is an electronic version of the publication: Schü?ler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Arthur Schü?ler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at https://www.wendangku.net/doc/5e14568589.html, This electronic version is 100% identical to the printed publication. This includes the errors; therefore the electronic version contains one additional, initial page as a corrigendum, giving corrections of some errors and typos.

Corrections, 2 FEB, 14 FEB, 19 JUL 2011. The corrections are highlighted in red. p 7. FOR Claroidoglomeraceae READ Claroid e oglomeraceae p 10. DELETE Glomus pulvinatum (Henn.) Trappe & Gerd. [as 'pulvinatus'], in Gerdemann & Trappe, Mycol. Mem. 5: 59 (1974) ≡Endogone pulvinata Henn., Hedwigia 36: 212 (1897) p 11. AFTER Botanical Code for formal descriptions after 1 Jan 1935 INSERT) p 14. BELOW ≡ Endogone macrocarpa var. geospora T.H. Nicolson & Gerd., Mycologia 60(2): 318 (1968) INSERT ≡ Glomus macrocarpum var. geosporum (T.H. Nicolson & Gerd.) Gerd. & Trappe [as macrocarpus var. geosporus], Mycol. Mem. 5: 55 (1974) p16. ABOVE Sclerocystis coccogenum (Pat.) H?hn., Sber. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1 119: 399 [7 repr.] (1910) INSERT Sclerocystis clavispora Trappe, Mycotaxon 6(2): 358 (1977) ≡ Glomus clavisporum (Trappe) R.T. Almeida & N.C. Schenck, Mycologia 82(6): 710 (1990) p 19. FOR Rhizophagus irregulare READ Rhizophagus irregularis p 19. FOR Rhizophagus proliferus (B?aszk., Kovács & Balázs) READ Rhizophagus proliferus (Dalpé & Declerck) p 28. FOR Scutellospora arenicola Koske Koske & Halvorson READ Scutellospora arenicola Koske & Halvorson p 29. FOR Scutellospora pernambucana Oehl, Oehl, D.K. Silva, READ Scutellospora pernambucana Oehl, D.K. Silva, p 30. FOR Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon: 334 (2009) READ Genus name: Racocetra Oehl, F.A. Souza & Sieverd., Mycotaxon 106: 334 (2009) p 35. FOR Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 689 READ Acaulospora mellea Spain & N.C. Schenck, in Schenck, Spain, Sieverding & Howeler, Mycologia 76(4): 690 p 39. FOR Entrophospora nevadensis J. Palenzuela, N. Ferrol & Oehl, Mycologia 102(3): 627 (2010) READ Entrophospora nevadensis Palenz., N. Ferrol, Azcón-Aguilar & Oehl, in Palenzuela, Barea, Ferrol, Azcón-Aguilar & Oehl, Mycologia 102(3): 627 (2010) p 41. FOR Generic type: Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 717 (2004) ≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995) READ Generic type: Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980) ≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, B?aszk., A. Schü?ler & Schwarzott, i n Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 716 (2004) =Glomus dominikii B?aszk., Karstenia 27(2): 37 (1988) [1987] =Pacispora dominikii (B?aszk.) Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004) Pacispora chimonobambusae (C.G. Wu & Y.S. Liu) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Gerdemannia chimonobambusae (C.G. Wu & Y.S. Liu) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 717 (2004) ≡Glomus chimonobambusae C.G. Wu & Y.S. Liu, in Wu, Liu, Hwuang, Wang & Chao, Mycotaxon 53: 284 (1995) p 41. BELOW Pacispora robigina Sieverd. & Oehl, in Oehl & Sieverding, J. Appl. Bot. (Angew. Bot.) 78: 75 (2004) DELETE Pacispora scintillans (S.L. Rose & Trappe) Sieverd. & Oehl ex C. Walker, Vestberg & A. Schü?ler, in Walker, Vestberg & Schü?ler, Mycol. Res. 111(3): 255 (2007) ≡Gerdemannia scintillans (S.L. Rose & Trappe) C. Walker, B?aszk., A. Schü?ler & Schwarzott, in Walker, B?aszkowski, Schwarzott & Schü?ler, Mycol. Res. 108(6): 716 (2004) ≡Glomus scintillans S.L. Rose & Trappe, Mycotaxon 10(2): 417 (1980) =Pacispora dominikii (B?aszk.) Sieverd. & Oehl, in O ehl & Sieverding, J. Appl. Bot., Angew. Bot. 78: 76 (2004) p 43. FOR≡Glomus aurantium B?aszk., Blanke, Renker & Buscot, Mycotaxon 90: 540 (2004) READ≡Glomus aurantium B?aszk., Blanke, R enker & Buscot, Mycotaxon 90: 450 (2004) p 43. FOR Genus name: Otospora Palenz., Ferrol & Oehl READ Genus name: Otospora Oehl, Palenz. & N. Ferrol p 43. FOR Generic type: Otospora bareae Palenz., Ferrol & Oehl [as 'bareai'] READ Generic type: Otospora bareae Palenz., N. Ferrol & Oehl [as 'bareai'] p 50. FOR Ambispora granatensis J. Palenzuela, N. Ferrol READ Ambispora granatensis Palenz., N. Ferrol p 53. FOR (Morton & Redecker 2001; Kaonongbua 2010). READ(Morton & Redecker 2001; Kaonongbua et al. 2010). Comment on the gender of the epithets in Redeckera. In publishing the new genus Redeckera, in honour of Dirk Redecker, we treated the gender as neuter, thus giving the epithets as pulvinatum, megalocarpum, and fulvum. We had inadvertently missed the recommendation 20A.1(i) in the Botanical Code requesting that all such epithets should be made feminine, and we apologise for this. However, because the names have been formally published, the requirements of Article 62 apply, and the neuter gender must be retained.

菌根1

菌根 科技名词定义 定义1: 真菌与高等植物根系的结合而形成的一种共生现象。 所属学科: 地理学(一级学科);生物地理学(二级学科) 定义2: 由真菌侵染高等植物根部而形成的共生体系,分为外生菌根和内生菌根两类。 所属学科: 土壤学(一级学科);土壤生物与土壤生物化学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 菌根是指土壤中某些真菌与植物根的共生体。菌根真菌与植物之间建立相互有利、互为条件的生理整体,并各有形态特征,这是真核生物之间实现共生关系的典型代表。菌根的作用主要是扩大根系吸收面,增加对原根毛吸收范围外的元素(特别是磷)的吸收能力。菌根真菌菌丝体既向根周土壤扩展,又与寄主植物组织相通,一方面从寄主植物中吸收糖类等有机物质作为自己的营养,另一方面又从土壤中吸收养分、水分供给植物。 简介 能引起植物形成菌根的真菌称为菌根真菌,大部分属担子菌亚门,小部分属子囊菌亚门。菌根真菌的寄主有木本和草本植物约2000种。菌根真菌与植物之间建立相互有利、互为条件的生理整体,并各有形态特征,这是真核生物之间实现共生关系的典型代表。兰科植物的种子萌发,若没有菌根真菌共生,则不能成苗;杜鹃科植物若没有菌根真菌的共生,则植物发育不良。 内生菌根菌与植物间长期的共同演化,其展现出的外观特徵与生态机能等都与其它的菌类有明显的不同,惟这群土壤微生物因为没有醒目的子实体,因此较无法吸引人们的注意,然而它们却在生态系中扮演著重要的角色。随著生物学家的探索,它们的基本生物学特性和它们如何与植物产生互利共生之机制,渐渐为大家所了解,然而我们至今却仍然无法预测它在人为过度干扰的生态系中将如何继续完成其任务。

日本落叶松根际外生菌根真菌多样性

收稿日期:2017-10-20 基金项目:国家自然科学基金项目(No.31400101);辽宁省博士启动基金项目(No.20111143)。 作者简介:王琴(1981-),女,高级工程师,主要从事森保和土壤微生物生态研究。E-mail:wqdora@https://www.wendangku.net/doc/5e14568589.html, 。 root Ectomycorrhizal fungal diversity associate roots s of Larix kaempferi WANG Qin (Liaoning Academy of Forest Science,Shenyang 110032,China ) Abstract:To improve the application of mycorrhizal technology in seedling and afforestation of Larix kaempferi ,ectomy-corrhizal (ECM)fungi associated with L.kaempferi roots were investigated.A total of 40root samples of L.kaempferi were collected in 2012and 2013,and 55ECM morphotypes were detected and 28ECM fungi identified based on ITS se-quence analysis.Of these ECM fungi,Cenococcum geophilum was the most dominant species,which was detected among 95%samples,occupying 34.8%root tips,Russula sp.3,Sebacina sp.2,Tomentella sp.1,Russula sp.2and Sebaci-na sp.1were common species,the other 14species were rare speces. Key Words :Larix kaempferi ;ectomycorrhizal fungi;diversity;molecular identification 2018年第1期 辽宁林业科技 Journal of Liaoning Forestry Science &Technology 日本落叶松根际外生菌根真菌多样性 王 琴 (辽宁省林业科学研究院,辽宁沈阳110032) 摘 要:为在日本落叶松育苗和造林中科学应用外生菌根技术,研究了日本落叶松的根际外生菌 根真菌群落组成。2012年和2013年共采集了40份日本落叶松根系样本,通过形态特征检测到55种外生菌根形态型,ITS 序列分析显示共28种外生菌根真菌与日本落叶松根系共生。其中,土生空团菌是日本落叶松根系外生菌根真菌群落的优势物种,在95%的土壤样本中均检测到,占根尖总数的34.8%;Russula sp.3(编号),Sebacina sp.2,Tomentella sp.1,Russula sp.2和Sebacina sp.1是常见种;其余14个分类单元是稀有种。 关键词:日本落叶松;外生菌根真菌;多样性;分子鉴定中图分类号:S718.81 文献标识码:A 文章编号:1001-1714(2018)01-0017-04 2018№1 外生菌根(Ectomycorrhizae ,ECM )是由土壤真菌与植物根系形成的互惠共生体[1],广泛存在于森林生态系统中,是森林生态系统的重要组成部分。菌根真菌一方面从植物根系获取生长所需的碳源,同时又帮助植物从土壤中吸收N 、P 等矿物营养和水分,改良土壤结构,促进植物生长,提高宿主抗逆性。据保守估计全球约有20000多种[2],我国目前报道了500余种[3-4],还有大量的外生菌根真菌有待发现[5]。 日本落叶松Larix kaempferi 原产地是日本本 州岛中部山区,属温带喜冷湿树种。我国引种日本落叶松己有100多年历史,北起黑龙江省林口县青山林场,南至江西省庐山和四川省西高山都有分布。日本落叶松以其适应性强、早期速生、成材快、用途广、材质优良的优势,正成为我国荒山绿化和营造短周期工业用材林不可替代的树种。日本落叶松作为外来物种,引入我国后与其共生的外生菌根真菌的种类一直没有全面的报道。 本项目运用形态学和分子生物学方法,系统 — —17

丛枝菌根真菌在生态系统中的作用

丛枝菌根真菌(AMF)在生态系统中的作用 王信 (鲁东大学生命科学学院生物科学2009级02班) 【摘要】菌根是植物根系与特定的土壤真菌形成的共生体,有利于生态系统中养分循环,协助植物抵御不良环境胁迫。 现研究已发现它对生态系统的演替过程、物种多样性和生产力及被破坏生态系统的恢复与重建等都有十分重要的作用( 都江堰地区丛枝菌根真菌多样性与生态研究,Peter et al .,1988 ; van der Heijden et al . ,1998 ;Hartnett & Wilson ,1999;Klironomos et al . ,2000) 。AMF可促进植物的生长与发育,改善宿主的营养状况,增强其抗病性和抗不良环境的能力,而且在改良土壤结构、改善水土保持、防治环境污染、外来入侵种的入侵以及森林生态系统的维持和发展中具有重要意义。 一、引言 生物之间的共生是一种极为普遍的生命活动和生态现象。从生态学的角度出发“共生是不同种类生物成员在不同生活周期中重要组成部分的联合”(书,Margulis 1981)。1982年Golf 指出:共生包括各种不同程度的寄生、共生和共栖,这说明了生物间相对利害关系的动态变化,共生关系是生物之间最基本、最重要的相互关系。 自然界中,几乎所有的生物都不是独立生活的,而是普遍存在共生关系。例如,植物都能与一定种类的细菌、放线菌和真菌建立互惠共生关系,形成互惠共生体。其中我们把植物根系与一类土壤真菌形成的互惠共生体称做菌根。将参与菌根形成的真菌称为菌根真菌(mycorrhizal fungi)。 丛枝菌根(arbuscular mycorrhizas,AM)是球菌门真菌侵染植物根系形成的共生体,它是分布最广泛的一类菌根。丛枝菌根真菌(AMF)是一种普遍存在的共生真菌,它能够与80%以上的陆生植物形成共生体,许多植物对丛枝菌根真菌有高度的依赖性(文献,外来植物加拿大一枝黄花对入侵地丛枝菌根真菌的影响2009)。该类菌根以其在根系皮层细胞内形成“丛枝”结构而得名。除此之外,大多数该类真菌还能在根系皮层形成“泡囊”结构,少数则在土壤中产生类似泡囊的结构。 目前已经确知,菌根在生态系统养分循环及保护植物抵御不良环境胁迫中起关键作用(丛枝菌根(AM) 生物技术在现代农业体系中的生态意义,Barea JM ,Jeffries P. 1995. Arbuscular mycorrhizae in sustainablesoil plant systems. In :Varma A ,Hock B eds. Mycorrhiza Structure ,Function ,Molecular Biology and Biotechnoligy. Heidelberg :Springer2Verlag. 521~560),本文旨在介绍AM 生态意义及其在生产实践中的应用,讨论今后应用AM技术的潜力。 二、AMF多样性与生态环境的关系以及在植物生态系统中的调控作用。 1、AMF多样性与生态环境的关系 环境因子对AMF 多样性及其对植物根系的侵染能力有重要的影响( borges & Chaney ,1989 ;sanders,1990 ; Haugen & smith ,1992)。人类活动过程中往往使得生态系统受到破坏,并减少AMF 多样性( Smith ,1980 ; Dhillion et al . ,1988 ; Koomen et al .,1990 ; Weissenhornl & leyval ,1996 ) ; 同时其它生态因子如温度(Haugen & smith,1992 ) 、光照( Pearson et al. ,19 91 ) 、季节变化( Sanders ,1990) 等对AMF的多样性亦有不同程度的影响。 研究发现低温会使AMF的生存和发展受到抑制,主要表现为AMF种的数量、孢子密度

丛枝菌根名录

Glomeromycota SPECIES LIST last updated - News: Glomus africanum and G. iranicum included. Some new descriptions added, e.g. Racocetra beninensis. The synonyms list is corrected and now explicitly indicates the basionyms. The Gigasporaceae systematics was adopted according to the recent publication of Morton and Msiska (Mycorrhiza 2010, DOI 10.1007/s00572-010-0303-9), which rejects the split of Scutellospora into 3 families and 6 genera (Scutellospora in the Scutellosporaceae, Racocetra & Cetraspora in the Racocetraceae, Dentiscutata & Fuscutata & Quatunica in the Dentiscutataceae). The revision now leaves only Racocetra a s an additional genus, placed in the Gigasporaceae. Also, we adopt to the rejection of Kuklospora, a genus indicated from the beginning to be 'phylogenetically invalid' that now has been placed in Acaulospora (Kaonongbua et al. 2010). If you spot any mistake s, PLEASE inform us ! We try to hold everything up to date and also serve and collaborate with the Index Fungorum and Species 2000 database s. Thanks to those which already sent us pdf-files, or scanned pages, and to the publishers that gave us copyright clearance (see list at the end of the table) !!! We have been refused copyright clearance by the publisher Springer and the journals Nova Hedwigia and Botany (former Can. J. Bot.), and thus we cannot provide pdf files of the respective papers. If authors wish to have their taxonomic papers available public, e.g. included in this website, we suggest that you choose journals with suitable policy (or maybe you can pay for an open access pdf file). It would be helpful for the scientific community if authors of names in the Glomeromycota seek copyright clearance and provide us with a pdf file, if this is possible. Go directly to the genera (alphabetically): Acaulospora Ambispora Archaeospora Diversispora Entropho spora Geosiphon Gigaspora Glomus Intraspora Otospora Pacispora Parag lomus Racocetra Scutellospora Colour coding in the following table: taxon in blue = link to description (pdf-file); green = opinion of C. Walker, not proved or formally published (potentially needs further studies) Glomeromycota Current name Basionyms, synonyms & additional comments Authorities Family Order Acaulospora back to top Trappe & Gerd. (1974)Acaulosporaceae Diversisporales Acaulospora alpina Oehl, Sykorova & Sieverd. (2006) Acaulosporaceae Diversisporales

相关文档