文档库 最新最全的文档下载
当前位置:文档库 › 快速成形技术的快速模具制造技

快速成形技术的快速模具制造技

快速成形技术的快速模具制造技
快速成形技术的快速模具制造技

基于快速成形技术的快速模具制造技术

一、引言

近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键

快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。

以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。

二、基于RPM的快速模具制造方法

模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT 直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。

1. 用快速成形机直接制作模具

由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受300℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

2.用快速成形件作母模,复制软模具(Soft tooling)?用快速成形件作母模,可浇注蜡、硅橡胶、环氧树脂、聚氨脂等软材料,构成软模具,或先浇注硅橡胶、环氧树脂模(即蜡模的压型),再浇注蜡模。其中,蜡模可用于熔模铸造,而硅橡胶模、环氧树脂模等可用作试制用注塑模或低熔点合金铸造模。

3.用快速成形件作母模,复制硬模具(Irontooling)?用快速成形件作母模,或据其复制的软模具,可浇注(或涂覆)石膏、陶瓷、金属基合成材料、金属,构成硬模具(如各种铸造模、注塑模、蜡模的压型、拉伸模),从而批量生产塑料件或金属件。这种模具有良好的机械加工性能,可进行局部切削加工,以便获得更高的精度,或镶入嵌块、冷却系统、浇注系统等。用金属基合成材料浇注成的蜡模的压型,其模具寿命可达1000~10000件。

4.用快速成形系统制作电脉冲机床用电极?用快速成型件作母体,通过喷镀或涂覆金属、粉末冶金、精密铸造、浇注石墨粉或特殊研磨,可制作金属电极或石墨电极。

三、基于RP的快速模具制造的应用

1.利用硅橡胶模(SiliconRubber Mold)制作佛头、线圈

硅橡胶有很好的弹性和复制性能,用它来复制模具可不考虑拔模斜度,基本不会影响尺寸精

度,而且这种材料有很好的切割性能,用薄片就可容易地将其切开且切面间非常贴合,因此用它来复制模具时可以先不分上下模,整体浇注出软模后,再沿预定的分模面将其切开,

取出母模,即可得到上下两个软模。

(1)试验用设备和材料?所用的设备:Stratasys的Titan快速成形机、HVC-1真空注型机和恒温箱。所用的材料:日产KE-1310ST透明硅橡胶、日产CAT-1310固化剂(浇注时,KE-1310ST与CAT-1310以100:10混合)和PX215真空注型硬制聚氨脂树脂(异氰酸脂,多元醇1∶1混合)。

(2)制模工艺路线

使用 UG、PRO-E、Solid Edge 等软件进行三维实体造型,以STL文件格式保存;将文件输入快速成形机作出制件原型,处理后作为硅橡胶母模;组合模框后将硅橡胶和固化剂的混合物浇注于框中,通过真空脱泡、固化后剖切取出母样即得硅胶模;最后在真空注型机中浇注塑料样件。具体的制模流程如图1所示。

快速成形技术的快速模具制造技术(doc 6)

快速成形技术的快速模具制造技术(doc 6)

基于快速成形技术的快速模具制造技术 一、引言 近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键 快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。 以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。 二、基于RPM的快速模具制造方法 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。 1. 用快速成形机直接制作模具 由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

快速制模技术

。 基于RPM快速制模技术 快速原型制造(Rapid Prototype Manufacturing简称RPM)技术是20世纪后期起源于美国,并很快发展起来的一种先进制造技术,是制造技术领域的一次重大突破。RPM 技术综合利用CAD技术、数控技术、材料科学、机械工程、电子技术及激光技术的技术集成以实现从零件设计到三维实体原型制造一体化的系统技术。技术采用软件离散/材料堆积的原理,而被制造零件通过离散获得堆积的顺序、路径、限制和方式,通过堆积材料“叠加”起来形成三维实体,成功解决计算机辅助设计中三维造型“看得见、摸不着”的问题。RP技术改变了制造业的思维活动,突破了制造业的传统模式,为机械加工、模具制造开辟了一条高效率、低成本的新途径。RP批发展到今天,其发展重心已从快速原型制造向快速模具制造的方向转移,目前RP的快速制模主要是注塑模、冲压模、铸模。用CAD技术设计出被成型零件的三维实体模型,先将CAD模型离散化,沿某一方向(常取z向)按一定厚度对其进行分层,生成二维截面信息。再将分层后的数据进行一定的处理,输入加工参数,生成加工代码;利用数控装置精确控制激光束的运动。通过采用粘结、熔结、聚合作用等手段,逐层可选择固化树脂、切割薄片、烧结粉末、材料熔覆、或材料喷洒等方式来实现,从而快速堆积制作出所要求形状的实物原型。RP技术可以快速精确制造任意几何形状的产品原型,无须考虑其复杂程度,零件复杂程度与制造成本关系不大,真正实现无模制造。快速制模可分为在RP系统上直接制模和利用RP原型间接制模。 一、基于RPM直接制模方法 1,1 分层实体制造(LDM—Laminated objet Manuacturing)制模 将背面涂有热溶性粘合剂的箔材,根据分层几何信息,用二氧化碳激光在计算机控制下切出本层轮廓,再铺上一层箔材,用滚子碾压使新铺上的一层牢固粘结在已成型体上,再切割该层轮廓,如此逐层叠加,裁切后形成所需的立体模腔。采用这种方法直接制成的模具,坚如硬石,可进行钻削等机械加工,也可进行刮腻子等装饰加工,并可耐20012高温,故可用作低熔点合金的模具或试制注塑模。LOM关键技术是控制激光的光强和切割速度。使它们达到最佳配合,以便保证切口质量。1.2 立体光刻(SLA—Stereo Lithgmphy apparatus)制模 以各类光敏树脂为成型材料,氦一镉激光为能源,基于光敏树脂受紫外激光照射固化的原理。计算机控制激光逐层扫描,被照射的地方就固化,未被照射的地方仍然是液态树脂。如此重复直到三维零件制作完成。 1.3 选择性激光烧结(SLS—Slective laser sintering)制模 将金属粉末用易消失性树脂裹覆,通过二氧化碳高功率激光束,在CAD分层信息控制下,有选择地熔化粉末上的树脂。使粉末烧结成得到金属粉末的粘结实体,再将树脂在一定温度下分解消失,然后。使成型的金属粉末在高温下烧结而得到金属烧结件,用第二相低熔点金属渗入烧结件而直接成金属模具。美国3D公司将称为Keltol的金属粉末烧结制模工艺,对于直接生产小型金属模具特别适合。 德国的Electrolux RP公司开发的利用不同熔点的几种金属粉末来烧结成型,由于各种金属收缩不一致,可相互补偿其体积变化。 1.4 熔融沉积成型(PDM—Fused deposition modelling)制模 材料在喷头中被加热并略高于其熔点。喷头在计算机控制下作X—Y联动扫描以

快速成形与快速制模的技术发展

快速成形与快速制模的技术发展 1、引言 21世纪是以知识经济和信息社会为特征的时代,制造业面临信息社会中瞬息万变的市场对小批量多种产品要求的严峻挑战。在制造业日趋国际化的状况下,缩短产品开发周期和减少开发新产品投资风险,成为企业赖以生存的关键。直接从计算机模型产生三维物体的快速成形技术,是由现代设计和现代制造技术迅速发展的需求应运而生的,它涉及机械工程、自动控制、激光、计算机、材料等多个学科,近年来,该技术迅速在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等领域得到良好的应用。快速成形/快速制模/快速制造技术为企业提高竞争力提供了一种先进的手段。 快速成形技术(Papid prototyping,以下简称RP)自80年代问世以来,在成形系统、材料方面有了长足的进步,同时推动了快速制模(Rapid Tooling,以下简称RT)和快速制造(Rapid Manufacturing,以下简称RM)的发展,90年代中末期是RP技术蓬勃发展的阶段。我国的华中科技大学、清华大学、西安交通大学、北京隆源公司和南京航空航天大学等单位,于90年代初率先开发RP及相关技术的研究、开发、推广和应用。到1999年,国内已有数十台引进或国产RP系统在企业、高校、研究机构和快速成形服务中心运行。在国家科技部的领导和支持下,先后成立了近十家旨在推广应用RP技术的“快速原型制造技术生产力促进中心”,863/CIMS主题专家组还将快速成形技术纳入目标产品发展项目。此外,有相当一部分高校将RP技术列入了“211”规划。国内投入RP研究的单位逐年增加,RP市场初步形成。 2、快速成形技术发展简史 RP技术是一种用材料逐层或逐点堆积出制件的制造方法。分层制造三维物体的思想雏形,最早出现在制造技术并不发达的19世纪。早在1892年,Blanthre主张用分层方法制作三维地图模型。1979年东京大学的中川威雄教授,利用分层技术制造了金属冲裁模、成型模和注塑模。 光刻技术的发展对现代RP技术的出现起到了催化作用。 20世纪70年代末到80年代初期,美国3M公司的Alanj.Hebert(1978)、日本的小玉秀男(1980)、美国UVP公司的Charles W.Hull(1982)和日本的丸谷洋二(1983),在不同的地点各自独立地提出了RP概念,即利用连续层的选区固化产生三维实体的新思想。Charles W.Hull在UVP的继续支持下,完成了一个能自动建造零件的称之为SterolithographyApparatus(SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。 同年,Charles W.Hull和UVP的股东们一起建立了3D System公司;随后许多关于快速成形的概念和技术在3D System公司中发展成熟。与此同时,其它的成型原理及相应的成型机也相继开发成功。1984年Michael Feygin提出了分层实体制造(Laminatde Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys公司,1990年前后开发了第一台商业机型LOM—1015。1986年,美国Texas大学的研究生C.Deckaed提出了Selective Laser Sintering(SLS)的思想,稍后组建成DTM公司,于1992年开发了基于SLS的商业成型机(Sinterstation)ScottCrump在1988年提出了Fused Deposition Modeling(FDM)的思想,1992年开发了第一台商业机型3D-Modeler。自从20世纪80年代中期SLA光成型技术发展以来到90年代后期,出现了十几种不同的快速成形技术,除前述几种外,典型的还有,3DP、SDM、SGC等。目前,SLA、LOM、SLS和FDM四种技术比较成熟。 3、RP技术的新进展

快速模具制造技术的现状及其发展趋势

快速模具制造技术的现状及其发展趋势 发表时间:2019-07-02T16:34:38.163Z 来源:《基层建设》2019年第9期作者:区礼炳[导读] 摘要:快速模具制造技术作为一项系统工程技术,有效融合了信息与控制技术、材料学以及激光技术等,其发展速度可见一斑。 佛山市尊朗机械设备有限公司广东佛山 528000摘要:快速模具制造技术作为一项系统工程技术,有效融合了信息与控制技术、材料学以及激光技术等,其发展速度可见一斑。自快速模具制造技术诞生以来,已经被广泛应用到航空航天、医疗、汽车以及加点分制造行业之中。快速模具制造技术的飞跃式发展,特别是在快速制造金属模具的广泛应用,使得产品的质量更加优质,价格更加低廉,帮助企业获得更大经济效益,这也是国内外学者、企业关注 的重点。对于此,本文对快速模具制造技术的现状及其发展趋势展开探讨。 关键词:快速模具制造技术;现状分析;发展趋势 1快速模具制造技术概述快速成型技术是自20世纪末开始发展出的一项具有非常重要意义的制造技术,该技术主要是由激光技术、驱动技术、CAD/CAM技术、数控技术、新型材料所构成,该技术自应用以来,在机械制造企业的产品创新、产品开发等方面都起着非常关键性的作用,虽然工作人员在使用该技术时所采用的制作原材料之间会存在着一定的差异性,但是技术应用中所体现出的主要工作原理均是由分层制作、逐层叠加的方式来完成的,从数学的层面上来说,该技术原理与数据的积分过程有着异曲同工之处,从宏观的角度上来说,该技术的应用形式与3D打印技术相似。该技术在实际应用中的特征主要体现在成型快、适用性强、制作周期短、操作简便、集成性高等等。快速模具制造作为新型制造技术,对制造行业具有极大促进作用。该技术应用范围较为广泛,既能用于汽车制造业,又能生产家电器材。模具制造技术,能提高制造效率,创造企业价值。 2快速模具制造技术模具制作 2.1软质模具 软质模具主要是由一些软性材料制作而成,适用于产品数量为50-5000左右的生产企业,市场上常见的软性材料有环氧树脂、锌合金、硅橡胶、低熔点合金、铝金属等等,该类型的模具在使用过程中具有成本低廉、周期短等优势,而工作人员在使用快速成型技术来制作软质模型时主要会使用以下方法:第一,硅橡胶法,通过该方法所制造的硅橡胶模具不仅有良好的弹性,同时还可以在模具上制作一些非常精美的纹路,但是该类模具的适用性不强;第二,树脂法,当模具的需求量非常大时,工作人员可以使用树脂材料作为模具的制作原材料,并且通过合理地使用快速成型技术中原型压铸的方式来高效率地完成该类型模具的批量制作;第三,金属法,工作人员使用该方法进行模具制作时,通常以RP8d为原型,并且在此基础上将金属合金均匀地喷涂于模型的外表面,并且将模具的制作原材料快速地填入模具内,完成金属模具的制作,该方法的优势在于操作简便、一次成型、制作周期短、耐磨性强等等;第四,电铸法,该模具制作法与上述我们所提到的金属喷涂法相类似,电铸法主要是利用电化学的基本原理,将PR8d圆形的外表面通过电解沉淀的方式进行模具的制作,通过该方法制作而成的模具具有均匀性强、精度高等优势。 2.2硬质模具 与软质模具相对应的则是硬质模具,适用于产品数量规模较大的产品生产企业,市场上常见的硬质模具通常为钢模具,工作人员在使用快速成型技术进行硬质模具的生产制造时,通常会使用以下方法:第一,电火花法,该方法主要是指工作人员将BPM作为模具的圆形,同时将EDM作为连接模具的电源,通过电火花的方式对模具进行加工制造,然后再合理地使用三维砂轮以及石墨电极的方式对该模具进行细节上的处理,最终完成整个钢模具的制作;第二,熔模法,该方法主要适用于钢模具的批量制造,以RPM原型作为母版通过软蜡熔模的方式实现钢模具的精密复制;第三,陶瓷法,对于一些数量较少的模具批量铸造生产企业,工作人员便可以使用陶瓷法进行模具的制作生产,依然以RPM为模板原型,将陶瓷砂浆作为模板制作的原材料,通过焙烧的方式对陶瓷砂浆进行固化处理,以此来完成模板的制作。 3我国快速制模技术发展趋势快速制模技术与传统模具制造相比,优势在于快速制模技术能够提高产品的开发速度和生产的柔性化程度,快捷、方便地制作模具,缩短模具制造的周期,降低生产成本,经济效益优。某模具制造公司传统研发和快速研发过程对比如表1所示。 表1某模具制造公司传统研发和快速研发过程对比 3.1快速成型模具制造应用 快速成型模具制造技术主要分为直接法和间接法两种类型。根据所制造模具的产品特性,不同的快速成型模具制造方法也被应用到不同场景中,而相对应的制造工艺也是不尽相同,但最终所制造的产品质量同样能得到保证。直接制模技术主要是通过选择性激光烧结的方式来实现,由此生产出的模具,使用时限较长。但其缺陷是在对模具工件进行烧结时,由于温度的影响,模具工件会产生不同程度的收缩现象,这种收缩现象至今未能得到有效解决,继而造成生产出的模具工件精确度不高。对于软质模具而言,由于所采用的软质材料的特殊性,有别于以往使用的钢制材料,其具有制作周期短、造价成本低的特性,在新产品的开发初期,常常被应用到市场试运行以及功能检测等方面,特别是对于所生产的工件品种多、批量小以及改性快等制造模式中。现今,软质模具制造方法主要以树脂浇注法、硅橡胶浇注法等方法为代表。

探析现代快速模具制造技术及其应用

探析现代快速模具制造技术及其应用 发表时间:2018-01-30T14:22:58.020Z 来源:《建筑学研究前沿》2017年第25期作者:卓永安 [导读] 快速形成与制造技术的飞速发展推动了以快速形成与制造技术为基础的快速模具制造技术的发展。 摘要:快速成形与制造是一个复合型的技术,其涵盖范围十分广泛,包含激光学、计算机控制技术等许多目前先进的科学技术。目前已应用于我国制造行业的方方面面,为实现国内制造业的产品快速规模化生产提供基础。快速形成与制造技术的飞速发展推动了以快速形成与制造技术为基础的快速模具制造技术的发展。 关键词:现代快速模具;制造技术;应用 引言 现代产业竞争越来越激烈,产品的生命周期也越来越短,现代产品的发展趋势已向轻、薄、短、小、高精度、多功能、人性化的方面发展,使产商背负的研发更新压力越来越沉重。加之顾客不但要求产品具有良好的性价比,更期望自己的需要能得到时效上的满足。而快速模具技术的特色就是“快”,能加速新产品的开发上市,因此,本文就快速模具技术的应用进行研究。 一、快速模具制造技术产生的背景 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。基于RPM技术的RT直接或间接制作模具,使模具制造时间大大缩短而成本却大大降低。由于产品开发与制造技术的进步,及不断追求新颖、奇特、多变的市场消费导向,使产品的寿命周期越来越短已成为不争事实。 二、快速制模技术的发展简况 2.1间接制模法 在直接制模法尚不成熟的情况下,目前具有竞争力的RMT技术主要是粉末烧结、电铸、铸造和熔射等间接制模法。但铸造法和粉末烧结法尺寸变化大,制模精度不高。电铸复制精度虽高,但制模时间长、受电铸材料种类限制且需处理废液污染。熔射法具有模具材料种类和制模尺寸规格限制小、复制精度高等优点。 2.2直接制模法 直接法尤其是直接快速制造金属模具(DRMT)方法在缩短制造周期、节能省资源、发挥材料性能、提高精度、降低成本方面具有很大潜力,从而受到高度关注。目前的DRMT技术研究和应用的关键在于如何提高模具的表面精度和制造效率以及保证其综合性能质量,直接快速制造耐久、高精度和表面质量能满足工业化批量生产条件的金属模具。目前已出现的DRMT方法主要有:以激光为热源的选择性激光烧结法(SLS)和激光生成法(LG);以等离子电弧等为热源的熔积法(PDM或PPW);喷射成形的三维打印法(3DP)。 等离子熔积法(PDM)具有使用材料范围广、能获得满密度金属零件的特点。起源于前德国Kruoo和Thvssen公司的埋弧焊接,能够实现大型或特大型容器的成形焊,其机械性能、组织优于铸锻组织,通过适当选择工艺参数可以减少残余应力和裂纹发生,提高堆焊高度。此外,薄钢板的LOM技术也可制造金属模具,但叠层间需焊接等紧固处理,且材料利用率低,薄板热变形也影响成形精度和粗糙度。 三、快速模具制造技术的应用领域 3.1在汽车工业领域的应用 在汽车工业领域,汽车覆盖件的材料较薄,尺寸较大,形状特殊,对表面质量的要求较高。将快速模具制造技术应用其中,可对覆盖件进行特别的设计,传统的通过数控铣进行的机加工制造不但投资较大、风险更高,并且其生产周期相对较长。而基于快速模具制造的熔射高熔点合金的快速制造模具技术,不但制模的精度更高,表面质量更好,所生产出来的产品还可以形成批量生产的能力,对占领市场具有较强的竞争力。 3.2在军事领域中的应用 快速成型和制造技术的优点十分明显,其不但适用面广且制造柔性较高。在军事领域中,在经过一段时间的加工后,其经济性与加工设备方面的优越性能够体现出来。例如,依照瓦片的快速原型能够翻制出石墨电极研磨研具用砂轮,还可以通过砂轮在石墨电极研磨机上研磨出瓦片的石墨电极,或通过瓦片石墨电极加工瓦片精铸模具等。因此,从整个瓦片的快速制造过程来讲,研具用砂轮制造、石墨电极成型及研磨等是能达到基本要求。 3.3 在航空航天领域中的应用 在航空航天领域中,快速模具制造技术得到充分运用。例如在新型火箭发动机泵壳原型件的制造过程中,通过传统机加工的方法是难以完成加工工作的,而通过快速模具成型技术后,能按照要求制作相关的塑料样件,模具母模可通过翻制硅胶模定型,在把母模固定在铝标准模框中后,再浇入事先配好的硅橡胶,通过12-20h的静置后,再把母模取出。经过两个月的制造后,一件合格的泵壳铸件就会产生并进行装机运行。 四、快速模具制造技术的发展瓶颈与发展趋势 4.1 快速模具制造的发展瓶颈 (1)直接法进行比较后发现,以快速原型与铸造、喷涂等工艺相结合的间接模具快速制造方法在实用方面具有明显优势,但由于工序的增加,精度变得难以控制,使得快速模具制造的优势无法得到充分体现。 (2)在采用电铸和喷涂法等方法进行原型表面壳型制造工艺的过程中,导热性与界面相结合的问题会对模具的寿命与生产过程造成负面影响。 (3)直接快速模具制造方法具有一定的发展瓶颈,例如在表面和尺寸精度方面,或在力学性能、模具种类和模具成本及模具大小等方面,无法全面满足模具的工艺要求。 4.2 快速模具制造的发展趋势 (1)金属壳体与树脂或者陶瓷背衬等相结合的间接快速模具的使用范围与性能在使用的过程中往往会受到一定限制,因此,可以选

多点成形技术简介

多点成形技术及设备介绍 吉林大学无模成形技术开发中心 长春瑞光科技有限公司

一、多点成形技术简介 多点成形是金属板材三维曲面成形的全新技术,是对传统板料生产方式的重大变革。其原理是将传统的整体模具离散成一系列规则排列、高度可调的基本体(或称冲头)。在整体模具成形中,板材由模具曲面来成形,而多点成形中则由基本体群冲头的包络面(或称成形曲面)来完成,如图1-1所示。 相当于重新构造了成形模具,由此体现了多点成形的柔性特点。 调节基本体行程需要专门的调整机构,而板材成形又需要一套加载机构,以上、下基本体群及这两种机构为核心就构成了多点成形压力机。一个基本的多点成形装备应由三大部分组成,即CAD软件系统、控制系统及多点成形主机,如图1-2所示。CAD软件系统根据要求的成形件目标形状进行几何造型、成形工艺计 图1-2 多点成形系统的基本构成 算,将数据文件传给控制系统,控制系统根据这些数据控制压力机的调整机构,构造基本体群成形面,然后控制加载机构成形出所需的零件产品。 二、技术先进性与应用领域 在多点成形装备中,基本体群及由其形成的“可变模具”是多点成形压力机的主要组成部分。从这个意义上讲,“多点成形”也可称为“无模成形”。这种成形装备具有很多传统成形方式无法比拟的优点,其先进性主要表现为: 1)实现无模成形,不需另外配置模具。因此,不存在模具设计、制造及调试费用的问题。与整体模具成形方法相比节省了大量的资金与时间;更重要的是过去因模具造价太高而不得不采用手工成形的单件、小批零件的生产,在此系统上可完全实现规范的自动成形。无疑,这将大大提高成形质量。 2)该技术由基本体群的冲头包络面成形板材,而成形面的形状可通过对各基本体运动的实时控制自由地构造出来,甚至在板材成形过程中都可随时进行调

快速制模

计算机技术在快速制模技术中的应用 王永峰 (武汉工程大学机电工程学院武汉 433000) 摘要:快速制模技术是一种现代模具制造技术,它能有效缩短新产品开发及其模具的制造周期,计算机在快速制模中的应用越来越广。快速制造出企业急需的接近成品的试制品,以了解消费者的反应,帮助企业做出正确的经营决策。本文先介绍了该技术的相关概念和发展概况,然后在不同方面对该技术的工艺过程进行了具体分析,最后列举了相关文献中的实例以加深印象。 关键词:快速制模技术;计算机;工艺过程 Computer technology in the application of rapid molding technology wangyongfeng (School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 433000) Abstract: Rapid Tooling is a modern mold manufacturing technology. It can effectively shorten new product development and mold manufacturing cycle. Computer is becoming more and more widely in the application of rapid manufacture of moulds. thus quickly creating the prototype that is close to finished product to understand consu mer’s response to help companies make the right business decisions. The concepts and development overview of the technology was introduced first, and then the process of the technology was specifically analyzed from different aspects. Finally, some examples of the related literatures were cited to be impressed. Key words: Rapid Tooling; computer; process 0 引言 通常,生产用模具由锻造钢坯或铝坯经机械加工而成,砂型铸造模型虽然可用木材制作,但是仍需机械加工。由于模具上常常有一些复杂的特征与自由表面,精度与表面质量要求比较高,随着计算机技术的日趋成熟,其在快速制模领域的应用也越来越广泛。虽然数控加工机床、加工中心、柔性单元与柔性系统,以及高速切削等先进技术的发展能使模具加工周期缩短,但是至今为止,每道工序的工艺并无重大改变,仍然存在调整时间长、复杂刀具轨迹的自动生成困难大,成本高等问题。当产品的生产批量较小时,模具的制作工时与成本分摊在每件产品上的数值更大,上述问题尤为突出。快速制模是寻求更快、更好地开发新产品的一种强有力手段。现在或将来,使用快速制模,采用客户所希望的材料来制造零件,都可以大幅度减少零件的交货时间。例如,10年前,开发一辆新汽车,大约需要60个月的时间,使用快速制模技术,则仅需要18个月的时间,电子产品的开发周期已经降至不到一年,而玩具制造业,则在9个月内完成开发、大批量生产和销售工作。目前,扩大快速制模的应用范围可能还存在一些问题,但以后必将成为一种强大的、有益的新产品开发工具[1]。 1 快速制模技术的概念 快速制模(Rapid Tooling,简称RT)技术,就是将传统的制模方法(如数控加工、铸造、金属喷涂、硅胶模等)与快速成形制造技术相结合,使得模具制造周期短、成本低、综合经济效益好,在模具的精度和寿命方面能满足生产使用要求的模具制造技术,它已经成为现代模具制造的强有力手段。所以快速模具制造工艺的特点在于快速成形技术与传统制模技术相互结合,互相补充,使模具的设计和制造周期缩短。从模具的概念设计到出模,快速制

快速制模技术及应用

第七章快速制模技术及应用 第一节快速制模的基本概念 模具工业是制造业的重要组成部分,对国民经济和社会发展将起到越来越大的作用,模具制造的水平已成为衡量一个国家制造能力的重要标志之一。 快速制模技术是将传统的制模方法与快速成形技术相结合,使模具制造周期缩短、成本降低、经济效益提高,在精度和使用寿命方面满足生产要求。快速制模的目标是以最快的速度从三维CAD设计模型获得所需要的最终产品零件。随着新的快速成形技术的不断出现,快速制模技术也在不断迅速发展,并成为快速制造的重要组成部分。 按照模具的寿命(零件生产数量),快速制模可以分为: 1.用于制作少量原型(4~20件)的硅橡胶模。 2.用于小批量生产(100~5,000件)的环氧树脂背衬模和低碳钢一渗铜模。 3.用于批量生产(10,000~100,000件以上)的工具钢一渗铜模和电铸镍壳背衬模。 按照模具的用途,快速制模可以分为: 1.金属铸造模的快速制造。 2.塑料注射模的快速制造。 3.钣金成形模的快速制造。 4.电火花成形电极的快速制造。 为了进一步阐明快速成形与快速制模以及各种快速制模技术之间的联系,可通过一张不完整的路线图,描述塑料注射模的快速制造,如图7-1所示。 230

图7-1 快速成形和快速制模的路线 从图中可见,快速成形的制件除了作为概念模型或有结构的、可装配的功能模型外,正在迅速发展和具有广阔应用前景的是快速制模领域,即用于制作母模、直接制模和间接制模。 将原型作为母模,先浇出硅橡胶模,然后通过在硅橡胶模具中真空浇铸聚亚胺酯复合物,可复制出一定批量的原型。聚亚胺脂复合物具有与大多数热塑性塑料大致相同的性能,生产出的最终零件已经可以满足高级的功能验证和装配测试,以及作为试制产品供展览用。 短期或中期使用的热塑性材料注射模可以将原型当作母模,再进行金属喷镀来制作。制作生产模具型腔的其他方法还有:电沉积或金属树脂混合物浇注等。用这些快速制模方法制作出的模具,几乎与传统方式生产的模具一样。 快速原型也可以用于间接制模,制作出EDM电极的合适外形。其优点是用快速成形技术制作复杂的电极比用数控加工要迅速得多,而且这种电极在渗透率和磨损率两方面都要比传统方法制作的电极好。 直接制作模具型腔是真正意义上的快速制造,可以采用混有金属的树脂材料制成,也可以直接采用金属材料成形。这种模具能够进行1O万次甚至更多次注射。 231

无模多点成形技术

无模多点成形技术 学习先进制造技术过程中,接触到了一些前沿的成型技术,感触颇深,对此挺感兴趣!于是从多方查资料,得知先进成型技术的一种——无模多点成形技术,所以就略作整理,得此文章,分享给大家,也请老师评阅。 【文章摘要】【无模多点成形就是将多点成形技术和计算机技术结合为一体的先进制造技术。该技术利用一系列规则排列的、高度可调的基本体,通过对各基本体运动的实时控制,自由地构造出成形面,实现板材的三维曲面】 【关键字:数控车削实例讲解模具制造的加工技术数控车削工艺分析】 一、基本概念 无模多点成形就是将多点成形技术和计算机技术结合为一体的先进制造技术。该技术利用一系列规则排列的、高度可调的基本体,通过对各基本体运动的实时控制,自由地构造出成形面,实现板材的三维曲面成形。它是对三维曲面扳类件传统生产方式的重大创新。二、技术特点 实现无模成形:取代传统的整体模具,节省模具设计、制造、调试和保存所需人力、物力和财力,显著地缩短产品生产周期,降低生产成本,提高产品的竞争力。与模具成形法相比,不但节省巨额加工、制造模具的费用,而且节省大量的修模与调模时间:与手工成形方法相比,成形的产品精度高、质量好,并且显著提高生产效率。 优化变形路径:通过基本体调整,实时控制变形曲面,随意改变板材的变形路径和受力状态,提高材料成形极限,实现难加工材料的塑性变形,扩大加工范围。 实现无回弹成形:可采用反复成形新技术,消除材料内部的残余应力,并实现少无回弹成形/保证工件的成形精度。 小设备成形大型件:采用分段成形新技术,连续逐次成形超过设备工作台尺寸数倍的大型工件。 易于实现自动化:曲面造型、工艺计算。压力机控制、工件测试等整个过程全部采用计算机技术,实现CAD/CAM/CA T一体化生产,工作效率高,劳动强度小,极大地改善劳动者作业环境。 三、技术发展概况 多点成形的研究起源于日本。70年代日本造船协会西冈等人试制了多点压力机,进行船体外板自动成形的研究,但因关键技术未能解决好,多点压机的制造费用太高,未能实用化。日本三菱重工业株式会社的熊本等人也研制了三列多点成形设备。由于其整体设计不周,该压机只适用于变形量很小的船体外板的弯曲加工。另外,东京大学的野本及东京工业大学的井关等人也进行了多点压机及成形实验方面的研究工作,但未取得重大进展。宫80年代以来,美国麻省理工学院D。E。Hardt的研究室对多点模具成形进行了十多年的研究。最近麻省理工学院与美国航空航天技术研究部门合作,投入1400多万美元的巨额经费开发出多点张力拉伸成形机。 吉林工业大学教授李明哲博士在日本日立公司从事博士后研究期间系统地研究了多点成形基本理论,深入地分析了成形机理与成形特点,并主持开发出多点成形实用机(主要技术参数见表(l)。 表1 多点成形实用机主要技术参数

快速成形技术的快速模具制造技

基于快速成形技术的快速模具制造技术 一、引言 近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键 快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。 以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。 二、基于RPM的快速模具制造方法 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT 直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。 1. 用快速成形机直接制作模具 由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受300℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

快速成型与快速模具制造技术及其应用考试重点总结

1.1 1988年,3Dsystems公司将SLA-250光固化设备系统运送给三个用户,标志着快速成型设备的商业化正式开始。 1.3 快速成型技术的特点:1自由成型制造2制造过程快速3添加式和数字化驱动成型方式4技术高度集成5突出的经济效益6广泛的应用领域 1.4 快速成型技术的优越性:1设计者受益2制造者受益3推销者受益4用户受益 2.1 快速成型工艺基本原理:基于离散堆积原理的累加式成型,从成型原理上提出了一种全新的思维模式,即将计算机上设计的零件三维模型,表面三角化处理,存储成STL文件格式,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,在控制系统的控制下,选择性的固化或烧结或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维实体,然后进行实体的后处理,形成原型。 快速成型:1液态(SLA FDM)2粉末粒子(SLS)3薄层材料(LOM) 2.2.1 光固化成型工艺的基本原理及过程: 光固化成型工艺的特点:优点:1成型过程自动化程度提高2尺寸精度高3优良的表面质量4可以制造结构十分复杂,尺寸比较精细的模型5可以直接制作面向熔模精密铸造的具有中空结构的消失型6制作的原型可以再一定程度上替代塑件 缺点:成型过程中伴随着物理和化学变化,制件易弯曲,需要支撑2液态树脂固化后的性能尚不如常用的工业塑料3设备运转及维护成本较高4使用的材料种类较少5液态树脂有一定的气味和毒性,而且要避光保护6光固化后的原型树脂并未完全被激光固化,为提高使用性能和尺寸稳定性,通常需要二次固化。 2.2.2 光固化成型的工艺过程 1 前处理:1 CAD三维造型2数据转换3确定摆放方位4施加支撑5切片分层 2原型制作3后处理 2.2.4 光固化成型的支撑结构必须设计一些细圆柱状或肋状支撑结构,以便确保制件的每一结构部分都能可靠固定,同时也有助于减少制件的翘曲变形。 2.2.5 光固化成型的收缩变形:1树脂收缩原因2零件成型过程中树脂收缩产生的变形3零件后固化收缩产生的变形 光固化成型误差分析: 影响制作时间的因素t=Σtci+Ntp 2.3 叠层实体制造工艺的基本原理和特点 工艺过程 误差分析 表面涂覆的具体工艺过程:1将剥离后的原型表面用砂纸轻轻打磨2按规定比例配备环氧树脂3在原型上涂刷一薄层混合后的材料,因材料的粘度较低,材料会很容易侵入原型中4再次涂覆同样的混合后的环氧树脂材料,以填充表面的沟痕并长时间固化5对表面已经涂覆了坚硬的环氧树脂材料的原型再次用砂纸进行打磨,打磨之前和过程中注意测量原型的尺寸,以确保尺寸在公差之内。6对原型表面进行抛光。 2.3.6 叠层实体快速原型的应用1汽车车灯2铸铁手柄3LOM原型在制鞋业的应用 2.4.1 选择性激光烧结工艺的基本原理 2.4.2 选择性激光烧结工艺的特点:优点:1可采用多种材料2制造工艺比较简单3高精度4无需支撑结构5材料利用率高缺点:1表面粗糙2烧结过程挥发异味3有时需要比较复杂的辅助工艺 2.4.4 高分子粉末烧结件的后处理:1收缩精度的影响2力学性能的影响 2.4.6 选择性激光烧结工艺的应用:1直接制作快速模具2复杂金属零件的快速无模具铸造3

无模多点成形技术简介

无模多点成形技术简介 一、基本概念 无模多点成形就是将多点成形技术和计算机技术结合为一体的先进制造技术。该技术利用一系列规则排列的、高度可调的基本体,通过对各基本体运动的实时控制,自由地构造出成形面,实现板材的三维曲面成形。它是对三维曲面扳类件传统生产方式的重大创新。 板材无模多点成形系统是以计算机辅助设计与辅助制造技术为主要手段的柔性成形设备,其工作原理是把传统的冲压实体模具分解为很多离散的小模具单元(亦称基本体),利用一系列规则排列的高度可调的基本体,通过对各个基本体运动的实时控制,自由地构造出成形曲面,代替模具实现板材三维曲面的快速无模成形。这种成形方式是对三维曲面板类件传统生产方式的重大创新。 二、技术特点

·实现无模成形:取代传统的整体模具,节省模具设计、制造、调试和保存所需人力、物力和财力,显著地缩短产品生产周期,降低生产成本,提高产品的竞争力。与模具成形法相比,不但节省巨额加工、制造模具的费用,而且节省大量的修模与调模时间:与手工成形方法相比,成形的产品精度高、质量好,并且显著提高生产效率。 ·优化变形路径:通过基本体调整,实时控制变形曲面,随意改变板材的变形路径和受力状态,提高材料成形极限,实现难加工材料的塑性变形,扩大加工范围。 ·实现无回弹成形:可采用反复成形新技术,消除材料内部的残余应力,并实现少无回弹成形/保证工件的成形精度。 ·小设备成形大型件:采用分段成形新技术,连续逐次成形超过设备工作台尺寸数倍的大型工件。 ·易于实现自动化:曲面造型、工艺计算。压力机控制、工件测试等整个过程全部采用计算机技术,实现CAD/CAM/CAT一体化生产,工作效率高,劳动强度小,极大地改善劳动者作业环境。 三、技术发展概况 多点成形的研究起源于日本。70年代日本造船协会西冈等人试制了多点压力机,进行船体外板自动成形的研究,但因关键技术未能解决好,多点压机的制造费用太高,未能实用化。日本三菱重工业株式会社的熊本等人也研制了三列多点成形设备。由于其整体设 计不周,该压机只适用于变形量很小的船体外板的弯曲加工。另外,东京大学的野本及东京工业大学的井关等人也进行了多点压机及成形实验方面的研究工作,但未取得重大进展。宫80年代以来,美国麻省理工学院D。E。Hardt的研究室对多点模具成形进行了十多年的研究。最近麻省理工学院与美国航空航天技术研

专题论文-快速制模技术

专题 快速制模技术 模具是制造业中使用量大、影响面广的工具产品。没有型腔模、压铸模、铸模、深拉模和冲压模,就无法生产出被广泛应用和具有竞争价格的塑料件、合金压铸件、钢板件和锻件。在现代批量生产中,没有高水平的模具,就没有高质量的产品,它对企业提高生产效率、降低生产成本也有重要的作用。据国外最新统计分析,金属零件粗加工的75%、精加工的50%和塑料零件的90%是用模具加工完成的。因此,模具工业也被称为“皇冠工业”。由于市场竞争的日益激烈,产品更新换代的速度不断加快,多品种小批量将成为制造业的重要生产方式,在这种情况下,制造业对产品原型的快速制造和模具的快速制造提出了强烈的要求。高速加工技术的出现,为模具制造技术开辟了一条崭新的道路。快速制模技术是一种快捷、方便、实用的模具制造技术。特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产。快速制模技术特点 快速模具制造技术与传统的模具制造技术相比,具有如下特点: (1)制造方法简单,工艺范围广 由于快速模具制造是基于材料逐层堆积的成形方法,工艺过程相对简单、方便和快捷,它不仅能适应各种生产类型特别是单件小批的模具生产,而且能适应各种复杂程度的模具制造;它既能制造塑料模具,也能制造金属模具。模具的结构愈复杂,快速模具制造的优越性就更突出。 (2)模具材料可强韧化和复合化 快速模具制造工艺能方便地利用在合金中添加元素或结晶核心,改变金属凝固过程或热处理等手段,可改善和提高模具材料的性能;或者在合金中添加其它材料,可制造复合材料模具。 (3)设计周期短,质量高 由于RT的模具设计极少依赖人的因素,因而可有效地降低人为的设计缺陷。设计师可利用RP制造的高精度模型,在设计阶段就可对产品的整体或局部进行装配和综合评价,并不断改进,大大地提高了产品的设计质量。 (4)便于远程的制造服务 由于RT对信息技术的应用,缩短了用户和制造商之间的距离,利用互联网可进行远程设计和远程服务,能使有限的资源得到充分的发挥,用户的需求能得到最快的响应。 快速制模技术类型 快速制模技术与传统的机械加工相比,具有制模周期短、成本低、精度与寿 命又能满足生产上的使用要求,是综合经济效益比较显著的一类制造模具的技 术,概括起来,有以下几种类别。 1快速原型制造技术 快速原型制造技术简称RPM,是80年代后期发展起来的一种新型制造技术。美国、日本、英国、以色列、德国、中国都推出了自己的商业化产品,并逐渐形 成了新型产业。 RPM是电脑、激光、光学扫描、计算机辅助设计(CAD)、计算机辅助加工(CAM)、数控(CNC)综合应用的高新技术。在成型概念上以平面离散、堆积为指导,在控制上以计算机和数控为基础,以最大柔性为总体目标。它摒弃了传统的机械加工

快速成形技术

什么是快速成形技术[1] 快速成形技术(Rapid Prototyping;RP)又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。 [编辑本段] 快速成形技术的特点 (1) 制造原型所用的材料不限,各种金属和非金属材料均可使用; (2) 原型的复制性、互换性高; (3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越; (4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上; (5) 高度技术集成,可实现了设计制造一体化; [编辑本段] RP技术产生背景 (1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。 (2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。 (3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。 [编辑本段] RP技术基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。从制造角度看,它根据CA

相关文档
相关文档 最新文档