文档库 最新最全的文档下载
当前位置:文档库 › 工程材料力学性能(DOC)

工程材料力学性能(DOC)

工程材料力学性能(DOC)
工程材料力学性能(DOC)

《工程材料力学性能》考试复习题

名词解释

1,循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力应力状态软性系数材料最大切应力与最大正应力的比值,记为α。:

2,缺口效应:缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。3,缺口敏感度:金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。

4,冲击吸收功:冲击弯曲试验中试样变形和断裂所消耗的功

5,过载损伤界:抗疲劳过载损伤的能力用过载损伤界表示。

6,应力腐蚀:材料或零件在应力和腐蚀环境的共同作用下引起的破坏

7,氢蚀:由于氢与金属中的第二相作用生成高压气体,使基体金属晶界结合力减弱而导

8,金属脆化。氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。微观断口上晶界明显加宽,呈沿晶断裂。

9,磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。

10,耐磨性:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。

论述

1,影响屈服强度的因素:

①内因:a金属本性及晶格类型b晶粒大小和亚结构c溶质元素d第二相

②外因:a温度b应变速率c应力状态

2,影响韧脆转变的因素:

①冶金因素:a晶体结构,体心立方金属及其合金存在低温脆性。

b化学成分,1)间隙溶质元素↑→韧脆转变温度↑2置换型溶质元素一般也能提高韧脆转变温度,但Ni和一定量Mn例外。3杂质元素S、P、As、Sn、Sb等使钢的韧性下降

c晶粒大小,细化晶粒提高韧性的原因有:晶界是裂纹扩展的阻力;晶界前塞积的位错数减少,有利于降低应力集中;晶界总面积增加,使晶界上杂质浓度减少,避免产生沿晶脆性断裂。

d纤维组织1)对低强度钢:按tk由高到低的顺序:珠光体→上贝氏体→铁素体→下贝氏体→回火马氏体

2)对中碳合金钢且强度相同,tk:下贝氏体<回火马氏体;贝氏体马氏体混合组织>回火马氏体

3)低碳合金钢的韧性:贝氏体马氏体混合组织>单一马氏体或单一贝氏体

4)马氏体钢的韧性:奥氏体的存在将显著改善韧性钢中夹杂物、碳化物等第二相质点对钢的韧性有重要影响,影响的程度与第二相质点的大小、形状、分布、第二相的性质及其与基体的结合力等性质有关。

3,影响韧度断裂的因素:

①内因:a化学成分:

细化晶粒的元素→强度↑、塑性↑→KIC↑;

强烈固溶强化的元素→塑性↓→KIC↓;

形成金属间化合物并呈第二相析出的元素→塑性↓→KIC↓;

b基体相结构和晶粒大小的影响:基体相结构易于产生塑性变形→KIC↑,如对钢铁材料:面心立方的KIC高于体心立方的KIC。晶粒大小对KIC的影响与对常规力学性能的影响不同,一般,晶粒细化→KIC↑,但某些情况下,粗晶粒的KI C反而较高。

c夹杂和第二相的影响

非金属夹杂物→KIC↓;

脆性第二相的体积分数↑→KIC↓;

韧性第二相形态和数量适当时→KIC↑;

钢中微量杂质元素(Sb、Sn、As等) →KIC↓

d显微组织的影响

板条马氏体>针状马氏体。

回火索氏体>回火托氏体>回火马氏体

下贝氏体>上贝氏体

马氏体组织中存在一定的残余奥氏体→KIC↑

②外因:a温度:一般大多数结构钢的断裂韧度随温度降低而下降,但随材料强度增加,KIC随温度变化的趋势趋于缓和。

b应变速率:应变速率↑→KIC↓,但当应变速率很大时,形变热量来不及传导,造成绝热状态,导致局部温度升高,KIC又回升。

知识点

1,退火低碳钢在拉伸应力作用下的变形过程可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形、不均匀集中塑性变形和断裂5各阶段。

2,弹性模量(刚度)主要决定雨金属原子本性和晶格类型。合金化、热处理、冷塑性变形对弹性模量的影响较小。

3,弹性比功又称弹性比能、弹性必能,表示金属材料吸收弹性变形功的能力。它决定于弹性模量和弹性极限。

4,滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

5,包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。消除方法,预先进行较大的塑性变形,或在第二次反向受力前先使金属材料于回复或再结晶温度下退火。

6,金属材料常见的塑性变形方式主要为滑移和孪生。

7,屈服现象:材料从弹性变形阶段向塑性变形阶段过渡过程中,外力不增加试样仍然继续伸长;或外力增加到一定数值时突然下降,随后,在外力不增加或上下波动情况下,试样继续伸长变形。屈服点:外力不增加仍能唏嘘伸长时的应

力称为屈服点σs。力首次下降前的最大应力成为上屈服点σsu。当不计初始瞬时效应时屈服阶段中的最小应力称下屈服点σsl。

8,应变硬化:金属材料阻止继续塑性变形的能力

意义:①可使金属零件具有抵抗偶然过载的能力,保证安全

②工程上强化材料的重要手段。

②应变硬化性能可以保证某些冷成形工艺,如冷拔线材和深冲成形等顺利进行。

9,断后伸长率:试样拉伸后标距的伸长与原始标距的百分比δ

断面收缩率:试样拉断后,缩颈处横截面积的最大缩减量雨原始很截面积的百分比ψ 10,三种失效形式,磨损、腐蚀和断裂,其中断裂危害最大。

端口特征三要素:纤维区、放射区和剪切唇。(材料强度提高,塑性降低,则放射区比例增大;试样尺寸加大,放射区增大明显,而纤维区变化不大。)

11,断裂分类

①塑性变形大小(1)脆性断裂:断裂前无明显的塑性变形,断口形貌是光亮的结晶状

(2)韧性断裂:断裂前明显塑性变形,断口形貌是暗灰色纤维状

②断裂面的取向(1)正断:断裂的宏观表面垂直雨σmax方向

(2)切断:断裂宏观表面平行与τmax

③裂纹扩展途径(1)穿晶断裂:裂纹穿过晶粒内部

(2)沿晶断裂:断裂沿境界扩展

④断裂机理(1)解理断裂:无明显塑性变形

沿解理面分离,穿晶断裂

(2)微孔聚集型断裂:沿晶界微孔聚合,沿晶断裂

在晶内微孔聚合,穿晶断裂

(3)纯剪切断裂:沿滑移面分离剪切断裂(单晶体)

通过缩颈导致最终断裂(多晶体、高纯金属)12,解理断裂的围观端口特征

①解理断裂:河流花样、舌状花样

②准解理:都是穿晶断裂,有小解理刻面,有台阶或撕裂棱及河流花样;准解理小刻面不是晶体学解理面,真正解理裂纹常源于晶界,而准解理裂纹则常袁雨晶内硬质点,形成从晶内某点法院的放射状河流花样。准解理不是一种独立的断裂机理,而是借力断裂的变种。

13,围观聚集断裂的微观断口特征:韧窝

14,弯曲

①弯曲试验的特点

金属杆状试样承受弯矩作用后,其内部应力主要为正应力。但杆截面上的应力分布不均匀,表面最大,中心为零,且应力方向发生变化。

1)弯曲试验的试样形状简单,操作方便。常用于测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别。

2)弯曲试验时可用试样弯曲的挠度显示材料的塑性。

3)弯曲试验时,试样的表面应力最大,可较灵敏地反映材料的表面缺陷。常用来比较和鉴定渗碳层和表面淬火层等表面热处理机件的质量和性能。

15,缺口效应:①引起应力集中,并改变缺口前方的应力状态。对于脆性或低塑性材料,使其抗拉强度降低。②使塑性材料强度增高,塑性降低

16,硬度

①硬度测试方法分类

1)弹性回跳法:如肖氏硬度,表示金属弹性变形功的大小。

2)压入法:如布氏、洛氏、维氏硬度等,表示金属塑性变形能力及应变硬化能力。

3)划痕法:如莫氏硬度,表示金属对切断的抗力。

②布氏硬度特点:

1)压痕面积较大,优点是能反映金属在较大范围内各组成相的平均性能,而不受个别相及微小不均匀性的影响,且试验数据稳定,重复性强;缺点是压痕较大时不宜在成品上进行试验。

2)布氏硬度试验对不同材料需更换压头直径和试验力,压痕直径的测量也比较麻烦,因而自动检测受到限制。

3)布氏硬度试验特别适用于测定灰铸铁、轴承合金等具有粗大晶粒或组成相的材料硬度

③洛氏硬度特点:

1)操作简便迅速,硬度值可直接读出;

2)压痕较小,可直接在工件上进行试验;

3)适用范围广,可广泛用于热处理质量的检验;

4)由于压痕小,代表性差,重复性差,数据分散度大;

5)用不同标尺的硬度值彼此不能直接进行比较。

④其他方法

1)肖氏硬度:重锤落向表面,测回跳高度。使用方便,便于携带。故可现场大型工件的硬度。其缺点是试验结果的准确性受人为因素影响较大,测量精度较低。

2)莫氏硬度:只表示硬度从小到大的顺序,不表示软硬的程度,后面的材料可以划破前面的材料表面。

17,冲击韧性,:冲击韧性-材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。冲击韧度常用标准试样的冲击吸收功Ak表示。

18,低温脆性:体心立方金属及合金、某些密排六方金属及合金,尤其是工程上常用的中、低强度结构钢,当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,这即低温脆性,转变温度tk称为韧脆转变温度,亦称冷脆转变温度。(材料屈服强度急剧升高的温度,或断后伸长率、断面收缩率、冲级吸收功几句减小的温度,就是人催转变温度tk。

19,断裂韧度测试时为什么规定外形和尺寸?

由于KIC是擦了在平面应变和小范围屈服条件下的KI临界值,因此,测定KIC时用的试样尺寸,必须保证裂纹尖端附近处于平面应变和小范围屈服状态。为此,厚度B、裂纹长度a及韧带宽度(W-a)满足比塑性区宽度R0大一个数量级。

20,影响断裂韧度KIC的因素

21,疲劳:

金属机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。

①疲劳的分类

(1)按断裂寿命和应力高低不同分类

高周疲劳:Nf > 105 ;σ<σs 亦称低应力疲劳。

低周疲劳:Nf = 102—105 ;σ≥σs 亦称高应力疲劳或应变疲劳。

(2)按应力状态不同分类

弯曲疲劳、扭转疲劳、拉压疲劳、复合疲劳等。

(3)按环境和接触情况不同分类

大气疲劳、腐蚀疲劳、高温疲劳、接触疲劳、热疲劳等。

②典型疲劳断口三形貌:疲劳源、疲劳区及瞬断区。

22,疲劳过程

疲劳过程包括疲劳裂纹萌生、裂纹亚稳扩展及最后失稳扩展三个阶段。

疲劳裂纹萌生:①滑移带开裂②相界面开裂③晶界开裂

疲劳裂纹扩展:①疲劳裂纹形成后沿与正应力轴45°的滑移带扩展的过程。

②裂纹沿与正应力相垂直的方向扩展。

23,应力腐蚀

金属在拉应力和特定的化学介质作用下,经过一度啊内饰件后所产生的低应力脆断

指标:①应力腐蚀临界应力场强度因子KIscc

②应力腐蚀裂纹扩展租率da/dt

措施:①合理选择金属材料

②减少或消除机件中的残余拉应力

③改善化学介质

④采用电化学保护

24,氢脆

由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象,叫氢脆断裂(简称氢脆) 类型:氢蚀、白点(发裂)、氢化物致脆、氢致延滞断裂

25,粘着磨损:接触表面相互运动时,由于固相焊合作用使材料从一个表面脱落或转移到另一表面而形成的磨损。

机械工程材料习题 金属材料与热处理 工程材料 试题答案

机械工程材料习题金属材料及热处理工程材料试题答案 复习思考题1 1.写出下列力学性能符号所代表的力学性能指标的名称和含义。Akv、ψ、δ5 、σb 、σ0.2 、σs 、σe、σ 500、HRC、HV、σ-1、σ、HBS、HBW、E。 2.钢的刚度为20.7×104MPa,铝的刚度为6.9×104MPa。问直径为2.5mm,长12cm 的钢丝在承受450N的拉力作用时产生的弹性变形量(Δl)是多少?若是将钢丝改成同样长度的铝丝,在承受作用力不变、产生的弹性变形量(Δl)也不变的情况下,铝丝的直径应是多少? 3.某钢棒需承受14000N的轴向拉力,加上安全系数允许承受的最大应力为 140MPa。问钢棒最小直径应是多少?若钢棒长度为60mm、E=210000MPa,则钢棒的弹性变形量(Δl)是多少? 4.试比较布氏、洛氏、维氏硬度的特点,指出各自最适用的范围。下列几种工件的硬度适宜哪种硬度法测量:淬硬的钢件、灰铸铁毛坯件、硬质合金刀片、渗氮处理后的钢件表面渗氮层的硬度。 5.若工件刚度太低易出现什么问题?若是刚度可以而弹性极限太低易出现什么问题? 6.指出下列硬度值表示方法上的错误。12HRC~15HRC、800HBS、58HRC~62HRC、550N/mm2HBW、70HRC~75HRC、200N/mm2HBS。 7.判断下列说法是否正确,并说出理由。 (1)材料塑性、韧性愈差则材料脆性愈大。 (2)屈强比大的材料作零件安全可靠性高。 (3)材料愈易产生弹性变形其刚度愈小。 (4)伸长率的测值与试样长短有关,δ5>δ10 (5)冲击韧度与试验温度无关。 (6)材料综合性能好,是指各力学性能指标都是最大的。 (7)材料的强度与塑性只要化学成分一定,就不变了。 复习思考题2 1.解释下列名词:晶格、晶胞、晶粒、晶界、晶面、晶向、合金、相、固溶体、金属化合物、固溶强化、第二相弥散强化、组元。 2.金属的常见晶格有哪三种?说出名称并画图示之。 4.为什么单晶体有各向异性,而多晶体的金属通常没有各向异性? 5.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?它们的存在有何实际意义? 6.固态合金中固溶体相有哪两种? 7.固溶体的溶解度取决于哪些因素?复习思考题3 复习思考题3 1.概念: 过冷、过冷度、平衡状态、合金、相图、匀晶转变、共晶转变细晶强化、枝晶偏析、变质处理。 2.金属结晶的动力学条件和热力学条件是什么? 3.铸锭是否一定要有三种晶区?柱状晶的长大如何抑制? 4.合金结晶中可能出现的偏析应如何控制使之尽量减小? 5.本书图3-lOPb-Sn合金相图。 7.固溶体合金和共晶合金其力学性能和工艺性能各有什么特点?

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度 【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受

《工程材料力学性能》1231231321321321课后答案

第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。(一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。) 2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系:霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化)

不可变形第二相:提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相:位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:第二相质点弥散分布在基体中起到的强化作用。 沉淀强化:第二相质点经过固溶后沉淀析出起到的强化作用。 (二)影响屈服强度的外因素 1.温度:一般的规律是温度升高,屈服强度降低。原因:派拉力属于短程力,对温度十分敏感。 2.应变速率:应变速率大,强度增加。σε,t= C1(ε)m 3.应力状态:切应力分量越大,越有利于塑性变形,屈服强度越低。 缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。 9.细晶强化能强化金属又不降低塑性。 10.韧性断裂与脆性断裂的区别。为什么脆性断裂更加危险?韧性断裂:是断裂前产生明显宏观塑性变形的断裂 特征:断裂面一般平行于最大切应力与主应力成45度角。 断口成纤维状(塑变中微裂纹扩展和连接),灰暗色(反光能力弱)。 断口三要素:纤维区、放射区、剪切唇这三个区域的比例关系与材料韧断性能有关。 塑性好,放射线粗大 塑性差,放射线变细乃至消失。 脆性断裂:断裂前基本不发生塑性变形的,突发的断裂。 特征:断裂面与正应力垂直,断口平齐而光滑,呈放射状或结晶状。 注意:脆性断裂也产生微量塑性变形。 断面收缩率小于5%为脆性断裂,大于5%为韧性断裂。 。 第二章金属在其他静载荷下的力学性能 一、解释下列名词:

工程材料力学性能-第2版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

工程材料力学性能

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能指标? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降

材料力学性能课后习题答案

1弹性比功: 金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.xx效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性: 金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。 9.解理面: 是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。 1、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

江大工程材料力学性能习题解答

第一章 1、弹性变形的实质是什么?答:金属晶格中原子自平衡位置产生可逆位移的反映。 2、弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里? 答:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。E=Z / &。弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。特殊表现:金属材料的E是一个对组织不敏感的力 学性能指标,温度、加载速率等外在因素对其影响不大,E主要决定于金属原子 本性和晶格类型。 3、比例极限、弹性极限、屈服极限有何异同? 答:比例极限:应力应变曲线符合线性关系的最高应力(应力与应变成正比关系的最大应力);弹性极限:试样由弹性变形过渡到弹-塑性变形时的应力;屈服极限:开始发生均匀塑性变形时的应力。 4、什么是滞弹性?举例说明滞弹性的应用? 答:滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。应用:精密传感元件选择滞弹性低的材料。 5、内耗、循环韧性、包申格效应? 答:内耗:金属材料在在弹性区内加载交变载荷(振动)时吸收不可逆变形功的能力;循环韧性:? ??塑性区内???;包申格效应:金属材料经过预先加 载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力(特别是弹性极限在反向加载时几乎降低到零)的现象。 6、什么是屈服强度?如何确定屈服强度? 答:屈服强度Z s :开始产生塑性变形时的应力。对于屈服现象明显的材料,以下屈服点对应的应力为屈服强度;对于屈服现象不明显的材料,以产生0.2%残 余变形的应力为其屈服强度。 7、屈服强度的影响因素有哪些? 答:内因:①金属本性及晶格类型(位错密度增加,晶格阻力增加,屈服强度随之提高)②晶粒大小和亚结构(细晶强化)③溶质元素(固溶强化)④第二相(弥散强化和沉淀强化);外因:①温度(一般,升高温度,金属材料的屈服强度降低)②应变速率(应变速率硬化)③应力状态(切应力分量越大,越有利于塑性变形,屈服强度则越低)。 8、屈服强度的实际意义?答:屈服强度是金属材料重要的力学性能,它是工程上从静强度角度选择韧性材料的基本依据,是建立屈服判据的重要指标,钢的屈服强度对工艺性能也有重要影响,降低屈服强度有利于材料冷成形加工和改善焊接性能。 9、静力韧度的物理意义。答:金属材料在静拉伸时单位体积材料断裂前所吸收的功定义为静力韧度,它是强度和塑性的综合指标。 10、真实应力应变曲线与工程应力应变曲线有何不同?有何意义?真实应力应 变曲线的关键点是哪个点?答:工程应力应变曲线上的应力和应变是用试样标距部分原始截面积和原始标距长度来度量的,往往不能真实反映或度量应变;真实应力应变曲线则代表瞬时的应力和应变,更为合理,可以叠加,可以不记中间加载历史,只需知道试样的初始长度和最终长度。工程〉真实。关键点是B点,B点前是均匀塑性变形,后是颈缩阶

材料力学性能考试题及答案分析

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1. 材料硬度的测定方法有、和。 2. 在材料力学行为的研究中,经常采用三种典型的试样进行研 究,即、 和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有 , 中心处切应力为 ,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则; 塑性材料切口根部裂纹形成准则遵循断裂准 则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加 拉应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和

三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。 11.诱发材料脆断的三大因素分别是、和。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a) 高b) 低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定

()5. 下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7. 下列哪种断裂模式的外加应力与裂纹面垂直,因而它是最危险的一种断裂方式。 a) 撕开型 b) 张开型 c) 滑开型 d) 复合型()8. 下列哪副图是金属材料沿晶断裂的典型断口形貌 a) b) c) d) ()9. 下列哪种材料中的弹性模量最高 a) 氧化铝 b) 钢 c) 铝 d) 铜 ()10. 韧性材料在什么样的条件下可能变成脆性材料 a) 增大缺口半径 b) 增大加载速度 c) 升高温度 d) 减小晶粒尺寸 ()11.应力腐蚀门槛值正确的符号为 a) K ISCC b) ΔK th c) K IC d) CF

材料力学性能试题(卷)集

判断 1.由内力引起的内力集度称为应力。(×) 2.当应变为一个单位时,弹性模量即等于弹性应力,即弹性模量是产生100%弹性变形所需的应力。(√) 3.工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力,其值越大,则在相同应力条件下产生的弹性变形就越大。(×) 4.弹性比功表示金属材料吸收弹性变形功的能力。(√) 5.滑移面和滑移方向的组合称为滑移系,滑移系越少金属的塑性越好。(×) 6.高的屈服强度有利于材料冷成型加工和改善焊接性能。(×) 7.固溶强化的效果是溶质原子与位错交互作用及溶质浓度的函数,因而它不受单相固溶合金(或多项合金中的基体相)中溶质量所限制。(×) 8.随着绕过质点的位错数量增加,留下的位错环增多,相当于质点的间距减小,流变应力就增大。(√) 9.层错能低的材料应变硬度程度小。(×) 10.磨损、腐蚀和断裂是机件的三种主要失效形式,其中以腐蚀的危害最大。(×) 11.韧性断裂用肉眼或放大镜观察时断口呈氧化色,颗粒状。(×) 12.脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,长呈放射状或结晶状。(√) 13.决定材料强度的最基本因素是原子间接合力,原子间结合力越高,则弹性模量、熔点就越小。(×) 14.脆性金属材料在拉伸时产生垂直于载荷轴线的正断,塑性变形量几乎为零。(√) 15.脆性金属材料在压缩时除产生一定的压缩变形外,常沿与轴线呈45°方向产生断裂具有切断特征。(√)

16.弯曲试验主要测定非脆性或低塑性材料的抗弯强度。(×) 17.可根据断口宏观特征,来判断承受扭矩而断裂的机件性能。(√) 18.缺口截面上的应力分布是均匀的。(×) 19.硬度是表征金属材料软硬程度的一种性能。(√) 20.于降低温度不同,提高应变速率将使金属材料的变脆倾向增大。(×) 21.低温脆性是材料屈服强度随温度降低急剧下降的结果。(×) 22.体心立方金属及其合金存在低温脆性。(√) 23.无论第二相分布于晶界上还是独立在基体中,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。(√) 24.细化晶粒的合金元素因提高强度和塑性使断裂韧度K IC下降。(×) 25.残余奥氏体是一种韧性第二相,分布于马氏体中,可以松弛裂纹尖端的应力峰,增大裂纹扩展的阻力,提高断裂韧度K IC。(√) 26.一般大多数结构钢的断裂韧度K IC都随温度降低而升高。(×) 27.金属材料的抗拉强度越大,其疲劳极限也越大。(√) 28.宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。(√) 29.材料的疲劳强度仅与材料成分、组织结构及夹杂物有关,而不受载荷条件、工作环境及表面处理条件的影响。(×) 30.应力腐蚀断裂并是金属在应力作用下的机械破坏与在化学介质作用下的腐蚀性破坏的叠加所造成的。(×) 31.氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。(√) 32.含碳量较低且硫、磷含量较高的钢,氢脆敏感性低。(×) 33.在磨损过程中,磨屑的形成也是一个变形和断裂的过程。(√)

工程材料力学性能 东北大学

课后答案 第一章 一、解释下列名词 材料单向静拉伸载荷下的力学性能 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。包辛格效应可以用位错理论解释。 第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。 其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。可以从河流花样的反“河流”方向去寻找裂纹源。解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。) 2.2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏

材料力学性能大连理工大学课后思考题答案.

第一章 单向静拉伸力学性能 一、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 13.比例极限:应力—应变曲线上符合线性关系的最高应力。 14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数、表面能低的晶面。 15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、说明下列力学性能指标的意义。 答:E 弹性模量;G 切变模量;r σ规定残余伸长应力;2.0σ屈服强度;gt δ金属材料拉伸时最大应力下的总伸长率;n 应变硬化指数 【P15】 三、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 四、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 五、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

工程材料力学性能

工程材料力学性能 工程材料力学性能 第一章、金属在单向静拉伸载荷下的力学性能 一、名词解释 ?弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的功能。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?循环韧性:金属材料在交变载荷(震动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗。 ?包申格效应:金属材料经过预先加载产生多少塑性变形(残余应力为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。 ?塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。金属材料断裂前所产生的塑性变形由均匀塑性变形和集中塑性变形两部分构成。 ?韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。 ?脆性:脆性相对于塑性而言,一般指材料未发生塑性变形而断裂的趋势。 ?解理面:因解理断裂与大理石断裂类似,故称此种晶体学平面为解理面。 ?解理刻面:实际的解理断裂断口是由许多大致相当于晶粒大小的解理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。 ?解理台阶:解理裂纹与螺型位错相交而形成的具有一定高度的台阶称为解理台阶。

?河流花样解理台阶沿裂纹前段滑动而相互汇合,同号台阶相互汇合长大。当汇合台阶高度足够大时,便成为了河流花样。 ?穿晶断裂与沿晶断裂:多晶体金属断裂时,裂纹扩展的路径可能是不同的。裂纹穿过晶内的断裂为穿晶断裂;裂纹沿晶界扩展的断裂为沿晶断裂。穿晶断裂和沿晶断裂有时候可以同时发生。 二、下列力学性能指标的的意义 ?E(G):弹性模量,表示的是材料在弹性范围内应力和应变之比; ?σr:规定残余伸长应力,表示试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力;常用σ0.2表示材料的规定残余延伸率为0.2%时的应力,称为屈服强度;σs:屈服点,表示呈屈服现象的金属材料拉伸时,试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点。 ?σb:抗拉强度,表示韧性金属材料的实际承载能力; ?n:应变硬化指数,反映了金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标; ?δ:断后伸长率,表示试样拉断后标距的伸长与原始标距的百分比; ?δgt:金属材料拉伸时最大力下的总伸长率(最大均匀塑性变形); ?ψ:断面收缩率,表示试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比。 三、问答题 ?金属的弹性模量主要取决于什么因素,为何说它是一个对组织不敏感的力学性能指标, 答:由于弹性变形是原子间距在外来作用下可逆变化的结果,应力与应变关系实际上是原子间作用力与原子间距的关系。所以,弹性模量与原子间作用力有关,与原子间距也有一定关系。原子间作用力决定于金属原子本性和晶格类型,故弹性模量也主要决定于金属原子本性

材料2004级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ①应力状态变硬(由单向拉应力变为三向拉应力); ②应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T℃低于某一温度T K时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm,标距长为50mm的标准拉伸试样,在拉力P=10kN时,测 得其标距伸长为50.80mm。求拉力P=32kN时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN时,开始发生明显的塑性变形;在拉力达到 67.76kN后试样断裂,测得断后的拉伸试样的标距为57.6mm,最小处截面 直径为8.32mm;求该材料的屈服极限σs、断裂极限σb、延伸率和断面收缩率。(8分) 解:d0=10.0mm, L0= 50mm, P1=10kN时L1= 50.80mm;P2=32kN 因P1、P2均远小于材料的屈服拉力55.42kN,试样处于弹性变形阶段,据虎克

2012年工程材料力学性能期末考题

2012年工程材料力学性能期末考题(回忆版) 一、填空 1.规定非比例伸长应力表示 2.真应力真应变(,)和工程应力(,)间的关系为, 3.应力状态软性系数 / ,单向拉伸时 4.各向同性材料的弹性常数有个,各向异性材料的弹性材料有个,独立的有个 5.持久强度是的应力值 6.蠕变断裂主要有、机制 7.单向复合材料的独立特征强度值有个,分别为 8.典型疲劳裂纹扩展曲线的三个区为、、 9.热疲劳应力是由于导致的 10.平面应变断裂任性测试时有效性检验的条件为:1.厚度判据:;2.载荷比判 据: 二、名词解释 1.抗拉强度 2.断裂韧性 3.疲劳极限 4.滞弹性形变 5.临界体积分数 三、简答题 1.叙述单项复合材料在纵向拉伸载荷下的变形过程和失效形式 2.试推导单向复合材料纵向、横向弹性模量与组分弹性模量和体积分数的关系 3.用力学状态图说明:1、加载方式变化时断裂类型变化;2、温度变化时断裂类型的变化 4.试分析影响材料断裂韧性的外部因素和内部因素 5.简述应力集中系数,应力强度因子和临界应力强度因子间的区别 6.描述变动载荷的参量有哪些,写出描述参量之间的关系 四、计算题 1.一个构件由钢A制造,其为1520MPa,断裂韧性为66MPa ,假设设计应力为材料的 一半,那么如果用另一种为2070MPa,为33MPa 的钢B来制造。问:(1)能节省多少质量;(2)如果材料内部有2mm长的缺陷,此两种材料能否使用?其能承受的应力为多大?设Y=1 2.工业应用中,玻璃纤维常用来强化尼龙。如果尼龙基复合材料含有30%体积分数的玻璃纤 维,问纵向加载时纤维承受的载荷分数是多少?(已知玻璃纤维的弹性模量 E=78.53X103MPa,尼龙的弹性模量E=2.83X103MPa)

工程材料力学性能 第二版 课后复习题答案

《工程材料力学性能》(第二版) 课后答案

第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸围)应力,是金属基体平均应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度

相关文档
相关文档 最新文档