文档库 最新最全的文档下载
当前位置:文档库 › Linux内核i2c读写操作驱动架构

Linux内核i2c读写操作驱动架构

Linux内核i2c读写操作驱动架构
Linux内核i2c读写操作驱动架构

Linux下I2C驱动介绍

1、I2C概述 I2C是philips公司提供的外设总线,I2C有两条数据线,一条是串行数据线SDA、一条是时钟线SCL,使用SDA和SCL实现了数据的交换,便于布线。I2C总线方便用在EEPROM、实时钟、小型LCD等与CPU外部的接口上。 2、Linux下的驱动思路 Linux系统下编写I2c驱动主要有两种方法:一种是把I2C当做普通字符设备来使用;另一种利用Linux下驱动的体系结构来实现。 第一种方法: 优点:思路比较直接,不用花费大量时间去了解Linux系统下I2C体系结构 缺点:不仅对I2C设备操作要了解,还有了解I2C的适配器操作 不仅对I2C设备器和设备操作需要了解,编写的驱动移植性差,内核 提供的I2C设备器都没有用上。 第二种方法: 第一种的优点就是第二种的缺点,第一种的缺点就是第二种的优点。 3、I2C框架概述 Linux的I2C体系结构分为3部分: 1)I2C核心I2C核心提供了I2C总线驱动和设备驱动的注册和注销的方法,I2C 通信方法(algorithm)上层,与具体适配器无关的代码,检测设备上层的代 码等。 2)I2C总线驱动I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可以直接受CPU来控制。 3)I2C设备驱动I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备端挂在受CPU控制的适配器上,通过I2C适配器与CPU交换数据。 Linux下的I2C体系结构: 1)Linux下的I2C体系结构 4、I2C设备驱动编写方法 首先让我们明白适配器驱动的作用是让我们能够通过它发出标准的I2C时序,在linux

内核源代码中driver/I2C/buss包含一些适配器的驱动,例如s3c2410的驱动I2C-s3c2410.c,适配器被加载到内核中,接下的任务就是实现设备驱动的编写。编写设备驱动的方法主要分为两种方法: 第一种:利用设备提供的I2C-dev.c来实现I2C适配器设备文件,然后通过上层应用程序来操作I2C设备器来控制I2C设备。 第二种:为I2C设备独立编写一个设备驱动 注意:第二种方法不能用设备提供的I2C-dev.c 5、I2C系统下的文件架构 在linux下driver下面有个I2C目录,在I2C目录下包含以下文件和文件夹 1)I2C-core.c 这个文件实现I2C核心功能以及/proc/bus/I2C*接口 2)I2C-dev.c 实现I2C适配器设备文件的功能,每个I2C适配器被分配一个设备,通过 适配器访问设备的时候,主设备号是89,此设备号是0-255. I2C-dev.c并没有针对特定设备而设计,只提供了read() write()和ioctl()等接口,应用层可以通过这些接口访问挂在适配器上的I2C设备存储空间和寄存器,并控制I2C设备的工作方式。 3)Chips 这个文件下面包含特定的I2C设备驱动。 4)Busses 这个文件包含一些I2C总线驱动。 5)Algos文件夹下实现了I2C总线适配器的algorithm 6、重要结构体 1)在内核中的I2C.h这个头文件中对I2C_driver;I2C_client;I2C_adapter和I2C_algorithm 这个四个结构体进行了定义。理解这4个结构体的作用十分关键。 i2c_adapter结构体 struct i2c_adapter { struct module *owner; //所属模块 unsigned int id; //algorithm的类型,定义于i2c-id.h, unsigned int class; const struct i2c_algorithm *algo; //总线通信方法结构体指针 void *algo_data;//algorithm数据 struct rt_mutex bus_lock; //控制并发访问的自旋锁 int timeout; int retries; //重试次数 struct device dev; //适配器设备 int nr; char name[48]; //适配器名称 struct completion dev_released; //用于同步 struct list_head userspace_clients; //client链表头

Linux驱动之i2c用户态调用

一、概述 I2C只有两条线,一条串行数据线:SDA,一条是时钟线SCL.正因为这样,它方便了工程人员的布线. 二、用户态实现设备驱动 在Linux内核代码文件i2c-dev.c中实现了I2C适配器设备文件的功能,针对每个适配器生成一个主设备号为89的设备节点(次设备号为0-255),I2c-dev.c并没有针对特定的设备而设计,只是提供了通用的read(),write(),和ioctl()等文件操作接口,在用户空间的应用层就可以借用这些接口访问挂接在适配器上的I2C设备的存储空间或寄存器,并控制I2C设备的工作方式。 i2c适配器的设备节点是/dev/i2c-x,其中x是数字。由于适配器编号是动态分配的(和注册次序有关),所以想了解哪一个适配器对应什么编号,可以查看/sys/class/i2c-dev/目录下的文件内容。 三、用户态调用 3.1、i2c-dev 用户空间操作i2c,需要包含以下头文件。 打开适配器对应的设备节点

i2c-dev为打开的线程建立一个i2c_client,但是这个i2c_client并不加到i2c_adapter的client链表当中。他是一个虚拟的临时client,当用户打开设备节点时,它自动产生,当用户关闭设备节点时,它自动被释放。 3.2、ioctl() 查看include/linux/i2c-dev.h文件,可以看到i2c支持的IOCTL命令1.#define I2C_RETRIES0x0701 /*设置收不到ACK时的重试次数*/ 2.#define I2C_TIMEOUT0x0702/*设置超 时时限的jiffies*/ 3.#define I2C_SLAVE0x0703/ *设置从机地址*/ 4.#define I2C_SLAVE_FORCE0x0706/*强制设置从机地 址*/ 5.#define I2C_TENBIT0x0704/* 选择地址位长:=0for7bit,!=0for10bit*/ 6.#define I2C_FUNCS0x0705/* 获取适配器支持的功能*/ 7.#define I2C_RDWR0x0707 /*Combin ed R/W transfer(one STOP only)*/ 8.#define I2C_PEC0 x0708/* !=0to use PEC with SMBus*/ 9.#define I2C_SMBUS0x0720 /*SMBus transfer*/

I2C接口的输入与输出驱动的

I2C接口的输入与输出驱动的PCF8574- pcf8574采用I2C接口,有8个准双向口,可以和外部电路连接,来实现输入输出功能,可以用来对口线进行扩展 有几点需要注意 1.某位作为输入的时候,必须首先置为高电平 2.地址是0100 A2 A1 A0 R/W 3.最多可以扩展8片 4.低电流损耗,静态电流10uA,驱动电流比较大,而且有索存功能,能够驱动LED 发光管 5.带有外部中断输出,低电平有效 我作了一个电路,其中P7-P4作为输入检测开关状态,P3-P0作为输出来驱动LED 灯 程序如下 #include "reg51.h" #define SETBIT(VAR,Place) (VAR|=(1<

unsigned char IC_Re_Time; unsigned char IC_Err_Flag; void Timer0_Init(void) { TMOD=0x00;//timer0工作定时器方式0,13位技术 TH0=0x1e;//5ms TL0=0x0c;//5ms TR0=1;//启动时钟0 ET0=1;//允许时钟0进行中断 EA=1;//开放所有中断 } void Delay(void) { unsigned char i; for(i=0;i<=10;i++) { ; } } unsigned char VALBIT(unsigned int Val,unsigned char Bit) { unsigned int Buf; Buf=0x0001; if(Bit) Buf<<=Bit;

TI-I2C驱动

TI-I2C驱动 一、与I2C驱动相关的文件分成两部分: 1)应用层接口部分: 程序在svn中的路径如下: 在https://dareglob-971006/svn/eocOS/branches/eocOS_v4/branches/bsp/user/i2c目录下,i2ctest.c文件,提供了lm75a_temp_read()方法,用来读取LM75A设备温度寄存器中的温度信息的功能。 2)内核驱动部分: 内核位于svn中的路径如下: https://dareglob-971006/svn/eocOS/branches/eocOS_v4/branches/bsp/kernel (1)总线驱动: i2c-davinci.c:在内核目录中driver/i2c/busses目录下,适用于TI的I2C总线驱动程序。I2C总线驱动是对I2C硬件体系结构中适配器端的实现。 (2)I2C驱动代码核心: i2c-core.c:在内核目录中driver/i2c/目录下,是I2C代码的核心,用于沟通虚拟文件系统与底层实现。该文件提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。 (3)I2C设备驱动: lm75.c:在内核目录中driver/hwmon目录下,是针对LM75A以及其他能兼容的温度传感器的设备驱动。I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。二、I2C简要工作流程 1)在总线驱动初始化时候,当通过Linux内核源代码/driver/base/platform.c文件中定义platform_driver_register()函数注册platform_driver结构体时,其中probe指针指向的davinci_i2c_probe()函数将被调用,以初始化适配器硬件。 2)而davinci_i2c_remove()函数则完成与davinci_i2c_probe()相反的功能。用于内存和中断等系统资源的释放和注销。 3)总线驱动i2c-davinci.c中,定义了i2c_davinci_xfer函数。该函数是I2C总线通信传输函数。并且I2C适配器对应的i2c_algorithm结构体实例为i2c_davinci_algo,其中的master_xfer函数指针指向i2c_davinci_xfer函数。 4)当设备被打开,并且用户开始读操作时,会调用设备驱动lm75.c中show_temp()函数,该函数会调用i2c-core.c中的i2c_smbus_xfer()函数,i2c_smbus_xfer()函数会检查适配器对应的i2c_algorithm结构体中是否注册了smbus_xfer函数(目前i2c_davinci_algo中未注册smbus_xfer函数),程序会调用i2c_smbus_xfer_emulated()函数,最终,还是会调用标准的I2C总线通信函数master_xfer(),由于master_xfer 已经指向i2c_davinci_xfer函数,所以会调用总线驱动i2c-davinci.c中的i2c_davinci_xfer函数来读取信息。 三、接口函数 1)应用层接口: Int lm75a_temp_read(float *temp) 读取lm75a 温度 2)内核中:lm75.c文件 static ssize_t show_temp(struct device *dev, struct device_attribute *da,char *buf)

i2c总线原理

I2C总线原理 ?什么是I2C总线? I2C即Inter IC,由Philips公司开发,是当今电子设计中应用非常广泛的串行总线之一,主要用于电压、温度监控,EEPROM数据的读写,光模块的管理等。 I2C总线只有两根线,SCL和SDA,SCL即Serial Clock,串行参考时钟,SDA即Serial Data,串行数据。 ?I2C总线的速率能达到多少? 标准模式下:100Kbps 快速模式下:400Kbps 高速模式下:3.4Mbps I2C总线结构如下图所示: 如上图所示,I2C是OC或OD输出结构,使用时必须在芯片外部进行上拉,上拉电阻R的取值根据I2C总线上所挂器件数量及I2C总线的速率有关,一般是标准模式下R选择10kohm,快速模式下R选取1kohm,I2C总线上挂的I2C器件越多,就要求I2C的驱动能力越强,R的取值就要越小,实际设计中,一般是先选取4.7kohm上拉

电阻,然后在调试的时候根据实测的I2C波形再调整R的值。 ?I2C总线上最多能挂多少个I2C器件? I2C总线上允许挂接I2C器件的数量由两个条件决定: 1).I2C从设备的地址位数。I2C标准中有7位地址和10位地址两种。如果是7位地址,允许挂接的I2C器件数量为:27=128,如果是10位地址,允许挂接的I2C 器件数量为:210=1024,一般I2C总线上挂接的I2C器件不会太多,所以现在几乎所有的I2C器件都使用7位地址。 2).挂在I2C总线上所有I2C器件的管脚寄生电容之和。I2C总线规范要求,I2C 总线容性负载最大不能超过470pF。 ?I2C总线是如何工作的? 1).I2C总线传输的特点。 I2C总线按字节传输,即每次传输8bits二进制数据,传输完毕后等待接收端的应答信号ACK,收到应答信号后再传输下一字节。等不到ACK信号后,传输终止。空闲情况下,SCL和SDA都处于高电平状态。 2).如何判断一次传输的开始? 如上图所示,I2C总线传输开始的标志是:SCL信号处于高电平期间,SDA信号出现一个由高电平向低电平的跳变。 3).如何判断一次传输的结束? 如上图所示,I2C总线传输结束的标志是:SCL信号处于高电平期间,SDA信号出现一个由低电平向高电平的跳变。跟开始标识正好相反。 4).什么样的I2C数据才是有效的。

I2C 24CXX驱动程序(真正实用 全)

#define _24cXX_H /* Includes ----------------------------------------------------------------*/ #include "stm32f10x.h" #include "value.h" //#include "stdbool.h" /* Define ------------------------------------------------------------------*/ /* EEPROM Addresses defines */ //注:32 64 的字地址是16位2个字节如果使用32或64请简单修改驱动即可 #define WC24cXX 0x00 // 器件地址写#define RC24cXX 0x01 // 器件地址读 #define USE_24C08 //使用24C08 #ifdef USE_24C02 #define MAXSIZE24cXX 256 // 总容量Bytes //级联时请修改本参数和硬件驱动 #define BLOCK_SIZE 256 // 块容量Bytes #define I2C_PAGESIZE 8 // 8个字节每页 #endif #ifdef USE_24C04 #define MAXSIZE24cXX 512 // 总容量Bytes //级联时请修改本参数和硬件驱动 #define BLOCK_SIZE 256 // 块容量Bytes #define I2C_PAGESIZE 16 // 16个字节每页 #endif #ifdef USE_24C08 #define MAXSIZE24cXX 1024 // 总容量Bytes //级联时请修改本参数和硬件驱动 #define BLOCK_SIZE 256 // 块容量Bytes #define I2C_PAGESIZE 16 // 16个字节每页 /* user define */ #define YBCV_ADDR_0 0x0000 //定义仪表控制数据结构体的EEPROM存储地址0 #define YBCV_ADDR_1 0x0200 //定义仪表控制数据结构体的EEPROM存储地址1 #define EEPROM_VERIFY YB_CTRL_V ALE_SIZE //EEPROM仪表通道修正参数存储地址 #endif #ifdef USE_24C16 #define MAXSIZE24cXX 2048 // 总容量Bytes #define I2C_PAGESIZE 16 // 16个字节每页 #endif

51单片机I2C总线驱动程序

51单片机I2C总线驱动程序 SI2I2C 总线是PHLIPS 公司推出的一种串行总线,是具备多主机系统所需 的包括总线裁决和高低速器件同步功能的高性能串行总线。I2C 总线只有两根 双向信号线。一根是数据线SDA,另一根是时钟线SCL。 一.I2C 系统结构每个接到I2C 总线上的器件都有唯一的地址。主机与其它器 件间的数据传送可以是由主机发送数据到其它器件,这时主机即为发送器。由 总线上接收数据的器件则为接收器。 二.数据位的有效性规定I2C 总线进行数据传送时,时钟信号为高电平期间, 数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线 上的高电平或低电平状态才允许变化。 三.字节传送与应答每一个字节必须保证是8 位长度。数据传送时,先传送最 高位(MSB),每一个被传送的字节后面都必须跟随一位应答位(即一帧共有 9 位)。 四.驱动程序#define uchar unsigned char#define uint unsigned int#define somenop() _nop_(),_nop_(),_nop_(),_nop_(),_nop_(),_nop_()sbit SCL=P2;sb it SDA=P2;123451.起始信号和终止信号 SCL 线为高电平期间,SDA 线由高电平向低电平的变化表示起始信号;SCL 线为高电平期间,SDA 线由低电平向高电平的变化表示终止信号。 起始和终止信号都是由主机发出的,在起始信号产生后,总线就处于被占用 的状态;在终止信号产生后,总线就处于空闲状态 void I2C_Start() //起始{SCL=1;somenop();SDA=1;somenop(); SDA=0;somenop();SCL=0;somenop();}void I2C_Stop() //终止{ SDA=0;somenop();SCL=1;somenop();SDA=1;somenop();}12345678910111213141

Linux下I2C驱动架构全面分析概要

Linux下I2C驱动架构全面分析 I2C概述 I2C是philips提岀的外设总线. I2C只有两条线,一条串行数据线:SDA, —条是时钟线SCL,使用SCL , SDA这两根信号线就实现了设备之间的数据交互,它方便了工程师的布线。 因此,I2C总线被非常广泛地应用在EEPROM,实时钟,小型LCD等设备与CPU的接口中。 linux下的驱动思路 在linux系统下编写I2C驱动,目前主要有两种方法,一种是把I2C设备当作一个普通的字符设备来处理,另一种是利用linux下I2C驱动体系结构来完成。下面比较下这两种方法: 第一种方法: 优点:思路比较直接,不需要花很多时间去了解linux中复杂的I2C子系统的操作方法。 缺点: 要求工程师不仅要对I2C设备的操作熟悉,而且要熟悉I2C的适配器(I2C控制器)操作。要求工程师对I2C的设备器及I2C的设备操作方法都比较熟悉,最重要的是写岀的程序可以移植性差。 对内核的资源无法直接使用,因为内核提供的所有I2C设备器以及设备驱动都是基于I2C 子系统的格式。 第一种方法的优点就是第二种方法的缺点, 第一种方法的缺点就是第二种方法的优点。 I2C架构概述 Linux的I2C体系结构分为3个组成部分: I2C核心:I2C核心提供了I2C总线驱动和设备驱动的注册,注销方法,I2C通信方法 (” algorithm 上层的,与具体适配器无关的代码以及探测设备,检测设备地址的上层代码等。 I2C总线驱动:I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部。 I2C设备驱动:I2C设备驱动(也称为客户驱动)是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。

学习笔记1-I2C架构篇

学习笔记1: Linux设备驱动程序之I2C 基础架构篇 I2C (Inter-Integrated Circuit)总线是一种由PHILIPS 公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C 总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C 总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。 I2C 总线概述 I2C 总线是由数据线SDA 和时钟SCL 构成的串行总线,可发送和接收数据,每个器件都有一个惟一的地址识别。I2C 规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件都可以工作于接收和发送状态。总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。SDA线上的数据状态仅在SCL 为低电平的期间才能改变,SCL 为高电平的期间,SDA状态的改变被用来表示起始和停止条件。 另外,I2C是一种多主机控制总线.它和USB总线不同,USB是基于master-slave机制,任何设备的通信必须由主机发起才可以.而 I2C 是基于multi master机制.一同总线上可允许多个master. I2C 总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。 开始信号:SCL 为高电平时,SDA 由高电平向低电平跳变,开始传送数据。 结束信号:SCL 为低电平时,SDA 由低电平向高电平跳变,结束传送数据。 应答信号:接收数据的IC 在接收到8bit 数据后,向发送数据的IC 发出特定的低电平脉冲,表示已收到数据。CPU 向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU 接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。 Linux 的I2C 驱动架构 Linux 中I2C 总线的驱动分为两个部分,总线驱动(BUS)和设备驱动(DEVICE)。其中总线驱动的职责,是为系统中每个I2C 总线增加相应的读写方法。但是总线驱动本身并不会进行任何的通讯,它只是存在那里,等待设备驱动调用其函数,参见图1。 设备驱动则是与挂在I2C 总线上的具体的设备通讯的驱动。通过I2C 总线驱动提供的函数,设备驱动可以忽略不同总线控制器的差异,不考虑其实现细节地与硬件设备通讯。 在我们的Linux 驱动的i2c 文件夹下有algos,busses,chips 三个文件夹,另外还有i2c-core.c 和i2c- dev.c 两个文件。其中i2c-core.c 文件实现了I2C core 框架,是Linux 内核用来维护和管理的I2C 的核心部分,其中维护了两个静态的List,分别记录系统中的I2C driver 结构和I2C adapter 结构。I2C core 提供接口函数,允许一个I2C adatper,I2C driver 和I2C client 初始化时在I2C core 中进行注册,以及退出时进行注销。同时还提供了I2C 总线读写访问的一般接口,主要应用在I2C 设备驱动中。Busses 文件夹下的i2c-mpc.c 文件实现了PowerPC 下I2C 总线适配器驱动,定义描述了具体的I2C 总线适配器的i2c_adapter 数据结构,实现比较底层的对I2C 总线访问的具体方法。I2C adapter 构造一个对I2C core 层接口的数据结构,并通过接口函数向I2C core 注册一个控制器。I2C adapter 主要实现对I2C 总线访问的算法,iic_xfer() 函数就是I2C adapter 底层对I2C 总线读写方法的实现。同时I2C adpter 中还实现了对I2C 控制器中断的处理函数。 i2c-dev.c 文件中实现了I2C driver,提供了一个通用的I2C 设备的驱动程序,实现了字符类型设备的访问接口,实现了对用户应用层的接口,提供用户程序访问I2C 设备,包括实现open,release,read,write 以及最重要的ioctl 等标准文件操作的接口函数。我们可以通过open 函数打开I2C 的设备文件,通过ioctl 函数设定要访问从设备的地址,然后就可以通过read 和write 函数完成对I2C 设备的读写操作。为了更方便和有效地使用I2C 设备,我们可以为一个具体的I2C 设备开发特定的I2C 设备驱动程序,在驱动中完成对特定的数据格式的解释以及实现一些专用的功能。

linux i2c驱动

linux i2c驱动 1. i2c-dev interface I2C dev-interface 通常,i2c设备由某个内核驱动控制。但是在用户空间,也可以访问某个I2C设备:你需要 加载i2c-dev模块。 每个被注册的i2c适配器(控制器)会获得一个数字号,从0开始。你可以检查/sys/class/i2c-dev,来查看适配器对应哪个数字号。你也可以通过命令 "i2cdetect -l"获 取你的当前系统的所有I2c适配器的列表。i2cdetct是i2c-tool包中的一个工具。 i2c设备文件是字符设备,主设备号是89,次设备号的分配如上所述。设备文件名通常被 规定为"i2c-%d"(i2c-0, i2c-1, ...,i2c-10, ...)i2c设备文件是字符设备, 主设备号是 89,次设备号的分配如上所述。设备文件名通常被规定为"i2c-%d"(i2c-0, i2c-1, ...,i2c-10, ...).所有256个次设备号都保留给i2c使用。 C example ========= 假定你要在你的C应用程序中访问i2c适配器。第一件事情就是包含头文件 "#include "。注意,存在两个"i2c-dev.h"文件: 一个属于Linux kernel,用于 内核驱动中;一个由i2c-tools发布,用于用户程序。显然,这里需要使用第二个 i2c-dev.h文件。 现在,你需要确定访问哪个适配器。你需要通过查看/sys/class/i2c-dev/或者运行 "i2cdetect -l"确定。适配器号时常是动态分配的,你无法预先假定某个值。因为它们甚 至会在系统重启后变为不同的值。 下一步,打开设备文件,如下: int file; int adapter_nr = 2; /*probably dynamically determined */ char filename[20];

Linux_I2C总线分析(主要是probe的方式)1

Linux I2C 总线浅析 ㈠ Overview 内核空间层次! i2c adapter 是一个struct, 用来抽象一个物理i2c bus ,而且还和linux 设备驱动架构柔和在一起.. 如果只说硬件的话,就是在CPU内部集成的一个I2C控制器(提供给用户的就是那几个register),硬件上并没的所谓的adapter,client这些东东,,adapter和client都是linux 驱动软件抽象出来的东西 资料帖子: i2c_algorithm { /* If an adapter algorithm can't do I2C-level access, set master_xfer to NULL. If an adapter algorithm can do SMBus access, set smbus_xfer. If set to NULL, the SMBus protocol is simulated

using common I2C messages */ /* master_xfer should return the number of messages successfully processed, or a negative value on error */ i nt (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs, int num); i nt (*smbus_xfer) (struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data); /* To determine what the adapter supports */ u32 (*functionality) (struct i2c_adapter *); }; /* * i2c_adapter is the structure used to identify a physical i2c bus along * with the access algorithms necessary to access it. */ struct i2c_adapter { s truct module *owner; u nsigned int id; u nsigned int class; /* classes to allow probing for */ c onst struct i2c_algorithm *algo; /* the algorithm to access the bus */ v oid *algo_data; /* data fields that are valid for all devices */ u8 level; /* nesting level for lockdep */ s truct mutex bus_lock; i nt timeout; /* in jiffies */ i nt retries; s truct device dev; /* the adapter device */ i nt nr; c har name[48]; s truct completion dev_released; }; Linux的I2C体系结构分为3个组成部分: 1·I2C核心: I2C核心提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法(即“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。这部分是与平台无关的。 2·I2C总线驱动: I2C总线驱动是对I2C硬件体系结构中适配器端的实现。I2C总线驱动主要包含了I2C适配

I2C总线驱动在嵌入式系统中的两种实现,I2C,嵌入式,AR.

I2C总线驱动在嵌入式系统中的两种实现,I2C,嵌入式,ARM,软件模拟 1引言I2C总线(Inter-ICBus)是一种通用的串行总线,是用于IC器件之间连接的二线制总线。他通过串行数据线(SerialDataLines,SDL)及串行时钟线(SerialClockLine,SCL)两线在连接到总线上的器件之间传送信息,并根据地址识别每个器件。一个或多个微控制器以及外围器件可以通过I2C总线接口非常方便的连接在一起构成系统。这种总线结构的连线和连接引脚少,器件间总线简单。结构紧凑,因此其构成系统的成本较低;并且在总线上增加器件不 1 引言 I2C总线(Inter-IC Bus)是一种通用的串行总线,是用于IC器件之间连接的二线制总线。他通过串行数据线(Serial Data Lines,SDL)及串行时钟线(Serial ClockLine,SCL)两线在连接到总线上的器件之间传送信息,并根据地址识别每个器件。一个或多个微控制器以及外围器件可以通过I2C总线接口非常方便的连接在一起构成系统。这种总线结构的连线和连接引脚少,器件间总线简单。结构紧凑,因此其构成系统的成本较低;并且在总线上增加器件不会影响系统的正常工作,所有的I。C 器件共用一套总线,因此其系统修改和可扩展性好。即使有不同时钟速度的器件连接到总线上,时间同步机制也能够很方便地确定总线时钟,因此在嵌入式系统中得到了广泛的应用。 2 I2C总线原理 2.1 I2C工作原理 I2C总线是由数据线SDA和时钟线SCL构成的串行总线,可发送和接收数据。每个连接到总线的器件都可以通过惟一的地址与主机通讯,主机可以作为主机发送器或主机接收器。他是一个真正的多主机总线,如果两个或更多主机同时初始化,数据传输可以通过冲突检测和仲裁防止数据被破坏。串行的8位双向数据传输位速率在标准模式下可达100 kb/s,快速模式下可达400 kb/s,高速模式下可达3.4 Mb/s。连接到相同总线的IC数量只受到总线的最大电容400 pF限制。 I2C总线在传送数据过程中共有3种特殊的电平变换情况,他们分别是:起始(start)、停止(stop)和响应(aek)。 当SCL为高电平时,SDA由高电平向低电平跳变,这个表示起始条件;当SCL 是高电平时,SDA线由低电平向高电平跳变表示停止条件。起始和停止条件一

i2c芯片的驱动程序(汇编)

i2c芯片的驱动程序(汇编) 本文对AT24系列存贮器和AT89系列单片机的特征及总线状态作为介绍,并以AT24C01与AT89C2051为例详细描述了通用存贮器IC卡的工作原理及用单片机对其进行读写操作的基本电路连接和软件编程方法。 通用存贮器IC卡是由通用存贮器芯片封装而成的,由于它的结构和功能简单,生产成本低,使用方便,因此在各领域都得到了广泛的应用。目前用于IC卡的通用存贮器芯片多为E2PROM,其常用的协议主要有两线串行连接协议(I2C)和三线串行链接协议,其中比较常用的是ATMEL公司生产的AT24系列芯片。以该系列中的AT24C01为例,它具有1k的存贮容量,适用于2V~5V的低电压/标准电压的操作,具有低功耗和高可靠性等优点。而AT89C2051虽是ATMEL公司89系列单片机的低档型,但它具有2k的FLASH ROM(可重编闪速存贮器)、128×8位内部RAM及全静态操作方式,同样也具有低功耗和较强的功能。下面以AT24C2051为例,对通用存贮器IC卡的工作原理及基本电路连线作一介绍,该线路简单,使用灵活,能可靠地对通用存贮器IC卡进行读写。 2 硬件特性 2.1 AT24系列存贮器的特性 AT24系列存贮器芯片采用CMOS工艺制造,内置有高压泵,可在单电压供电条件下工作。其标准封装为8脚DIP封装形式,各引脚的功能说明如下: SCL:串行时钟。在该脚的上升沿时,系统将数据输入到每个EEPROM器件,在下降沿时输出。 SDA:串行数据。该引脚为开漏极驱动,可双向传送数据。 A0、A1、A2:器件/页面寻址。为器件地址输入端。在AT24C01/02中,该引脚被硬连接。 Vcc:一般输入+5V的工作电压。 图1是符合ISO7816-2标准的IC卡的触点图。对于AT24系列通用存贮器IC卡来说,通常只需使用四个触点。AT24C01的内部组态为128个8位字节,而对随机字寻址则需要一个7位地址。 2.2 总线状态及时序 A24C01的SCL及SDA两总线可通过一个电阻上拉为高电平,SDA上的数据仅在SCL为低电平时周期才能改变。当SCL为高电平时,SDA的改变表示“开始”和“停止”状态。此时,所有地址和数据字都以8位串行码方式输入输出EEPROM。 开始状态:SCL为高电平时,SDA由高电平转入低电平。该命令必须在其它命令前执行。 停止状态:SCL为高电平时,SDA由低电平转入高电平。该命令可终止所有通讯。 确认:相同总线上的设备在收到数据后,以置SDA为低电平的方式对其进行确认。 2.3 器件寻址 AT24系列EEPROM在开始状态后需紧接一个8位器件地址,以进行应读写操作。设备寻址码的高4位为1、0、1、0,对于AT24C01/02,寻址码高4位后面的三位是器件寻址码,与它们的硬连线管脚相对应。最低应是读写选择位,置0时可激发读操作。 具体的格式如下: 1010A2A1A0R/W 2.4 AT89C2051芯片 AT89C2051是MCS-51产品的兼容型,它具有2k的FLASH ROM、128字节ROM,15根I/O引线、两个16位定时/计数器、一个五向量两级中断结构、一个全双工串行口、一个精密模拟比较器以及片内振荡电路和时钟电路。它的P1口和P3口是双向I/O口,其中P1.2~P1. 7、P3.0~P3.5和P3.7带有内部上拉电阻。在AT89C2051用作输入端时,将首先向引脚写“1”而使内部M OS管截止以便引脚处于悬浮状态,从而可获得高阻抗输入。 图2为通用存贮器IC卡的基本电路连接图。 3 读写操作软件

I2C驱动架构

I2C驱动架构 I2C 概述 I2C是philips提出的外设总线. I2C只有两条线,一条串行数据线:SDA,一条是时钟线SCL ,使用SCL,SDA这两根信号线就实现了设备之间的数据交互,它方便了工程师的布线。 因此,I2C总线被非常广泛地应用在EEPROM,实时钟,小型LCD等设备与CPU的接口中。 linux下的驱动思路 在linux系统下编写I2C驱动,目前主要有两种方法,一种是把I2C设备当作一个普通的字符设备来处理,另一种是利用linux下I2C驱动体系结构来完成。下面比较下这两种方法: 第一种方法: 优点:思路比较直接,不需要花很多时间去了解linux中复杂的I2C子系统的操作方法。 缺点: 要求工程师不仅要对I2C设备的操作熟悉,而且

要熟悉I2C的适配器(I2C控制器)操作。 要求工程师对I2C的设备器及I2C的设备操作方法都比较熟悉,最重要的是写出的程序可以移植性差。 对内核的资源无法直接使用,因为内核提供的所有I2C设备器以及设备驱动都是基于I2C子系统的格式。 第一种方法的优点就是第二种方法的缺点, 第一种方法的缺点就是第二种方法的优点。 I2C架构概述 Linux的I2C体系结构分为3个组成部分: I2C核心:I2C核心提供了I2C总线驱动和设备驱动的注册,注销方法,I2C通信方法(”algorithm”)上层的,与具体适配器无关的代码以及探测设备,检测设备地址的上层代码等。 I2C总线驱动:I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至可以直接集成在CPU内部。

I2C设备驱动:I2C设备驱动(也称为客户驱动)是对I2C 硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。 linux驱动中i2c驱动架构 上图完整的描述了linux i2c驱动架构,虽然I2C硬件体系结构比较简单,但是i2c体系结构在linux中的实现却相当复杂。 那么我们如何编写特定i2c接口器件的驱动程序?就是说上述架构中的那些部分需要我们完成,而哪些是linux内核已经完善的或者是芯片提供商已经提供的?

Linux I2C设备驱动编写

Linux I2C设备驱动编写(一) 在Linux驱动中I2C系统中主要包含以下几个成员: 如果一个I2C适配器不支持I2C通道,那么就将master_xfer成员设为NULL。如果适配器支持SMBUS 协议,那么需要去实现smbus_xfer,如果smbus_xfer指针被设为NULL,那么当使用SMBUS协议的时候将会通过I2C通道进行仿真。master_xfer指向的函数的返回值应该是已经成功处理的消息数,或者返回负数表示出错了。functionality指针很简单,告诉询问着这个I2C主控器都支持什么功能。 在内核的drivers/i2c/i2c-stub.c中实现了一个i2c adapter的例子,其中实现的是更为复杂的SMBUS。 SMBus 与I2C的区别 通常情况下,I2C和SMBus是兼容的,但是还是有些微妙的区别的。

时钟速度对比: 在电气特性上他们也有所不同,SMBus要求的电压范围更低。 I2C driver 具体的I2C设备驱动,如相机、传感器、触摸屏、背光控制器常见硬件设备大多都有或都是通过I2C 协议与主机进行数据传输、控制。结构体如下:

如同普通设备的驱动能够驱动多个设备一样,一个I2C driver也可以对应多个I2C client。以重力传感器AXLL34X为例,其实现的I2C驱动为:

这里要说明一下module_i2c_driver宏定义(i2c.h): module_driver(): 理解上述宏定义后,将module_i2c_driver(adxl34x_driver)展开就可以得到:

这一句宏就解决了模块module安装卸载的复杂代码。这样驱动开发者在实现I2C驱动时只要将i2c_driver结构体填充进来就可以了,无需关心设备的注册与反注册过程。 I2C client 即I2C设备。I2C设备的注册一般在板级代码中,在解析实例前还是先熟悉几个定义: 下面还是以adxl34x为例:

Linux_I2C设备驱动文件操作接口

I2C适配器驱动被作为一个单独的模块被加载进内核,在模块的加载和卸载函数中,只需注册和注销一个platform_driver结构体,如代码清单15.25。 代码清单15.25 S3C2410 I2C总线驱动模块加载与卸载 1 static int __init i2c_adap_s3c_init(void) 2 { 3 int ret; 4 5 ret = platform_driver_register(&s3c2410_i2c_driver); 6 if (ret == 0) { 7 ret = platform_driver_register(&s3c2440_i2c_driver); 8 if (ret) 9 platform_driver_unregister(&s3c2410_i2c_driver); 10 } 11 12 return ret; 13 } 14 15 static void __exit i2c_adap_s3c_exit(void) 16 { 17 platform_driver_unregister(&s3c2410_i2c_driver); 18 platform_driver_unregister(&s3c2440_i2c_driver);

—— 19 } 20 module_init(i2c_adap_s3c_init); 21 module_exit(i2c_adap_s3c_exit); platform_driver结构体包含了具体适配器的probe()函数、remove()函数、resume()函数指针等信息,它需要被定义和赋值,如代码清单15.26。 代码清单15.26 platform_driver结构体 1 static struct platform_driver s3c2410_i2c_driver = { 2 .probe = s3c24xx_i2c_probe, 3 .remove = s3c24xx_i2c_remove, 4 .resume = s3c24xx_i2c_resume, 5 .driver = { 6 .owner = THIS_MODULE, 7 .name = "s3c2410-i2c", 8 }, 9 }; 当通过Linux内核源代码/drivers/base/platform.c文件中定义platform_driver_unregister()函数注册platform_driver结构体时,其中probe指针指向的s3c24xx_i2c_probe()函数将被调用以初始化适配器硬件,如代码清单15.27。 代码清单15.27 S3C2410 I2C总线驱动中的s3c24xx_i2c_probe函数 1 static int s3c24xx_i2c_probe(struct platform_device *pdev)

相关文档