文档库 最新最全的文档下载
当前位置:文档库 › 几种频谱分析细化方法简介

几种频谱分析细化方法简介

几种频谱分析细化方法简介
几种频谱分析细化方法简介

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

第八章 选择带宽频谱分析技术(频率细化)

8. 选择带宽频谱分析技术(频率细化) 根据第三章数字频谱分析的理论,有限离散傅氏变换(DFT)总是获得()N f -0区间内的频率分量(N f 是Nyquisit 折叠频率)。当随机过程的信号样本的采样点数为N 时,在上述区间内的谱线数为N/2。则频率分辨率为 N f N f f s N == ?2 / 从上式可知,对于给定的采样点数N ,采样频率s f 越大时,f ?就越大,亦即分辨率就越低。 另一方面,由上式可能直接想到,对于给定的采样频率s f ,可以通过增加采样点数N ,提高频率分辨率f ?。但是,从第五章功率谱分析中我们知道,对于随机过程来说,功率谱的周期图估计方法的样本点数不宜过大,当N 过大时,周期图沿频率轴振荡的现象将加重。 综上所述,为了对感兴趣的选定频段作详细的考察,必须将这个局部频段内的频谱图像进行“局部放大”。因此,这种选择带宽频谱分析技术(Band-Selected Fourier Analysis, BSFA )也称为频率细化(ZOOM )技术。 频率细化分析技术经常用于模态分析、特征分析,以及故障诊断中。 常用的频率细化处理方法有频率移位法和相位补偿法。 8.1. 频率移位法 频率细化的频率移位法(频移法),也称为复调制滤波法。该方法的分辨率 可以达到很高(一般可以达到82倍),计算精度好且计算速度快,其基本原理如图所示。

频移法细化技术的基本原理是DFT 的频移性质。 被分析的信号经过抗混叠滤波后,进入A/D 采样,然后送入高分辨率分析的与处理器中,进行频移、低通数字滤波和二次重采样。 8.1.1. 频移 为了将感兴趣频段的下限频率移到0频位置,以便有可能将感兴趣频段放大到整个DFT 频率范围,首先需要对离散信号进行频率调制。 根据DFT 的频移性质,如果欲将某一频率移到0频率处,则在时域数字信号上,应乘以复数信号t n f j e ?-02π。通常,这种把时域信号移频的处理,也称之为 对时域信号进行复数调制,或者载波。经过调制后的信号是一个复数信号,实部 为 ??? ??=? ?? ? ???N n k x f N n f x n n 002cos 2cos ππ 虚部为 ??? ??-=? ?? ? ???-N n k x f N n f x n n 002cos 2cos ππ 式中,f ?对应于第一次采样的DFT 频率分辨率,而f f k ?=/00为对应的频率谱 线序号。进一步地,调制后的数字信号序列n x '可以采用指数函数表达为 t n f j n n k N n n e x W x x ?-=='002π 其中,在指数因子中,引入下标N 是为了以后区分不同采样点数的情况。 N j n k N e W π20-=

9种谱校正方法及matlab代码

9种谱校正方法及matlab 程序代码 采样间隔归一化成1T ?=,采样长度为N .这样FFT 离散谱线为0,1)i X i N =-(,相应的频率分辨率2/(1/)N f N ωπ?=?=. 设FFT 离散谱线局部极高谱线为m (为了数学上简洁,假定从0开始,注意在MATLAB 环境下数组实际操作的是从1开始),记频偏量δωδω=?. 我们需要使用谱线m 和与之相邻一条次高谱线,记这连续两条谱线中左边一条序号为M (当次高谱线在m 左侧时1M m =-,反之M m =). 下面列出若干算法的δ计算公式 1. 加矩形窗的精确谱校正[1] i i i X U jV =+ 111()sin()()cos()M M M M opt M M V V M U U M K U U ωω+++-?+-?=- 1211cos()sin()cos()sin()opt M M opt M M K M Z V U M K M Z V U M ωωωωωω++-???=+?????-?+???=+???+??? 2121 cos()cos()()Z M Z M M m Z Z ωωωδ?+?-?=+-- 2. 加矩形窗情形,采用解析单频模型的幅值比校正[1, 2] 11||()|||| M M M X M m X X δ++=+-+ 3. 加汉宁窗情形,采用解析单频模型的幅值比校正[1, 2] 112||||()|||| M M M M X X M m X X δ++-=+-+ 4. 加矩形窗情形,采用解析单频模型的复比值校正[3] 1 1Re ()M M M X M m X X δ++??=+- ?-?? 5. 加汉宁窗情形,采用解析单频模型的复比值校正[3] 112()M M M M X X M m X X δ+++=+-- 6. 加矩形窗情形,采用解析单频模型的复合复比值校正[3]

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

信号分析中的频率细化基本概念

研究数字频谱最有效方法通常是离散傅里叶变换。频率分辨率是指对两个相邻谱峰进行区分的能力,表现形式为频谱中能够分辨的两个频率分量的最小间隔。 在信号处理中,人们为了把整个频率范围内的某段重点频区局部放大,获得比整个频率范围的频率分辨率更高的频率分辨率,从而观察频谱中的细微部分。因此提出频谱细化这一课题。 考虑到数字信号分析中,虽然提高信号的采样频率可以改善信号分析的频率分辨率,但是提高信号的采样频率通常需要付出额外的硬件代价,往往受制于可实现性与成本问题而难以实现。因此,就需要使用频谱细化技术在尽可能低的采样频率下提高数字信号分析的频率分辨率的措施。 频谱细化的基本思路是对信号频谱中的某一频段进行局部放大,也即在某一频率附近局部增加谱线密度,实现选带频段分析。 常见的经典方法有:复调制细化法、Chirp-Z变换、FFT+FT细化法、DFT补零法等很多方法。 复调制细化法:又称为选带频率细化选带频谱分析,是20世纪70年代发展起来的。其传统的分析步骤为:移频(复调制)--低通滤波器--重抽样--FFT及谱分析--频率成分调整,因其物理概念非常明确,所以一直沿用至今。 FFT+FT细化法:该方法的原理本质是将连续傅里叶变换经过将积分化成求和、时域离散化和时域截断为有限长三个步骤变换得到时间离散、频率连续的特殊傅里叶变换形式。FF T+FT连续细化分析傅里叶变换法先用FFT做全景谱,再对指定的一个频率区间进行细化计算:先确定频率分辨率,再确定计算频率序列,最后用FT连续谱分析方法进行实部和虚部计算,合成幅值谱和相位谱。 Chirp-Z变换:最早提出于1969年,CZT是一种在Z平面上沿着螺旋线轨道计算有限时宽的Z变换方法。基本原理是在折叠频率范围内,任意选择起始频率和频率分辨率,在这有

基于频域的校正方法及实验设计

2016届毕业(设计)论文 题目基于频域的校正方法及实验设计 专业班级过程自动化 学号 1204160134 学生姓名于春明 第一指导教师陈杰 指导教师职称 学院名称电气信息院 完成日期: 2016年 5月 20日

基于频域的校正方法及实验设计 Correction Method and Experimental Design based on Frequency Domain 学生姓名于春明 第一指导教师陈杰

摘要 在经典控制理论中,系统校正设计,就是在给定的性能指标下,对于给定的对象模型,确定一个能够完成系统满足的静态与动态性能指标要求的控制器,即确定校正器的结构与参数。串联校正控制器的频域设计方法中,使用的校正器有超前校正器、滞后校正器、滞后-超前校正器等。超前校正设计方法的特点是校正后系统的截止频率比校正前的大,系统的快速性能得到提高,这种校正设计方法对于要求稳定性好、超调量小以及动态过程响应快的系统被经常采用。滞后校正设计方法的特点是校正后系统的截止频率比校正前的小,系统的快速性能变差,但系统的稳定性能却得到提高,因此,在系统快速性要求不是很高,而稳定性与稳态精度要求很高的场合,滞后校正设计方法比较适合。滞后-超前校正设计是指既有滞后校正作用又有超前校正作用的校正器设计。它既具有了滞后校正高稳定性能、高精确度的好处,又具有超前校正响应快、超调小的优点,这种设计方法在要求较高的场合经常被采用。 关键词:

ABSTRACT In classical control theory, system design correction, that is, given the performance for a given object model to determine a controller to complete the system meets the static and dynamic performance requirements, namely to determine the structure and corrector parameter. Frequency Domain controller series corrected using correction has lead corrector corrector lag lag - lead Corrector like. Features advanced design correction method is to correct the system cut-off frequency than the fast performance is improved before the correction is large, the system, this correction method for design requires good stability, small overshoot and dynamic process of rapid response systems are often use. Lag compensation design approach is characterized by system after correcting the cutoff frequency than the fast performance before correction is small, the system is deteriorated but stable performance of the system has improved, therefore, the system speed requirements are not high, and the stability and steady-state high precision of the occasion, lag compensation design method is more suitable. Lag - lead Corrector design means there are both lagging corrective action ahead of corrective action calibration designs. It has a lag correction high stability, high accuracy advantages, but also has the leading correction fast response, small overshoot of the advantages of this design approach in demanding situations are often used. Keywords:

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

频谱分析

2.1频谱分析原理 时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简单波形外,很难明确提示信号的频率组成和各频率分量大小,而频谱分析能很好的解决此问题。由于从频域能获得的主要是频率信息,所以本节主要介绍频率(周期)的估计与频谱图的生成。 2.2.1DFT与FFT 对于给定的时域信号y,可以通过Fourier变换得到频域信息Y。Y可按下式计算 式中,N为样本容量,Δt = 1/Fs为采样间隔。 采样信号的频谱是一个连续的频谱,不可能计算出所有的点的值,故采用离散Fourier变换(DFT),即 式中,Δf = Fs/N。但上式的计算效率很低,因为有大量的指数(等价于三角函数)运算,故实际中多采用快速Fourier变换(FFT)。其原理即是将重复的三角函数算计的中间结果保存起来,以减少重复三角函数计算带来的时间浪费。由于三角函数计算的重复量相当大,故FFT能极大地提高运算效率。 2.2.2 频率、周期的估计 对于Y(kΔf),如果当kΔf = 时,Y(kΔf)取最大值,则为频率的估计值,由于采样间隔的误差,也存在误差,其误差最大为Δf / 2。 周期T=1/f。 从原理上可以看出,如果在标准信号中混有噪声,用上述方法仍能够精确地估计出原标准信号的频率和周期,这个将在下一章做出验证 2.2.3 频谱图 为了直观地表示信号的频率特性,工程上常常将Fourier变换的结果用图形的方式表示,即频谱图。 以频率f为横坐标,|Y(f)|为纵坐标,可以得到幅值谱;

以频率f为横坐标,arg Y(f)为纵坐标,可以得到相位谱; 以频率f为横坐标,Re Y(f)为纵坐标,可以得到实频谱; 以频率f为横坐标,Im Y(f)为纵坐标,可以得到虚频谱。 根据采样定理,只有频率不超过Fs/2的信号才能被正确采集,即Fourier 变换的结果中频率大于Fs/2的部分是不正确的部分,故不在频谱图中显示。即横坐标f ∈[0, Fs/2] 2.5.运行实例与误差分析 为了分析软件的性能并比较时域分析与频域分析各自的优势,本章给出了两种分析方法的频率估计的比较,分析软件的在时域和频域的计算精度问题。2.5.1标准正弦信号的频率估计 用信号发生器生成标准正弦信号,然后分别进行时域分析与频域分析,得到的结果如图 4所示。从图中可以看出,时域分析的结果为f = 400.3702Hz,频域分析的结果为f = 417.959Hz,而标准信号的频率为400Hz,从而对于标准信号时域分析的精度远高于频域分析的精度。 2.5.2 带噪声的正弦信号的频率估计 先成生幅值100的标准正弦信号,再将幅值50的白噪声信号与其混迭,对最终得到的信号进行时域分析与频域分析,结果如图 5所示,可以看出,时域分析的结果为f = 158.9498Hz,频域分析的结果为f = 200.391Hz,而标准信号的频率为200Hz,从而对于带噪声的正弦信号频域分析的精度远高于时域分析的精度。 2.5.3 结果分析与结论

信号分析中的频率细化基本概念

频谱细化 - 研究背景 研究数字频谱最有效方法通常是离散傅里叶变换。频率分辨率是指对两个相邻谱峰进行区分的能力,表现形式为频谱中能够分辨的两个频率分量的最小间隔。 在信号处理中,人们为了把整个频率范围内的某段重点频区局部放大,获得比整个频率范围的频率分辨率更高的频率分辨率,从而观察频谱中的细微部分。因此提出频谱细化这一课题。 频谱细化 - 研究意义 考虑到数字信号分析中,虽然提高信号的采样频率可以改善信号分析的频率分辨率,但是提高信号的采样频率通常需要付出额外的硬件代价,往往受制于可实现性与成本问题而难以实现。因此,就需要使用频谱细化技术在尽可能低的采样频率下提高数字信号分析的频率分辨率的措施。 频谱细化 - 基本思路 频谱细化的基本思路是对信号频谱中的某一频段进行局部放大,也即在某一频率附近局部增加谱线密度,实现选带频段分析。 频谱细化 - 常见方法 常见的经典方法有:复调制细化法、Chirp-Z变换、FFT+FT细化法、DFT补零法等很多方法。 复调制细化法:又称为选带频率细化选带频谱分析,是20世纪70年代发展起来的。其传统的分析步骤为:移频(复调制)--低通滤波器--重抽样--FFT及谱分析--频率成分调整,因其物理概念非常明确,所以一直沿用至今。 FFT+FT细化法:该方法的原理本质是将连续傅里叶变换经过将积分化成求和、时域离散化和时域截断为有限长三个步骤变换得到时间离散、频率连续的特殊傅里叶变换形式。FF T+FT连续细化分析傅里叶变换法先用FFT做全景谱,再对指定的一个频率区间进行细化计算:先确定频率分辨率,再确定计算频率序列,最后用FT连续谱分析方法进行实部和虚部计算,合成幅值谱和相位谱。

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

多种频谱校正方法及matlab代码

多种频谱校正方法 采样间隔归一化成1T ?=,采样长度为N .这样FFT 离散谱线为0,1)i X i N =-(,相应的 频率分辨率2/(1/)N f N ωπ?=?=.设FFT 离散谱线局部极高谱线为m (为了数学上简洁,假定从0开始,注意在MATLAB 环境下数组实际操作的是从1开始),记频偏量δωδω=?.我们需要使用谱线m 和与之相邻一条次高谱线,记这连续两条谱线中左边一条序号为M (当次高谱线在m 左侧时1M m =-,反之M m =). 下面列出若干算法的δ计算公式 1.加矩形窗的精确谱校正[1] i i i X U jV =+111()sin()()cos() M M M M opt M M V V M U U M K U U ωω+++-?+-?=-1211cos()sin()cos()sin()opt M M opt M M K M Z V U M K M Z V U M ωωωωωω++-???=+???? -?+???=+???+??? 2121 cos()cos()()Z M Z M M m Z Z ωωωδ?+?-?=+--2.加矩形窗情形,采用解析单频模型的幅值比校正[1,2]11||()||||M M M X M m X X δ++= +-+3.加汉宁窗情形,采用解析单频模型的幅值比校正[1,2] 112||||()|||| M M M M X X M m X X δ++-=+-+4.加矩形窗情形,采用解析单频模型的复比值校正[3] 11Re ()M M M X M m X X δ++??=+- ?-?? 5.加汉宁窗情形,采用解析单频模型的复比值校正[3] 112()M M M M X X M m X X δ+++=+--6.加矩形窗情形,采用解析单频模型的复合复比值校正[3]

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

几种频谱分析报告细化方法简介

高分辨率频谱分析算法实现 【摘要】随着电子技术的迅速发展,信号处理已经深入到很多的工程领域,信号频域的特征越来越受到重视。在信号通信、雷达对抗、音频分析、机械诊断等领域,频谱分析技术起到很大的作用。基于数字信号处理(DSP)技术的频谱分析,如果采用传统的快速傅里叶(FFT)算法则只能比较粗略的计算频谱,且分辨率不高;但是采用频谱细化技术就能对频域信号中感兴趣的局部频段进行频谱分析,就能得到很高的分辨率。常见的方法有基于复调制的ZoomFFT 法、Chirp-Z 变换、Yip-ZOOM 变换等,但是从分析精度、计算效率、分辨率、灵活性等方面来看,基于复调制的ZoomFFT 方法是一种行之有效的方法。实验结果表明该方案具有分辨率高、速度快的特点,具有较高的工程应用价值。 【关键字】频谱分析;频谱细化;Z变换

【Abstract】With the rapid development of electrical technology, signal processing has been widely used in many engineering fields and special attention has been paid to the characteristic of signal frequency. The spectrum analyzer technology takes a great part in the fields like signal communication, rador countermeasures, audio analysis, mechanism diagnose. Based on digital signal processing (DSP) technology, the spectrum analysis system, while the use of the fast Fu Liye traditional (FFT) algorithm can calculate the frequency spectrum is rough, and the resolution is not high; but using spectrum zoom technique can analyze the frequency spectrum of the local frequency segment interested in frequency domain signal, can get very high resolution. A common method of complex modulation ZoomFFT method, Chirp-Z transform, Yip-ZOOM transform based on, but from the analysis accuracy, computational efficiency, resolution, spirit Active perspective, Zoom-FFT method based on the polyphonic system is a kind of effective method. Simulation results show that this method is featured by high resolution and high speed, and has high application value. 【Key words】signal processing; spectrum analysis; spectrum zooming; Z-transformation

频谱分析

频谱分析 利用傅里叶变换的方法对振动的信号进行分解,并按频率顺序展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析。 怎样进行频谱分析: 利用频谱分析仪进行测量,输入信号不能有失真,因此要按特定应用的要求设置频谱分析仪和优化测量步骤,以达到最好的技术指标。下面的测量提示对这些步骤有详细的说明。 1. 选择最好的分辨率带宽 (RBW) 必须认真考虑分辨率带宽 (RBW)的设置,因为他关系到频谱成分的分离,适宜的噪声基底的设置和信号的解调。 通过低电平信号的测量,可以看到使用窄RBW的优点。在使用窄RBW时,频谱分析仪显示出较低的平均噪声级 (DANL),且动态范围增加,灵敏度有所改进。在图3中,把RBW从100kHz改变到10kHz 将能更好地分辨-95dBm的信号。 但并非任何情况都是最窄的RBW最好。对于调制信号,RBW一定要设置得足够宽,使它能将信号边带包括在内。如果忽略这一点,测量将是极不精确的。窄RBW设置的一项重要缺点是扫频速度。更宽的RBW设置在给定频率范围内允许更快的扫频。图4和图5比较了在200MHz频率范围内,10kHz和 3kHzRBW的扫频时间。 一定要知道RBW 选择时所必须的基本权衡因素,使得用户在明白哪些参数最为重要的时候,给以适当的优化。但在权衡不可避免时,

现代频谱分析仪可为您提供弱化,甚至消除这些因素的方法。通过使用数字信号处理,频谱分析仪在实现更精确的测量的同时还提供更高的速度,即使是使用窄RBW。 2. 改进测量精度 在进行任何测量前,必须了解有哪些可以改进幅度和频率测量精度的技术。 自校准功能可用来产生误差校正系数 (例如幅度改变—分辨率带宽),分析仪随后用它校正测量数据,得到更好的幅度测量结果,并使您能在测量过程中更灵活地改变控制。 当被测装置接到经校准的分析仪时,信号传输网络可能会使感兴趣信号减弱或变形,必须在测量中排除这一影响,见图6。一种方法是使用分析仪的内置幅度校正功能,一个信号源以及一个功率表。图7给出了一个对DUT信号产生衰减的信号传输网络的频率响应。为消除这一有害效应,可在测量范围内若干存在问题的频率点上测量信号传输网络的衰减或增益。幅度校正给出频率—幅度表,用直线连接这些点得到“校正”波形,然后按这些校正值对输入信号进行偏置。在图8 中,信号传输网络不需要的衰减和增益已从测量中消除,

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

频谱分析仪at5010使用方法

频谱分析仪 Spectrum Analyzer 系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer). 即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time). 最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系. 影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. (9)中频带宽选择(400kHz、20kHz):选在20kHz带宽时,噪声电平降低,选择性提高,能分隔开频率更近的谱线。此时,若扫频宽度过宽,则由于需要更长的扫描时间,从而造成信号过渡过程中信号幅度降低,使测量不正确。此时“校准失效”LED发亮即表明这一点。 (10)视频滤波器选择(VIDEOFILTER):可用来降低屏幕上的噪声,它使得正常情况下,平均噪声电平刚好高出其信号(小信号)谱线,以便于观察。该滤波器带宽是4kHz。 (11)Y移位调节(Y-POS):调节射速垂直方向移动。 (12)BNC 5011输入端口(1NPUT 5011):在不用输入衰减时,不允许超出的最大允许输入电压为+25V(DC)和十10dBm(AC)。当加上40dB最大输入衰减时,最大输入电压为+20dBm。 (13)衰减器按钮:输入衰减器包括有4个10dB衰减器,在信号进入第一混频器之前,利用衰减器按钮可降低信号幅度。按键压下时衰减器接人。

相关文档
相关文档 最新文档