文档库 最新最全的文档下载
当前位置:文档库 › 信噪比的定义

信噪比的定义

信噪比的定义
信噪比的定义

什么是启发式算法

引言:

解决实际的问题,要建模型,在求解。求解要选择算法,只有我们对各种算法的优缺点都很熟悉后才能根据实际问题选出有效的算法。但是对各种算法都了如指掌是不现实的,但多知道一些,会使你的选择集更大,找出最好算法的概率越大。现在研一,要开题了些点文献综述,愿与大家分享。

大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律,

也有来自人类积累的工作经验。

启发式算法的发展:

启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,取得了巨大的成就。

40年代:由于实际需要,提出了启发式算法(快速有效)。

50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。

60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规

模的问题仍然无能为力(收敛速度慢)。

启发式算法的不足和如何解决方法:

(水平有限仅仅提出6点)

启发式算法目前缺乏统一、完整的理论体系。

很难解决!启发式算法的提出就是根据经验提出,没有什么坚实的理论基础。

由于NP理论,启发式算法就解得全局最优性无法保证。

等NP?=P有结果了再说吧,不知道这个世纪能不能行。

各种启发式算法都有个自优点如何,完美结合。

如果你没有实际经验,你就别去干这个,相结合就要做大量尝试,或许会有意外的收获。

启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。

还是那句话,这是经验活但还要悟性,只有try again………..

启发算法缺乏有效的迭代停止条件。

还是经验,迭代次数100不行,就200,还不行就1000…………

还不行估计就是算法有问题,或者你把它用错地方了………..

启发式算法收敛速度的研究等。

你会发现,没有完美的东西,要快你就要付出代价,就是越快你得到的解也就远差。

其中(4)集中反映了超启发式算法的克服局部最优的能力。

虽然人们研究对启发式算法的研究将近50年,但它还有很多不足:

1.启发式算法目前缺乏统一、完整的理论体系。

2.由于NP理论,各种启发式算法都不可避免的遭遇到局部最优的问题,如何判断

3.各种启发式算法都有个自优点如何,完美结合。

4.启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。

5.启发算法缺乏有效的迭代停止条件。

6.启发式算法收敛速度的研究等。

70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没

有全局最优性。

由此必须引入新的搜索机制和策略………..

Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的

兴趣。

80年代以后:

模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌

搜索(Tabu Search)相继出现。

最近比较热或刚热过去的:

演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

各个算法的思想这就不再详细给出(以后会给出一些,关注我的blog),为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。这里要说明的是:启发式算法得到的解只是近似最优解(近似到什么程度,只有根据具体问题才能给出). 二十一世纪的最大的数学难题NP?=P,如果NP=P启发式算法就不在有存在的意义。

优胜劣汰是大自然的普遍规律,它主要通过选择和变异来实现。选择是优化的基本思想,变异(多样化)是随机搜索或非确定搜索的基本思想。“优胜劣汰”是算法搜索的核心,根据“优胜劣汰”策略的不同,可以获得不同的超启发式算法。超启发式算法的主要思想来自于人类经过长期对物理、生物、社会的自然现象仔细的观察和实践,以及对这些自然现象的深刻理解,逐步向大自然学习,模仿其中的自然现象的运行机制

而得到的。

遗传算法:是根据生物演化,模拟演化过程中基因染色体的选择、交叉和变异得到的算法。在进化过程中,

较好的个体有较大的生存几率。

模拟退火:是模拟统计物理中固体物质的结晶过程。在退火的过程中,如果搜索到好的解接受;否则,以一定的概率接受不好的解(即实现多样化或变异的思想),达到跳出局部最优解得目的。

神经网络:模拟大脑神经处理的过程,通过各个神经元的竞争和协作,实现选择和变异的过程。

禁忌搜索:模拟人的经验,通过禁忌表记忆最近搜索过程中的历史信息,禁忌某些解,以避免走回头路,

达到跳出局部最优解的目的。

蚂蚁算法:模拟蚂蚁的行为,拟人拟物,向蚂蚁的协作方式学习。

这几种超启发式算法都有一个共同的特点:从随机的可行初始解出发,才用迭代改进的策略,去逼近问题

的最优解。

他们的基本要素:(1)随机初始可行解;

(2)给定一个评价函数(常常与目标函数值有关);

(3)邻域,产生新的可行解;

(4)选择和接受解得准则;

(5)终止准则。

计算机科学的两大基础目标,就是发现可证明其执行效率良好且可得最佳解或次佳解

的算法。而启发式算法则试图一次提供一或全部目标。例如它常能发现很不错的解,

但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知

道它是否每次都可以这样的速度求解。

有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据结构,也许永远不会在现实世界出现。因此现实世

界中启发式算法很常用来解决问题。启发式算法处理许多实际问题时通常可以在合理

时间内得到不错的答案。

有一类的通用启发式策略称为元启发式算法(metaheuristic),通常使用乱数搜寻

技巧。他们可以应用在非常广泛的问题上,但不能保证效率。

启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算

法求得该问题每个实例的最优解。启发式算法可以这样定义:

一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出

待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度不一定

事先可以预计

大论文配电网先进无功补偿装置及其协调运行研究作者:陈栋

小论文无功补偿装置的现状和发展趋势作者:张刘春

重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过

程又是塞瓦定理的特例。

重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三

角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶

点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点。

1:什么是信噪比啊?它的单位dB是什么单位啊?是大好还是小好啊??????

信噪比---指音源产生最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以“SNR”或“S/N”表示,一般用分贝(dB)为单位,信噪比越高越好。通常的HIFI器材信噪比在90db以上.

信噪比S/N指信号中原有部分和由于设备自身、环境干扰等原因造成的噪声的比例。信号和噪声分别用电

平表示,单位是Vrms或mVrms。

信噪比的单位是dB,计算公式是SN=20LOG(Vs/Vn)(不计权),其中Vs是信号电平,Vn是噪声电

平。采用对数计算是由于人耳的响度特性具有对数特征。

信噪比越大,说明系统的噪声和信号的差距越大,系统的特性就越好。

另:所谓计权,是一种统计方法,这里的计权是指将噪声中人耳更敏感的频率部分多算一些,不敏感的就

少计一些。例如同样是不计权,噪声为1KHz和噪声为100KHz对人耳的感觉是完全不同的。100KHz的

噪声即使很大在计权计算中仍会忽略不计,因为人根本就听不到这个频率的声音,从音频概念来说,100K

Hz的声音的“权”重几乎为0。由于标明信噪比的目的是为给使用者提供一个听觉参考,因此现在大多数音

响设备中标明的信噪比都是计权的。

增益单位db,分贝(decibel)

dB 就是分贝,是一个比值表述形式,与此类似的还有ppm(百万分之一),都不是单位,但工程上有以此标定物理测定量大小的习惯。

dB 有两个定义方式——1.描述能量,即dB = 10lg(P/Po)表明功率P相对于基本功率Po的分贝数;2.描述幅度,即dB = 20lg(A/Ao),表明幅度A相对于基本幅度Ao的分贝数。

天线增益显然可以描述成输出电压与输入感应电压之比,可以采用分贝(dB)描述,还有声强也使用分贝描述。

实际上,电路的放大倍数、衰减率、传输系数....都是使用分贝描述。

dB 是物理学和工程上经常使用的“相对单位”,其表达的是相对标准的对数比例关系。习惯上,强度或者幅度的相对比值,采用20倍以10为底的对数,能量比则为10倍。比如:放大器的电压放大倍数,可以描述为20lg(Vo/Vi) dB,而功率放大倍数则为10lg(Po/Pi) ddB是电功率或声强的相对量度单位。以某功率或声强除以参考电功率或声强之商的常用对数表示,使用中这个单位太大,除以10,称为《分贝》,符号为dB,dB=10lg(Po/Pi) dB,或dB=20lg(某电压或电流/参考电压或电流)。常见符号是dBm是表示1毫瓦功率为参考功率的分贝数

2:无标度网络

scale - free network, 现实世界的网络大部分都不是随机网络,少数的节点往往拥有大量的连接,而大部分节点却很少,一般而言他们符合zipf定律,(也就是80/20马太定律)。人们给具有这种性质的网络起了一个特别的名字——无标度网络。这里的无标度是指网络缺乏一个特征度值(或平均度值),即节点度值的波动范围相当大。

什么是随机图理论

字体大小:大- 中- 小zmdxyboyandy发表于06-11-08 20:10 阅读(1798) 评论(6)

在研究复杂网络中,研究者使用的主要工具就是随机图理论。该理论创始于上个世纪40年代。由Erdos 等人创立。最早提出的经典随机图模型就是ER模型。在随机图中,边的出现成为概率事件。随机图和经典图之间最大的区别在于引入了随机的方法,使得图的空间变得更大,其数学性质也发生了巨大的变化,在随机图的经典数学模型中,随机图上的结点度数分布服从泊松分布。经过长达60多年的研究,最近由圣塔非的M.E.J Newman等人将随机图中的度数分布扩展到任意度数分布,我们称之为"广义随机图",这使

得对复杂网络的研究有了进一步的深入。虽然我觉得广义随机图理论在解决power-law问题上仍然存在这一定的缺陷。但是至少它在仿真上已经被证实了。

分布式是一种模型结构,区别于核心式,可以从字面理解为“分布在各处”

分布式的目标是降低单个对象的重要度,从而提升整个系统的性能(稳定性,计算能力等等),不过代价是增加了数据传输量

举个例子你就明白了:

假如中国专门造了一台超级电脑,用来计算天气预报的数据,然后所有的电视台都从这台电脑获取数据,然后播放天气预报。那么这种模式就是核心式的,这台电脑处于核心位置,如果这台电脑坏了,不能工作了,那么所有电视台的天气预报都不能进行了。

现在这样设计,每个省各自出一台普通电脑,然后这些电脑联合工作,一起计算天气预报,虽然每台电脑的计算能力远没有那台超级电脑强,但是它们协同工作,即使某台或者某几台电脑坏了,计算仍然能继续(坏了的那几台的计算工作将会转移到其他电脑上)。这样就降低了每台电脑的重要程度,使得天气预报系统更加稳定,不过这些电脑之间的协调就比较复杂了。

你所说的雷达的分布式也跟这个例子差不多

ad信噪比分析及高分辨率

在雷达、导航等军事领域中,由于信号带宽宽(有时可能高于10MHz),要求ADC的采样率高于30MSPS,分辨率大于10位。目前高速高分辨率ADC器件在采样率高于10MSPS 时,量化位数可达14位,但实际分辨率受器件自身误差和电路噪声的影响很大。在数字通信、数字仪表、软件无线电等领域中应用的高速ADC电路,在输入信号低于1MHz时,实际分辨率可达10位,但随输入信号频率的增加下降很快,不能满足军事领域的使用要求。 针对这一问题,本文主要研究在不采用过采样、数字滤波和增益自动控制等技术条件下,如何提高高速高分辨率ADC电路的实际分辨率,使其最大限度地接近ADC器件自身的实际分辨率,即最大限度地提高ADC电路的信噪比。为此,本文首先从理论上分析了影响ADC信噪比的因素;然后从电路设计和器件选择两方面出发,设计了高速高分辨率ADC电路。经实测表明,当输入信号频率为0.96MHz时,该电路的实际分辨率为11.36位;当输入信号频率为14.71MHz日寸,该电路的实际分辨率为10.88位。 1 影响ADC信噪比因素的理论分析 ADC的实际分辨率是用有效位数ENOB标称的。不考虑过采样,当满量程单频理想正弦波输入时,实际分辨率可用下式表示: ENOB=[SINA0(dB)-1.76]/6.02 (1) 式中,SINAD表示ADC的信噪失真比,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(包括谐波分量,但不包括直流允量)的总有效值之比。 ADC的信噪比SNR,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(不包括直流分量和谐波分量)总有效值之比。

几类信号信噪比的计算_百度上传

1,确知信号的信噪比计算 这里的“确知信号”仅指信号的确知,噪声可以是随机的。某些随机信号,例如幅度和相位随机的正弦波,如果能够准确估计出它的相位和幅度等参数也可以认为是“确知信号”。 接收到的确知信号通过减去确知信号的方法得到噪声电压或电流,高斯噪声的数学期望为0,方差除以或乘上电阻得到噪声功率。确知信号的大小的平方的积分除以或乘上电阻得到信号功率。信噪比等于这两个功率相除,因此可以不用考虑电阻的大小。 clear all; clc; SIMU_OPTION = 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1, deterministic signal snr calc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==1) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); wgn = signal_wgn - signal; snr_db_calc = 10*log10(var(signal)/var(wgn)) end

2,随机信号的信噪比计算 2.1,窄带信号加宽带噪声的信噪比计算 可以使用周期图FFT方法,即得到信号加噪声的功率谱,利用信号和噪声的频率特性,通过积分的方法将信号和噪声的功率计算出来,这样就得到信噪比。窄带信号是相对整个信号频率带而言。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2, sin signal + white gauss noise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==2) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); signal_wgn_fft = fft(signal_wgn); signal_wgn_psd = (abs(signal_wgn_fft)).^2 / SAM_LEN; signal_wgn_psd_db = 10*log10(signal_wgn_psd); signal_wgn_psd = signal_wgn_psd(1:SAM_LEN/2); snr_db_calc = 10*log10(max(signal_wgn_psd)/(sum(signal_wgn_psd)-max(signal_wgn_psd) )) end

GPS的信噪比很高 定位时间却很长 排查之道

1.C/N值衡量的是你Rx Noise Figure能压多低不代表你定位速度就会快 换句话说有可能相关例如改变手握位置天线效率好定位速度就快我猜此时Wireless的C/N值应该有比较好 但也可能不相关就像你C/N有42 但反而定不到位 2. 但有一点肯定就是定位速度跟频偏量有关频偏量大定位速度就慢过大甚至会定不到位所以X’TAL就成了重要关键 3. 所以可以把X’TAL上方的Shielding Cover拔掉看看减少寄生效应 看定位速度会不会比较快因为可能测板端时 Shielding Cover的高度还算足够所以不会有严重的寄生效应 但是测Wireless时整机组起来 Housing往下挤压Shielding Cover的高度被压缩寄生效应变大 以至于Wireless的定位时间变慢 4. X’TAL的校正除了靠高通的XTT之外 跟基地台连接时X’TAL也会做自我校正 所以那些定位速度慢的Sample 可以先插Test Sim去跟CMW 500连接让他们做完自我校正之后看定位速度会不会快一点

5. 早期高通平台有一组NV 可以调负载电容值 NV_XO_TRIM_VALUES_I 可以调看看因为负载电容值会影响频偏量 6. 把Fail sample吹凉再去测因为X’TAL对温度很敏感 所以Shielding Cover拔掉若有改善另一个解释是加强散热 以致于频偏小了那当然定位速度就快 7. X’TAL本身来料有问题 若是这原因理论上应该板端的定位速度就会慢了 不会到Wireless才变慢 而且应该GSM / WCDMA / LTE的Frequency Error也会比较大可先确认是否PCB就无法定位了

误码率和信噪比

摘要:比特误码率(RBE)是衡量一个通信系统优劣的重要指标之一。对如何利用System View仿真软件测试和生成一个通信系统的RBE测试曲线的实例进行了研究,并对此次仿真过程中的关键问题加以论述。 关键词:比特误码率;BCH码;卷积码;仿真 2误码率测试仿真原理及其仿真的关键问题 2.1误码率测试仿真原理 在仿真系统中,信道模拟成一个高斯噪声信道(AWGN),输入信号经过AWGN信道后在输出端进行硬判断,当带有噪声的接收信号大于判决电平时,输出判为1,此时的原参照信号如果为0,则产生误码。 为了便于对各个系统进行比较,通常将信噪比用每比特所携带的能量除以噪声功率谱密度来表示,即Eb/N0,对基带信号,定义信噪比为: 这里的A为信号的幅度(通常取归一化值),R=1/T是信号的数据率。在仿真过程中,为了能得到一个通信系统的RBE曲线,通常需要在信号源或噪声源后边加入一个增益图符来控制信噪比的大小,System View仿真时应用此种方法(在噪声源后面加入增益图符)。受控的增益图符需要在系统菜单中设置全局关联变量,以便每一个测试循环完成后将系统参数改变到下一个信噪比值,全局关联变量的设置方法在下述内容中介绍。 2.2全局关联变量的设置 当一个高斯噪声信道的RBE测试模型设置基本完毕后,并不能绘出完整正确的RBE/RSN 曲线,还必须将噪声增益控制与系统循环次数进行全局变量关联,使信道的信噪比(RSN)由0 dB开始逐步加大,即噪声逐步减小,噪声每次减小的步长与循环次数相关。设置的方法是:单击System View主菜单中的“Tools”选项,选择“Global Parameter Links”,这时出现如图1所示参数设置栏,在“Select System Token”中选择要关联的全局变量,图中选择了Gain 图符,如果设定每次循环后将信噪比递增1 dB,即噪声减小1 dB,则应在算术运算关系定义栏“Define Algebraic Relation F[Gi,Vi]”内将F[Gi,Vi]的值设置为-c1,这里c1为系统变量“Current System Loop”的系统循环次数。 2.3设置系统仿真时间 在进行系统仿真之前首先必须对定时参数进行设置,系统的定时设定直接影响着系统仿真的效果甚至仿真结果的正确性。同时,定时参数的设置也直接影响系统仿真的精度,因此选取定时参数必须十分的注意,这也是初学者应重点掌握的内容,采样速率过高增加仿真的时间,过低则有可能得不到正确的仿真结果。单击设计窗口工具栏上的系统定时按钮则弹出系统定时设定窗口。 在进行定时窗口设置时要注意以下几点:

信噪比

信噪比 来自维基 信噪比(通常简写为SNR 或S/N )是科学和工程中常用的衡量信号受噪声干扰程度大小的物理量,定义为信号功率和噪声功率的比值。如果该比值大于1:1,说明信号比噪声强。信噪比不仅经常被用来衡量电信号,而且可以被用来衡量任何形式的信号(例如冰核间的同位素水平和细胞间的同位素信号)。 在非专业领域,信噪比比较了有用信号水平(例如音乐)和背景噪声水平。比值越高,背景噪声越平缓。 信噪比有时还用于表示通信或信息交流中有用信息和错误的或不相关信息的比值。例如,在线论坛或其他在线社区中,偏离话题的邮件和垃圾邮件就被当作是扰乱正常讨论信号的噪声。 1. 定义 信噪比定义为信号(有用信息)和背景噪声(不希望的信号)的功率比: signal noise P SNR P = 这里P 是平均功率。信号和噪声功率必须在系统相同的或等效的点上衡量,并且要在相同的系统带宽之内。如果信号和噪声的阻抗相同,那么信噪比可以通过计算幅度平方的比值来获得: 2 signal signal noise noise P A SNR P A ??== ??? 这里A 是均方根(RMS )幅度(例如,均方根电压)。由于很多信号的动态范围很宽,信噪比经常用对数分贝值表示。信噪比的分贝值定义为 10,,10log signal dB signal dB noise dB noise P SNR P P P ??==- ??? 也可以用幅度比等效地写作 2101010log 20log signal signal dB noise noise A A SNR A A ????== ? ????? 信噪比的概念和动态范围紧密相关。动态范围衡量了信道中的最大不失真信号和最小可检测信号的比值,该比值大部分是用来衡量噪声水平的。信噪比衡量了任意的信号水平(不必是大部分可能的强信号)和噪声的比值。衡量信噪比需要选

什么是信噪比详解

信噪比详解 定义 信噪比,即SNR(Signal to Noise Ratio)又称为讯噪比,狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 解析 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于M P3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(d B)。对于播放器来说,该值当然越大越好。 目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。 指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB 以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。 以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。

高频电路信噪比定义及其抑制措施

信噪比指标及测试方法?对于噪声抑制手段 “信噪比”指的是信号电压对于噪声电压的比值,通常用符号S/N来表示。由于在一般情况下,信号电压远高于噪声电压,比值非常大,因此,实际计算摄像机信噪比的大小通常都是对均方信号电压与均方噪声电压的比值取以10为底的对数再乘以系数20,单位用dB表示。一般摄像机给出的信噪比值均是在AGC (自动增益控制)关闭时的值,因为当AGC接通时,会对小信号进行提升,使得噪声电平也相应提高。CCD摄像机信噪比的典型值一般为45dB~55dB。 可在放大电路末端采用高精度噪声计测量,也可采用软件将A/D转换数据通过采样计算实现。 对噪声的抑制应从前向通道原理设计、软件设计、PCB设计、接线设计等方面入手。 原理设计应从电源噪声抑制、多级放大器设计、滤波设计考虑。1)电源噪声抑制:首先主电源应将100Hz以下接近工频干扰的噪声滤除,其次采用多路电源分别供电设计,区分数字电路、驱动电路、模拟电路、前置级小信号放大电路,小信号电路应采用多级滤波滤除各频段的高频噪声信号。2)采用低噪声多级放大电路,可以避免电源噪声和系统噪声的从一次前置放大器的一次放大,提高信噪比,另外尽量采用差分输入输出,降低共模干扰。3)系统噪声主要是高频噪声,传感器端也经常形成各种非信号频段的高低频干扰,应在前向通道电路适当添加各种高Q值信号滤波电路。4)另外一些专项电路常采用专用抗干扰设计,例如:CCD前向通道的相关双取样电路。 软件设计比较容易实现各频段的高Q值滤波,同时有些干扰信号与有效信号频段、幅值近似时,可采用软件算法实现去除干扰杂波并进行有效波形的拟合补偿,以保证整机的性能指标。 PCB设计主要是电磁兼容设计,主要从布局开始,将强弱信号电路,数字模拟电路尽量隔离分开,方便分开布线,电源/地线应分别布线,最后汇集在总电源,弱信号电路应尽量靠近总电源,弱信号线应尽量短、尽量加地线隔离,依据信号频段的不同合理选择信号线和电源线的宽度,并合理选择添加屏蔽罩。 接线设计应尽量合理走线,将强信号线与弱信号线隔离,弱信号线应尽量端并适当加屏蔽,并合理屏蔽接地。 另外在结构设计时应尽量采用常规电磁兼容、防静电设计手段,尽量将接口按强弱信号电路隔离设计,以方便PCB设计和接线设计。

信噪比 - 概念

信噪比-概念 信噪比 信噪比的概念 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率比噪音功率大80dB。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。 它也指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB以上,高档的更可达110 dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB 的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。 信噪比-意义

信噪比 信噪比的概念 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率比噪音功率大80dB。信噪比数值越高,噪音越小。 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。 它也指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB以上,高档的更可达110 dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB 的音箱不建议购买,而低音炮70dB的低音炮同样原因不建议购买。

音频信噪比

音频信噪比 音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号强度的比值。当信噪比低,小信号输入时噪音严重,在整个音域的声音明显变得浑浊不清,不知发的是什么音,严重影响音质。信噪比的大小是用有用信号功率(或电压)和噪声功率(或电压)比值的对数来表示的。这样计算出来的单位称为“贝尔”。实用中因为贝尔这个单位太大,所以用它的十分之一做计算单位,称为“分贝”。对于便携式DVD来说,信噪比至少应该在70dB(分贝)以上,才可以考虑。 信噪比,即SNR(Signal to Noise Ratio),又称为讯噪比。狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。 信噪比的测量及计算 通过计算公式我们发现,信噪比不是一个固定的数值,它应该随着输入信号的变化而变化,如果噪声固定的话,显然输入信号的幅度越高信噪比就越高。显然,这种变化着的参数是不能用来作为一个衡量标准的,要想让它成为一种衡量标准,就必须使它成为一个定值。于是,作为器材设备的一个参数,信噪比被定义为了“在设备最大不失真输出功率下信号与噪声的比率”,这样,所有设备的信噪比指标的测量方式就被统一起来,大家可以在同一种测量条件下进行比较了。信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了。Ps和Pn分别是信号和噪声的有效功率,根据SNR=10LG(Ps/Pn)也可以计算出信号比。 这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到。因此就引入了一个“权”的概念。这是一个统计学上的概念,它的核心思想是,在进行统计的时候,应该将有效的、有用的数据进行保留,而无效和无用的数据应该尽量排除,使得统计结果接近最准确,每个统计数据都由一个“权”,“权”越高越有用,“权”越低就越无用,毫无用处的数据的“权”为0。于是,经过一系列测试和研究,科学家们找到了一条“通用等响度曲线”,这个曲线代表的是人耳对于不同频率的声音的灵敏度的差异,将这个曲线引入信噪比计算方法后,先兆比指标就和人耳感受的结果更为接近了。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 总谐波失真(THD) 信号的失真情况,通常使用THD也就是总谐波失真来表示,总谐波失真是指用信号源输入时,输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,它通常用百分数来表示,也可以用dB来表示。在正常工作的情况下,输出信号中总的谐波电压有效值与总输出信号的电压有效值之比。所有附加谐波电平之和称为

有关信噪比计算方法

计算方法 软件根据最新的美国、欧洲和日本药典计算信噪比,公式如下 s/n = 2h/hn 其中 h = 与组分对应的峰高 hn = 在等于半高处峰宽的至少五倍 (USP) 或 20 倍(EP 和 JP)的距离内,观测到 的最大与最小噪音值之间的差值,并且,此段距离以空白进样的目标峰区域为中心。 可以指定是否使用处理方法的“适应性”选项卡中的“计算 USP、 EP 和 JP s/n”(以前为“计算 EP s/n”)复选框计算 USP、 EP 和 JP s/n。 也可以指定是否使用由空白进样中的峰区域计算的噪音值计算 USP s/n、EP s/n 和 JP s/n。每个峰的噪音区是唯一的。通过在各个峰的保留时间处将噪音区居中的相应空白进样来确定噪音区。指定半高处乘子参数,从而定义噪音区。 USP s/n 新的适应性峰字段 USP s/n 使用“美国药典”中的信噪比 (s/n) 公式计算。 USP s/n 计算 公式如下 2 峰高/ (噪音/缩放) 其中: 峰高 = 峰高的绝对值 噪音 = 峰的噪音值(峰到峰噪音) 缩放 = “缩放到微伏”值 缺省情况下,软件将 USP s/n 值报告为 6 位精度,不采用科学计数法也没有单位。 用于计算 USP s/n 的噪音值将根据“使用空白进样中位于峰区域内的噪音”选项的状态来确定: ?选中该选项时,软件用空白进样中所确定的峰到峰噪音计算每个峰的噪音值。该值针 对单个空白进样的相同通道中的区域进行计算。此区域以峰保留时间为中心,宽度等 于半高处峰宽乘以 USP 噪音区的半高处乘子值。软件在结果中将此噪音值报告为 USP 噪音。缺省情况下,软件将该值报告为 6 位精度,不采用科学计数法,单位为 “图单位”。 ?清除该选项后,软件将使用结果的峰到峰噪音值;不使用空白进样计算噪音。在处理 方法的“噪音和漂移”选项卡中,指定此区域的开始和结束时间。 在处理方法的“适应性”选项卡上,“USP s/n 噪音区的半高处乘子”字段的范围在 1 到99 之间,缺省为 5。当清除“使用空白进样中位于峰区域内的噪音”选项,并且药典选择为 JP 或 EP 时,该字段禁用。 EP s/n EP s/n 适应性峰字段使用“欧洲药典”中的信噪比 (s/n) 公式进行计算。 EP s/n 计算公式 如下 2 . (峰高 - (0.5 . 噪音/缩放))/(噪音/缩放) 其中: 峰高 = 峰高的绝对值 噪音 = 峰的噪音值(峰到峰噪音) 缩放 = “缩放到微伏”值 缺省情况下,软件将 EP s/n 值报告为 6 位精度,不采用科学计数法也没有单位。

7第七章 信噪比的计算

计算信噪比 计算信噪比 “浏览项目”中选择欲浏览数据所在的项目,然后单击“确定”,进入该项目。在“通道”选项卡中选择欲处理的数据,单击(查看)打开。“查看”键 “通道”选项卡,找到需要处理的通道数据,然后按照以下步骤进行处理: 1.进入查看窗口,通过“文件-打开-处理方法”打开相应的处理方法。 2.按处理方法图标 进入处理方法窗口。在处理方法窗口里选择“适应性”选项卡。钩选计算适应性结果。

3.在“空体积时间”栏内填入适当的空体积时间,如果不确定,并且不需要计算相对保留时间或与孔体积时间无关的系统适应性参数,可尝试填入1 或者0.1。 4.在s/n噪音值下拉菜单中选取相应的噪音类型。以基线噪音为例。 5.在下部的“基线噪音和漂移测量”区域内,以及“基线开始时间”与“基线结束时间”。 1)用于平均的运行时间百分比指在运行时间内平均数据点的百分比。Empower 软件利用此数值来计算平均时间,其中“取用于平均的运行时间百分比”与“总运行时间”的积等于“平均时间”。软件将“平均时间”与“基线开始时间”相加,然后用“基线结束时间”减去所得结果数值,从而确定两个平均区域。平均计算只在平均区域进行。可以从0.1 到 50.0。默认值为5。 当“用于平均的运行时间百分比”与“总运行时间”的积,也就是“平均时间”大于30秒,也就是说总运行时间*用于平均的运行时间百分比≧50(0.5 分钟)时,则将噪音报告由结果,否则为空白。

2)基线开始时间(分)漂移和噪音计算的开始时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“基线开始时间”和“基线结束时间”以及“取用于平均的运行时间百分比”参数指定的基线区域的噪音。注意要使噪音计算有效,基线间隔内必须没有任何峰。 3)基线结束时间(分) 漂移和噪音计算的结束时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“取用于平均的运行时间百分比”参数以及“基线开始时间”和“基线结束时间”指定的基线区域的噪音。 6.回到主窗口,重新积分,校正,等到结果。

信噪比

信噪比 简介 信噪比是音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。用dB表示。例如,某音箱的信噪比为80dB,即输出信号功率是噪音功率的10^8倍,输出信号标准差则是噪音标准差的10^4倍,信噪比数值越高,噪音越小。 定义 “噪声”的简单定义就是:“在处理过程中设备自行产生的信号”,这些信号与输入信号无关。对于MP3播放器来说,信噪比都是一个比较重要的参数,它指音源产生最大不失真声音 信噪比 [1] 信号强度与同时发出噪音强度之间的比率称为信号噪声比,简称信噪比(Signal/Noise),通常以S/N表示,单位为分贝(dB)。对于播放器来说,该值当然越大越好。目前MP3播放器的信噪比有60dB、65dB、85dB、90dB、95dB等等,我们在选择MP3的时候,一般都选择60dB以上的,但即使这一参数达到了要求,也不一定表示机子好,毕竟它只是MP3性能参数中要考虑的参数之一。指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。

国际电工委员会对信噪比的最低要求 国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB,CD机的信噪比可达90dB以上,高档的更可达110dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买,而低音炮70dB 的低音炮同样原因不建议购买。 用途 另外,信噪比可以是车载功放;光端机;影碟机;数字语音室;家庭影院套 信噪比 装;网络摄像机;音箱……等等,这里所说明的是MP3播放器的信噪比。以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB,较为合理。SBLIVE更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干扰太大,所以声卡的信噪比往往不令人满意。 编辑本段图像信噪比 简介 图像的信噪比应该等于信号与噪声的功率谱之比,但通常功率谱难以计算,

UPLC如何计算信噪比

Q:怎样计算信噪比? A:已经建立好信噪比的自定义字段后,即可进行计算,具体步骤如下: 1)单击鼠标左键进入“浏览项目”。 2)选择欲浏览数据所在的项目,然后单击“确定”,进入该项目。 3)在“通道”选项卡中选择欲处理的数据,单击(查 看)打开。 “查看”键“通道”选项卡 4)进入查看窗口,通过“文件-打开-处理方法”打开相应的处理方法。

5)按处理方法图标进入处理方法窗口。 6)在处理方法窗口里选择“适应性”选项卡。 钩选计算适应性结果。 在“空体积时间”栏内填入适当的空体积时间,如果不确定,并且不需要计算相对保留时间,可尝试填入1或者0.1。 在下部的“基线噪音和漂移测量”区域内,填入“运行时间百分比”以及“基线开始时间”与“基线结束时间”。 取用于平均的运行时间百分比 运行时间(在这段时间内平均数据点)的百分比。Empower 软件利用此数值来计算平均时间,其中“取用于平均的运行时间百分比”与“总运行时间”的积等于“平均时间”。软件将“平均时间”与“基线开始时间”相加,然后用“基线结束时间”减去所得结果数值,从而确定两个平均区域。平均计算只在平均区域进行。输入:0.1 到 50.0%。缺省值:5%。当“取用于平均的运行时间百分比”与“总运行时间”的积,也就是“平均时间”小于30秒(0.5分钟)时,则将噪音报告为空白。

基线开始时间(分) 漂移和噪音计算的开始时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“基线开始时间”和“基线结束时间”以及“取用于平均的运行时间百分比”参数指定的基线区域的噪音。缺省值:空白 - 软件以 0.00 分钟作为“基线开始”时间。 注:要使噪音计算有效,基线间隔内必须没有任何峰。 基线结束时间(分) 漂移和噪音计算的结束时间。计算漂移时,系统在“基线结束时间”获取毫伏读数,然后用此读数减去“基线开始时间”读数,得出漂移值。计算噪音时,系统计算由“取用于平均的运行时间百分比”参数以及“基线开始时间”和“基线结束时间”指定的基线区域的噪音。缺省值:空白 - 软件用运行时间作为“基线结束”时间。 在本例中: 条件 设置 总运行时间 8 分钟 取平均的运行时间百分比 8% 平均时间 8×8%=0.64 分钟(>30秒) 基线开始 3.8 分钟 基线结束 4.8 分钟 7)设置参数后,保存处理方法,关闭处理方法对话框。 8)回到查看主窗口,单击积分快捷键进行积分,即可得到信噪比结果。 9)如需保存该结果,需在菜单中选择“文件-保存-结果”。该结果保存后即出现在“结 果”选项卡的列表中。

检测限-信噪比

1. 关于检测限(limit of detection, LOD)的定义: 在样品中能检出的被测组分的最低浓度(量)称为检测限,即产生信号(峰高)为基线噪音标准差k倍时的样品浓度,一般为信噪比(S/N)2:1或3:1时的浓度,对其测定的准确度和精密度没有确定的要求。目前,一般将检测限定义为信噪比(S/N)3:1时的浓度。 2. 计算公式为:D=3N/S (1)式中:N——噪音; S——检测器灵敏度;D——检测限而灵敏度的计算公式为:S=I/Q (2)式中:S——灵敏度;I——信号响应值;Q——进样量将式(1)和式(2)合并,得到下式:D=3N×Q/I (3) 式中:Q——进样量;N——噪音;I——信号响应值。I/N即为该进样量下的信噪比(S/N),该信噪比可通过工作站对图谱进行自动分析获得,一般的色谱或质谱工作站都可进行信噪比分析计算。这样检测限的计算方法就变得非常方便了。 3. 计算方法:实际计算时,检出限有2种表示方法:一种是进样瓶中样品检测限,一种是针对原始样品的方法检出限。1)对第一种检测限,只要知道进样量和信噪比即可计算。如进样瓶中样品浓度为1 mg/L,在此浓度下的信噪比为300(由工作站分析获得),则其检测限为:D =(3×1 mg L-1)/300 = 0.01 mg/L。也可用绝对进样量表示,若进样体积为10 ul,则其检测限为:D = 3×(1 mgL-1×10 ul)/300 = 0.1 ng。2)对第二种表示方法,需同时考虑原始样品的取样量和提取样品的定容体积。仍按前述样品计算,若取样量为5克,最后定容体积为5 mL,则方法检测限为:D = 0.01 mgL-1×5 mL/5 g = 0.01 mg/kg。即当原始样品中待检物质的浓度为0.01mg/kg时,若取样量为5g,样品经前处理后定容体积为5mL时,进样瓶中样品的浓度可达0.01mg/L(假定回收率为100%),此时,在其它给定的分析条件下,能产生3倍噪声强度的信号。在实际检测工作中,第二种表示方法更为常见。 4.注意事项由式(3)可见,信噪比的大小直接关系到检测限的大小。信噪比计算方法的不同,其比值大小有很大不同,这与计算信噪比时基线噪声峰值的定义方式有关,一般有三种不同的定义:①峰/峰(peak to peak)信噪比,用某一段基线噪声的平均高度;②峰/半峰(half peak to peak)信噪比, 用某一段基线噪声平均高度的1/2;③均方根(RMS)信噪比,用某一段基线噪声的均方根值计算。除此之外,信噪比的计算结果还和所取噪声的位置有很大关系,取信号哪一侧基线的噪声,取多长一段基线上的噪声,计算结果都很不完全相同,有时相差甚远。一般多取样品峰两侧的噪声峰值计算。 信噪比计算方法的不同,其比值大小有很大不同,这与计算信噪比时基线噪声峰值的定义方式有关,一般有三种不同的定义:①峰/峰(peak to peak)信噪比,用某一段基线噪声的平均高度;②峰/半峰(half peak to peak)信噪比, 用某一段基线噪声平均高度的1/2;③均方根(RMS)信噪比,用某一段基线噪声的均方根值计算。除此之外,信噪比的计算结果还和所取噪声的位置有很大关系,取信号哪一侧基线的噪声,取多长一段基线上的噪声,计算结果都很不完全相同,有时相差甚远。一般多取样品峰两侧的噪声峰值计算。

信噪比的定义

什么是启发式算法 引言: 解决实际的问题,要建模型,在求解。求解要选择算法,只有我们对各种算法的优缺点都很熟悉后才能根据实际问题选出有效的算法。但是对各种算法都了如指掌是不现实的,但多知道一些,会使你的选择集更大,找出最好算法的概率越大。现在研一,要开题了些点文献综述,愿与大家分享。 大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律, 也有来自人类积累的工作经验。 启发式算法的发展: 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,取得了巨大的成就。 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规 模的问题仍然无能为力(收敛速度慢)。 启发式算法的不足和如何解决方法: (水平有限仅仅提出6点) 启发式算法目前缺乏统一、完整的理论体系。 很难解决!启发式算法的提出就是根据经验提出,没有什么坚实的理论基础。 由于NP理论,启发式算法就解得全局最优性无法保证。 等NP?=P有结果了再说吧,不知道这个世纪能不能行。 各种启发式算法都有个自优点如何,完美结合。 如果你没有实际经验,你就别去干这个,相结合就要做大量尝试,或许会有意外的收获。 启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。 还是那句话,这是经验活但还要悟性,只有try again……….. 启发算法缺乏有效的迭代停止条件。 还是经验,迭代次数100不行,就200,还不行就1000………… 还不行估计就是算法有问题,或者你把它用错地方了……….. 启发式算法收敛速度的研究等。 你会发现,没有完美的东西,要快你就要付出代价,就是越快你得到的解也就远差。 其中(4)集中反映了超启发式算法的克服局部最优的能力。 虽然人们研究对启发式算法的研究将近50年,但它还有很多不足: 1.启发式算法目前缺乏统一、完整的理论体系。 2.由于NP理论,各种启发式算法都不可避免的遭遇到局部最优的问题,如何判断 3.各种启发式算法都有个自优点如何,完美结合。 4.启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。 5.启发算法缺乏有效的迭代停止条件。

matlab 如何计算信噪比

Matlab信号上叠加噪声和信噪比的计算 在信号处理中经常需要把噪声叠加到信号上去,在叠加噪声时往往需要满足一定的信噪比,这样产生二个问题,其一噪声是否按指定的信噪比叠加,其二怎么样检验带噪信号中信噪比满足指定的信噪比。 在MATLAB中可以用randn产生均值为0方差为1的正态分布白噪声,但在任意长度下x=randn(1,N),x不一定是均值为0方差为1(有些小小的偏差),这样对后续的计算会产生影响。在这里提供3个函数用于按一定的信噪比把噪声叠加到信号上去,同时可检验带噪信号中信噪比。 1,把白噪声叠加到信号上去: function [Y,NOISE] = noisegen(X,SNR) % noisegen add white Gaussian noise to a signal. % [Y, NOISE] = NOISEGEN(X,SNR) adds white Gaussian NOISE to X. The SNR is in dB. NOISE=randn(size(X)); NOISE=NOISE-mean(NOISE); signal_power = 1/length(X)*sum(X.*X); noise_variance = signal_power / ( 10^(SNR/10) ); NOISE=sqrt(noise_variance)/std(NOISE)*NOISE; Y=X+NOISE; 其中X是纯信号,SNR是要求的信噪比,Y是带噪信号,NOISE是叠加在信号上的噪声。 2,把指定的噪声叠加到信号上去 有标准噪声库NOISEX-92,其中带有白噪声、办公室噪声、工厂噪声、汽车噪声、坦克噪声等等,在信号处理中往往需要把库中的噪声叠加到信号中去,而噪声的采样频率与纯信号的采样频率往往不一致,需要采样频率的校准。 function [Y,NOISE] = add_noisem(X,filepath_name,SNR,fs) % add_noisem add determinated noise to a signal. % X is signal, and its sample frequency is fs; % filepath_name is NOISE's path and name, and the SNR is signal to noise ratio in dB. [wavin,fs1,nbits]=wavread(filepath_name); if fs1~=fs wavin1=resample(wavin,fs,fs1);

提高地震资料高频段信噪比及拓展有效频宽方法研究

提高地震资料高频段信噪比及拓展有效频宽方法研究 在进行了波形一致性处理和规则干扰衰减滤波技术之后,它使得子波统一、时间对齐;并且消除了较强的规则干扰波,使得整个记录面貌无论是信噪比、分辨率和保真度上均有了明显改进。为了达到高分辨率地震勘探的目的,在提高信噪比的基础上,我们还要进一步提高分辨率。众所周知, 分辨率不仅与信噪比有关,更主要的是与频带宽度有关,即有效波的频带宽度越宽,则分辨率越高。频带宽度,应该是指具有相同能量级别的有效波频率成分的集合;其分辨率是视觉分辨率,只有有效波的频谱成分具有一定的能量时,才能进入有效频带, 才能在剖面上看到它的存在。 关于地震记录的信噪比,通常是指有效波的纯度,从宏观上看记录的信噪比, 可对记录进行分频扫描,通过分析各频段上的有效信号,从而确定不同频段上的信噪比,获得一个信噪比谱。 在有效的频率范围内不同频带的信号和噪音的特点及所占的分量是不同的,即可以根据不同频带内信号和噪音的特点, 进行有针对性的处理加工,进而达到提高地震记录信噪比和分辨率的目的。 由于地震资料在低频段15Hz 以下,高频段60Hz 以上的信噪比较低。在低频段主要是面波、折射波干扰,而高频段主要是高频随机干扰。因此扩展优势信噪比的有效频带宽度,就是要解决高低频段的信噪比。采用前面的方法,将规则干扰波有效地分离出去,保留了低频有效信息,扩展了低频段的优势信噪比的有效信息频带宽度。 高频段的信噪比如何解决,至今还没有针对高频随机干扰去噪的有效方法,只能采用分频去噪方法,提高高频段的信噪比。有时从剖面上可以看出地震记录的分辨率很高,然而剖面上的信噪比确很低。对剖面进行频率扫描, 在低频段剖面的信噪比较高,影响剖面的信噪比主要是60Hz 以上的高频段。如何提高60Hz 以上频率段的信噪比,扩展高频段优势信噪比的有效频带的宽度,提高地震记录分辨率。通常在常规处理中,只是在整个频带上进行去噪的,我们知道几乎所有去噪的原理都是以能量相关性为依据的,这样在整个频带上去噪只能提高信噪比高的频率段的信噪比,而对信噪比低的频率段的信噪比没有提高多少,甚至损失了高频有效信息。所以,可以根据不同频段的信噪比适当地选择不同去噪方法及其参数,提高不同频率段的信噪比,特别是高频段的信噪比。 主要技术指标: 在有效的频率范围内不同频带的信号和噪音的特点及所占的分量是不同的,即可以根据不同频带内信号和噪音的特点, 进行有针对性的处理加工,进而达到提高地震记录信噪比和分辨率的目的。 根据不同频段的信噪比适当地选择不同去噪方法及其参数,提高不同频率段的信噪比,特别是高频段的信噪比。 创新点 (1)提高分辨率处理方法 把地震数据分解为若干个频带的数据,在15Hz 以下低频端的主要干扰为面波、折射波等规则干扰,它可以应用最佳规则干扰剔除的方法来解决低信噪比的问题;而大于60Hz 高频端的主要干扰是随机干扰波,它可以通过最佳信号拟合滤波的方法来解决它的低信噪比问题;对于中间较高信噪比部分,可通过其它较简单快速的方法或不做加工,然后对各个频带处理后的数据再合并起来。 (2)提高信噪比处理方法 不同频率成分有不同的信噪比,为达到尽可能提高分辨率的目的,对不同频率成分需要分别对待。最大分辨能力滤波所能达到的分辨率与每个频率成分的信噪比有关,任何频率成分的信噪比的改进,都对提高分辨率有好处。但不同的信噪比的频率成分对分辨率的贡献不同,并且不同信噪比的频率成分的信噪比改进对提高分辨率的作用也不同。 信噪比很高的频率成分, 对分辨率有很大贡献。但这种频率成分的信噪比改善并不会对提高分辨率有多大帮助。信噪比很低的频率成分,对分辨率的贡献很小。这种频率成分的信噪比改善, 可使其对分辨率的贡献成比例地增加,但由于它的贡献基数很小,即使有成倍增加,还是作用不大。而信噪比在1 附近的频率成分,信噪比改善对分辨率益处较大,是改善信噪比的重点。 效果评述

相关文档