文档库 最新最全的文档下载
当前位置:文档库 › 飞行管理系统

飞行管理系统

飞行管理系统
飞行管理系统

第16章飞行管理系统

16.1飞行管理系统概述

随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。

16.2飞行管理系统的组成和功能

16.2.1飞行管理系统的组成

飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括:

(1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心;

(2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统;

(3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统;

(4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。

驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统

16.2.2飞行管理系统的功能

FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。

FMS在各飞行阶段的性能管理功能:

(1)起飞前

通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。

(2)起飞

根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。

(3)爬升

根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。

(4)巡航

FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。

(5)下降

FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。

(6)进近

FMS以优化速度引导飞机到达跑道入口和着陆点。

16.2.3飞行管理计算机系统

由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

16.2.3.1飞行管理计算机

FMC是系统的心脏,进行导航和性能计算并提供控制和指引指令。它由三台微处理机、电源组件和电池组件构成。三台微处理器相互独立并各自带有存储器,分别称为导航、性能和输入/输出处理机。飞行管理计算机的存储器内除了存有各种操作程序外,还存有大量数据。这些数据是人工或自动飞行所必须的。按照数据的种类,分别存放于导航数据库和性能数据库中。

FMC使用飞行组输入的飞行计划信息、飞机系统数据和FMC导航数据库和性能数据库的数据计算飞机现在位置以及获得最佳飞行剖面所需的俯仰、横滚和推力指令。FMC将这些指令送往自动油门、自动驾驶和飞行指引仪。地图和航路信息被送往飞行员各自的电子水平状态指示器。驾驶员使用电子飞行仪表系统控制面板选择导航显示所需的信息。使用方式控制面板选择自动油门、自动驾驶和飞行指引工作方式。

1)FMC失去电源

FMC工作需要连续的电源。电源中断少于10秒钟时:水平导航和垂直导航脱开;FMC保留所有输入的数据;电源恢复时,FMC恢复正常工作

在地面失去电源达10秒或更长时,电源恢复后,必须重新输入所有的飞行前程序和输入值。

如在空中失去电源超过10秒,则水平导航和垂直导航脱开;FMC保留所有输入的数据,且电源恢复时更改的航段页面显示 SELECT ACTIVE WPT/LEG(选择有效航路点/航段)信息。接通水平导航前,必须指示FMC如何回到航路。选择所需的有效航路点并以直飞或切入航道方式飞到该航路点。

2)FMC失效

如果飞机上安装一部FMC,当FMC失效,FMC警戒指示灯亮。装有菜单(MENU)页面的CDU,显示菜单页面以选择其它可用的子系统。两部电子水平状态指示器都显示“VTK”。水平导航和垂直导航脱开。25至30秒后,两个水平状态指示器地图都会显示失效信息。

如果安装两部FMC,例如FMC源选择电门在正常位时右FMC失效,FMC警戒指示灯和FMC信息指示灯亮。两个草稿行内均显示SINGLE FMC OPERATION(一部FMC工作)信息。如使用自动驾驶B通道,水平导航和垂直导航会脱开(如选择自动驾驶A通道可重新接通)。25-30秒后,右电子水平状态指示器地图会显示失效信息。将FMC源选择电门放在双左位(BOTH ON L),右电子水平状态指示器显示恢复。

如出现以上指示时右电子水平状态指示器上无“VTK”显示,表明左右FMC 数据不一致。将FMC源选择电门放在双左位(BOTH ON L)使两部FMC重新同步工作。两个草稿行内显示DUAL FMC OP RESTORED(两部FMC工作恢复)信息时,可将电门扳回正常位。

16.2.3.2控制显示组件

控制显示组件是机组和飞行管理计算机之间的接口,是进行人-机交流的部件,如图16-2。飞行组可用任意一部CDU向FMC输入数据,但应避免同时在两台CDU上进行输入。两部CDU上显示相同的FMC数据和计算信息,但每位飞行员可独立控制各自CDU的实际显示。

装有备用导航系统CDU(AN/CDU)的飞机上,每部CDU可使用内部的计算机以备用方式工作。AN/CDU的能力类似于惯性导航系统并可独立于FMC并联工作或在FMC失效时可作为备份。AN/CDU仅提供水平导航能力。AN/CDU通常仅根据惯性基准系统的位置导航。

自保持螺钉

发光的按键面板

通告器

执行键

通告器

图16-2控制显示组件

16.3 FMS导航功能

飞行管理计算机使用导航系统的数据准确计算飞机的位置。

16.3.1导航功能

飞行管理系统的导航功能用来完成飞机横向剖面的飞行管理,引导飞机按预定航线飞达目的地。包括自动选择导航台和自动调谐;从起飞机场开始,根据要飞抵的目的地选择航线;确定离目的地或某个要飞越航路点的距离;预定到达时间、速度等。飞行管理系统依赖导航设备为导航功能提供飞机当前位置的原始测量数据。

导航方式很多,例如自主式导航、推测导航、无线电导航等,这些方式都可为飞行管理系统所采用。但飞行管理系统主要采用无线电导航。

16.3.2导航数据库

导航数据库是为飞机从起飞到着陆整个过程都具备自动导航能力而设计的,它存放了整个区域的导航信息。FMC包含两组导航数据,每组的有效期为28天。数据库通过数据装载机装入飞机的FMC。各组数据与导航图正常的修订周期相同。FMC使用有效的那一组数据进行导航计算。导航数据库的内容定期更新并在当前数据失效前传送到FMC中。主要信息包括:

(1)导航台-导航台标识、位置、频率、海拔高度、标记和类型。

(2)机场-机场位置、跑道长度、跑道方位、机场标高和导航设备信息等。

(3)航路-航路数据包括航路类型、高度、航向、航段距离和航路点说明等。

(4)公司航路

(5)标准仪表离场(SIDS)

(6)标准终端进场航路(STARS)

(7)程序转弯和等待

(8)等待航线

(9)复飞

(10)进近程序

(11)进近和离场转变

(12)终端登机门

16.3.3导航性能

(1)实际导航性能(ANP)

实际导航性能(ANP)是FMC对自身定位水平的预计。实际导航性能以95%的准确性预计最大位置误差。也就是说,FMC95%确定飞机的实际位置在以FMC 位置为中心以实际导航性能值为半径的圆圈内。实际导航性能值越小,FMC位置预算的准确性越高。

(2)要求导航性能(RNP)

FMC给起飞、航路飞行、越洋飞行、航站飞行和进近阶段提供默认的要求导

航性能值。如需要,飞行组可输入一个特殊的要求导航性能值。已建立并公布世界范围内各区域的特定要求导航性能值。实际导航性能不得低于要求导航性能。

16.4 FMS性能管理

性能管理主要是指在飞行全程,计算按某种性能指标或某几种性能指标的组合达到最优而确定的垂直预选航迹。这些指标包括:燃油最省、成本最小、时间最短等。具体的方式如时间最短爬升、最大爬升梯度爬升、远程巡航、最低成本续航等。详细内容参见《飞行性能工程》。

16.4.1性能数据库

性能数据库是性能管理的基础。为了完成性能优化计算,例如在巡航阶段,要知道飞机的升力特性、极曲线、发动推力和燃油消耗率之间的关系等,另外还需要知道飞机制导数据。所以性能数据库的内容一般包括:

1)飞机部分

(1)机翼面积

(2)发动机台数

(3)飞行包线

(4)升力特性曲线

(5)飞机极曲线

(6)飞机各种重量

2)发动机部分

(1)燃油消耗特性曲线

(2)推力特性曲线

(3)飞行各阶段性能数据

(4)飞行控制模态数据

16.4.2推力管理

自动油门根据飞行组在方式控制面板的输入或自动的FMC指令工作。对B737-300在CDU的N1(发动机低压转子转速)限制页可选择基准推力。垂直导航方式接通时,FMC自动指令油门。

16.4.2.1预选基准推力计算

FMC为下列各方式计算预选基准推力:

(1)起飞

(2)减功率起飞

(3)假设温度起飞

(4)爬升

(5)减推力爬升

(6)巡航

(7)连续

(8)复飞。

推力基准方式根据相应飞行阶段自动转换。选择的推力基准方式显示在推力方式显示。

在具有自动减推力功能的飞机上,飞行组可输入减推力参数。指定飞机从起飞推力过渡到爬升推力的高度。该高度可在起飞机场上方400英尺到平均海平面高度15000英尺范围之内。默认值为起飞机场上方1500英尺。

16.4.2.2减推力起飞

减推力起飞可降低EGT并延长发动机使用寿命。只要性能限制和减噪音程序允许,任何时候都可使用。

(1)减功率法

可在起飞基准页面或N1限制页选择固定的减功率。《飞机飞行手册》提供了这些减功率的性能数据。

选择减功率起飞时,推力设置参数被视为起飞限制值;因此,除非紧急情况,否则不得进一步前推推力手柄。

(2)假设温度法

用假设温度法可进一步减小减功率起飞的功率。假设温度减推力起飞是通过使用高于实际温度的假设温度获得小于全额定推力的起飞推力。在起飞页面1或2或N1限制页面或起飞基准页面2输入选择温度可获得所需的起飞推力。

批准的最大减推力是低于额定功率25%。当存在影响刹车的情况,如跑道上有半融雪、雪或冰或存在潜在风切变,不得使用假设温度减推力。假设温度减推力设置不应视为一个限制值。可以取消假设温度减推力。如遇到需要增加推力的情况,飞行组可以人工使用全推力。

16.4.2.3减推力爬升

可在CDU的N1限制页面选择两个固定爬升减推力值。CLB1(爬升1)使用减少3%的爬升限制(推力约减10%)。CLB2(爬升2)使用减少6%的爬升限制(推力约减20%)。到15000英尺,爬升减推力值逐渐增至爬升全推力。巡航时,推

力基准自动变为巡航推力。可在N1限制页人工选择推力基准。

使用假设温度减推力起飞或减功率起飞会影响爬升减推力值的自动选择。爬升使用减推力可减少发动机维护成本,但增加总航程燃油。

16.4.3燃油监控

如发动机起动后燃油流量数据变为无效,则CDU显示VERIFY GW AND FUEL (证实全重和燃油),燃油值被虚线替换。即使燃油数据丧失,垂直导航仍继续工作。FMC使用上一次有效的燃油量进行性能预测。驾驶员应将预测的燃油重量输入性能起始页,并在剩余的航段中对燃油重量定时更新以保持全重值最新。

FMC监控机上总量燃油。如FMC预计到达目的地时燃油总量低于2000磅(900公斤),CDU出现INSUFFICIENT FUEL(燃油不足)信息。如到达目的地时剩余燃油低于性能起始页面输入的备份油量,显示USING RSV FUEL(使用备份燃油)信息。

FMC根据爬升、巡航和下降过程中起落架和襟翼收上条件计算燃油预计值。任何起落架和/或襟翼放出的延长飞行都需增加燃油且不会在FMC燃油预计值页面正确显示。

16.5 FMS制导

制导是飞机沿预选轨迹飞行时受到扰动或导航不确定性引起偏离预选轨迹后作出的一种决策。制导过程:计算航迹偏角,产生操纵指令,送到飞行控制系统的自动驾驶仪、飞行指引、和自动油门系统;由其内部的飞行控制和自动油门计算机产生实际的操作面控制指令和自动油门推力指令,操纵飞机保持在预选的飞行剖面上,以实现对飞机的飞行路径的自动控制。制导又分为侧向指导(又称水平或横向制导)和垂直制导。

16.5.1垂直制导

垂直制导是按照一定的控制律对垂直面内实际航迹相对预选航迹偏差进行控制。对于垂直导航,计算项目包括耗油量数据、最佳速度和建议的高度。使用巡航高度和穿越高度限制计算垂直导航指令。以所需到达时间(RTA)方式工作时,计算的内容包括所需速度、起飞时间和航路进程信息。垂直制导接通后,飞行管理计算机提供速度和升降率指令,控制飞机沿预选的纵向路径飞行。

16.5.2水平制导

水平制导是按照一定的控制律对水平面内实际航迹相对预选航迹偏差进行控制。由于航线飞行分为:大圆航线飞行和等角航线飞行。沿大圆航线飞行,完成飞行任务的经过的地面距离最短,是一种最常用的航线飞行方式;等角航线是

指航线角不变的航线。因此根据控制规律不同,水平制导也分为大圆航线飞行制导和等角航线飞行制导。当水平制导接通,飞行管理计算机提供航向控制指令,控制飞机沿预选航路飞行。

16.5.3制导模块与其它模块的关系

制导模块与其他模块的关系如图16-3。

图16-3制导模块与其它模块的关系

16.5.4制导相关控制模态

制导任务的完成需要有飞行控制系统必要的控制模态的支撑。例如Sperry 公司的飞行控制系统SP-177共有27个模态,分为纵向和侧向模态。

1)纵向主要包括:

(1)俯仰角控制(保持)模态

(2)速度跟踪模态-使用升降舵控制速度

(3)速度跟踪加速模态-用于升降舵控制速度的加速

(4)高度截获模态-实现过载限制和高度平滑过渡

(5)高度保持模态-用于给定高度的保持,如巡航状态,当高度误差与升降速度小于一定的值后就切入此模态。

(6)自动油门杆速度控制模态-用于油门杆控制速度的速度跟踪

2)侧向主要模态包括:

(1)协调转弯控制模态

(2)姿态保持模态

(3)航向保持模态

(4)轨迹控制模态-用于控制侧向偏离

(5)VOR台截获模态-用于截获VOR导航台

(6)VOR台保持航线模态-根据VOR台信息进行航线保持

(7)VOR过台模态-用于飞机通过VOR台时的控制

16.5.5四维制导

在三维轨迹的基础上增加时间基准进行制导,将飞行时间作为控制的目标之

一即形成四维制导。如果预定航线(三维轨迹)不得改变时,用改变飞行速度来实现四维制导。飞行速度的变化受飞机性能的制约。当航路结构不受约束时,四维制导可由改变飞行轨迹和改变飞行速度两个因素来实现。

16.6 FMS咨询/报警

飞行员可以通过控制显示组件获得许多有用的咨询信息,例如与飞行剖面有关的信息、与性能有关的信息、系统故障等信息。另外,飞行管理系统具有向飞行员自动报警的能力,例如自动发出风切变、近地警告等告警信息。

16.7 B737-300飞行管理系统使用介绍

11.7.1概述

接通电源后,飞行管理系统处于飞行前阶段。一个阶段完成后,飞行管理系统自动转换到下一个阶段。

16.7.1.1飞行前

在飞行前阶段向CDU输入飞行计划和舱单资料。飞行计划规定了从起飞机场到目的地机场的飞行航路并预设水平导航。飞行计划和舱单资料提供性能信息以预设垂直导航。

1)飞行前输入的数据

要求输入的飞行前信息包括:

(1)起始位置

(2)飞行航路

(3)性能数据

(4)起飞数据

可选择输入的飞行前数据包括:

(1)导航数据库

(2)标准仪表离场

(3)标准终端进场

(4)所需到达时间数据

(5)巡航风

(6)减推力起飞和爬升限制

2)飞行前页面

如图16-4。

图16-4飞行前页面顺序

正常的飞行前页面顺序是根据每个CDU页的页面提示进行的。FMC开始工作时的正常页面是识别页。飞行前输入流程图按以下顺序排列:

(1)识别页

(2)位置起始页

(3)航路页

(4)离场页(无自动提示)

(5)性能起始页

(6)N1限制页

(7)起飞基准页

在每个飞行前页面输入和检查必要的数据后,按压最右下方的行选键选择下一页。完成FMC飞行前程序要求将数据输入到所有必须输入数据的位置,将每个要求的或可选择的数据项目输入具体的飞行前页面,以确保获得最准确的性能。完成所有要求的飞行前输入后,起飞基准页的飞行前状态提示不再显示。

16.7.1.2起飞爬升

1)概述

起飞阶段从选择起飞/复飞开始,直到减推力高度(通常在此选择爬升推力)。

爬升阶段从减推力高度开始,直到爬升顶点。在爬升顶点,飞机到达性能起始页所输的巡航高度。

选择爬升推力时,起飞阶段自动转换到爬升阶段。爬升阶段持续到爬升顶点,从此处开始巡航阶段。

在这些阶段中,通常使用以下各页面:

(1)起飞基准页-对离场跑道作最后改变

(2)离场页-对标准仪表离场作最后改变

(3)爬升页-修改爬升参数和监控飞机爬升性能

(4)航段页-修改航路并监控航路进程

(5)进程页-监控飞行全进程

(6)N1限制页-选择备用爬升推力限制

(7)离场/进场索引页-在返航时选择进近程序。

2)起飞阶段

对离场跑道和标准仪表离场作最后改变时,必须相应修改起飞基准和离场页使其一致。按压起飞/复飞电门时,根据正确的起飞参数,FMC 指令选择的起飞推力。在起飞滑跑过程中,自动油门指令推力,FMC 指令加速到2V +15和2V +25海里/小时之间。高度400英尺可接通水平导航并提供航段飞行的横滚指示。收襟翼后可接通垂直导航以控制爬升剖面。

3)爬升阶段

垂直导航指令加速到:

(1)250海里/小时;

(2)航路点速度限制或与起飞机场相关的速度限制,以二者中限制更严格者为准。

在减爬升推力点,在具有自动减推力功能的飞机上,FMC 指令减小推力至选择的爬升推力。穿越10,000英尺时,垂直导航指令加速至经济爬升速度,并保持到至进入巡航阶段。如航路点速度限制低于目标速度,速度限制优先。

爬升过程中,垂直导航遵守航段页航路点高度和速度限制。暂时改平到飞越高度限制时,飞机保持当前的指令速度。

预计爬升速度剖面将违反航路点高度限制时,FMC 显示CDU 草稿行信息UNABLE NEXT ALTITUDE (无法达到下一高度)。此时必须人工选择一个不同的速度剖面以提供更陡的爬升角度。如选择了爬升1或爬升2减功率,在爬升的最初阶段保持这个减功率。高度15,000英尺时增加到最大爬升推力。

16.7.1.3巡航

巡航阶段从爬升顶点开始,直到下降顶点。飞机到达爬升顶点时,巡航阶段

自动开始。巡航中,FMC的主要页面有:

(1)航段页

(2)进程页

(3)巡航页

使用航段页管理航路限制并修改航路。进程页显示飞行进程信息。所需到达时间的要求也同时显示在进程页。巡航页显示垂直导航相关信息。其它页面包括:

(1)位置基准页-证实FMC位置;

(2)位置漂移页-允许从不同位置基准中选择认可的一个;

(3)航路数据页-显示航段页每个航路点的进程数据,显示巡航航路点的风向/风速;

(4)基准导航数据页-显示有关航路点、助航设备、机场或跑道的信息;

(5)水平偏置页-允许选择航路偏置;

(6)定位点信息页-显示有关航路点的信息,并可用来增加新的航路点和定位点;

(7)选择所需航路点页-允许从重名航路点中选择所需的航路点;

(8)导航状态页-显示可用的助航设备信息。

在爬升顶点由爬升过渡到巡航和在下降顶点由巡航过渡到下降时,页面自动转变。

16.7.1.4下降和进近

1)概述

下降阶段从下降顶点开始,到下降终点结束。下降阶段的计划在巡航阶段开始。进近阶段从下降终点开始,持续到接地或复飞。飞行中的各个阶段,备降场都可用且能在任何时候更新。在下降顶点由巡航过渡到下降时,自动转换至下降/进近方式页。

2)下降

下降中,可在航段和进程页管理水平导航进程。垂直导航下降管理主要在下降页完成。也可在下降预报页输入预报风向/风速以帮助完善下降计划。

在巡航中,下降页用于监控、修改或选择下降航径。下降方式包括经济航径、经济速度、人工航径和人工速度方式。默认的垂直导航下降方式是经济航径。航径方式下降时,飞机遵守飞行计划中的高度和速度限制沿垂直航径飞行。速度方式下降时,飞机以固定的速度飞行并遵守飞行计划中的高度和速度限制。

3)进近

进近过程中,水平导航和垂直导航引导通常过渡到无线电导航提供的进近引导。FMC继续计算和显示当前位置,并能在不使用无线电导航时为某些进近类型提供水平导航和垂直导航进近引导。

在其它的进近引导有效之前,使用航段和进程页管理飞行。用于进近的其它页面有:

(1)进近基准页-选择进近基准速度VREF;

(2)进场页-选择所需的进场和进近程序;

(3)等待页-管理等待航线,可以在任何飞行阶段使用。

在进场页可选择目的地机场的进近、标准终端进场航路和进场过渡程序,还可以检查选择的非目的地机场的有关信息。

16.7.1.5飞行完成

着陆后,在飞行完成阶段清除有效飞行计划和舱单数据。有些飞机飞行前数据内容恢复为默认值供下一次飞行使用。

16.7.2导航位置更新

在地面,FMC根据惯性基准系统数据计算现在位置。如CDU仅有位置更新,起飞前在地面时,可在起飞基准页将FMC位置更新至起飞跑道入口处位置。在具有起飞/复飞位置更新功能的飞机上,起飞/复飞电门压下时,起飞过程中FMC 位置自动更新至起飞跑道入口的位置。

飞行中,FMC位置根据导航无线电和惯性基准系统的信息不断更新。更新的优先顺序根据各辅助系统有效数据的提供情况而定。FMC位置由惯性基准系统和无线电系统确定的位置组合计算获得。它表示FMC预计的飞机实际位置,精确度随定位系统的精确度而改变。

根据导航台位置进行的FMC位置更新遵循以下优先顺序:

(1)两个或两个以上DME台

(2)一个VOR台和并置的DME台

(3)一个航向台和并置的DME台

(4)一个航向台

自动/人工电门在自动位时,FMC自动调谐DME无线电。调谐电台的选择根据FMC位置更新可用的最佳信号(就其几何位置和强度而言)而定。无线电自动调谐有数种方式。优先方式为无线电在单独的DME电台间调谐。如需要,一台无线电可在两个具有DME能力的电台之间来回调谐。这个过程称为“频率捷变调谐”。优先权最低的无线电方式使用单一电台的VOR和DME信号。FMC不使用25海里范围以外的VOR信息。

无线电选择人工方式时,如调谐的电台满足FMC位置更新要求,FMC使用人工调谐的DME或VOR/DME电台继续更新位置。

只使用DME信息时,FMC位置确定更精确。最精确的方法是使用DME:DME 自动调谐,因为FMC根据最佳几何位置选择电台。由于VOR固有的方位误差(特

别是在人工调谐时),根据VOR/DME更新确定的位置精确度较差。如需要,飞行组可抑制使用某一特定VOR/DME台的VOR方位或DME信息。

FMC位置更新时,FMC会自动排除不可靠的助航数据。在某些情况下,导航台的一些误差可能会满足“合理的标准”而向FMC提供不准确的无线电位置。最容易出现的一种情况是在刚起飞后出现无线电更新。通常表现为接通水平导航后突然发生航向修正。地图上可看到位置漂移,它将所需的航迹和跑道符号移到明显不同于地面滑跑时显示的位置。这时FMC仅根据惯性基准系统位置信息导航,如飞行组发现这些指示且随后是长时间的仅惯性基准系统导航的飞行,应密切监视FMC位置。

航空公司运行管理系统(FOC)解决方案

航空公司运行管理系统(FOC)解决方案 1.方案简述 1.1 FOC的定义 FOC(Flight Operations Control)是一个对航空公司进行运行管理的系统,它囊括了公司运行所涉及到的各部门的职能,同时还应与公司进行机务、商务管理的系统建立接口,以及与机场和空管局等相关单位的生产系统建立接口。 1.2 FOC总体结构 目前,各航空公司FOC系统根据其特点会有所不同,但从总体上包括的内容基本上是一致的,下图描述了航空公司FOC系统的总体结构。 1.3 建设目标 航空公司通过FOC系统的建设,基本上可以实现运行管理的自动化、规范化和信息化,具体体现在:

1. 建立整个航空公司的数据仓库,对历年的航班时刻数据、飞机的性能数据、全球的导航数据、各航班的运营数据等等进行有效的管理。一方面可以为本系统所用,同时也可以为其它系统提供数据上的有力支持。 2. 对航班运行计划进行有效的管理,确保各部门是按照同一份航班计划来工作,避免产生工作脱节现象。 3. 有效及时地监控公司航班的执行情况,并根据实际情况(如天气、延误、旅客人数等)对航班进行合理有效地调整。 4. 根据各方面汇总的信息(如油量、机组、飞机、气象、NOTAM等)对飞机进行放行评估,保障飞机飞行的安全性。 5. 建立ACARS、SITA、AFTN等报文系统的接口,提高获取信息及发送信息的效率。 6. 制作计算机飞行计划,在最大程度上节约燃油成本,保障飞行安全。 7. 对本公司飞机的飞行进行全程监控,保障飞行安全。 8. 提供多种信息的网上查询手段,为旅客提供方便;同时也为相关人员的航前准备提供方便。 1.4 系统特点 安全性:通过对用户的有效管理,可有效防止非法用户登录和修改数据;通过应急系统的的设计,使主系统出现故障时仍能开展基本的工作。 可扩展性:完全按照IATA AHM和SSIM标准对系统数据结构进行设计,保证系统在今后的建设中可以基本不对目前系统进行修改;通过接口的方式,提供与其它系统的数据交换,可在必要的情况下对系统体系不做修改而增加数据的来源。 高效性:通过基于消息的数据传输,提高对关键数据的响应速度,并有效减轻系统的负荷。 数据完整性:通过对数据库备份方案的严谨设计,以保证在出现硬件故障的情况下,能够尽可能完整地恢复系统数据。 容错性:通过各种数据来源之间的相互备份关系,保证在部分数据源出现故障的情况下,系统仍然可以正常运行。

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

飞机维修大作业

一、我国民用航空器维修市场的总体概况 航空器维修市场可以分为5块业务:航线维护、飞机深度检修、发动机维修、部附件修理和飞机翻新与改装。我国航空器维修服务市场主体的构成可以分成3类:一类是航空公司的附属企业为本公司自己进行飞机、发动机或部附件维修;一类是某个航空公司维修企业为其他航空公司提供维修服务;还有一类是独立维修单位,为航空公司提供飞机、发动机或部附件的维修服务,以及由机场维修部门负责提供航线维护维修服务。截止到2002年,国内共有CCAR-145部批准的维修单位280多家,具有航线维修许可证的单位有141家,具有维修基础执照的从业人员达到15000多人。 近些年,国内整体维修能力呈快速发展的态势,从最初的航线维修和简单定检工作已发展到能进行飞机、发动机的大修和绝大多数部附件的修理。在市场上不仅出现了AMECO、GAMECO、SNECMA、摩天宇等合资独资企业,还出现了众多民营部件维修企业。部件国内修理率在不断提高,使维修成本占航空公司运行成本比例逐渐下降。 根据民航总局2000年度的调查,国内航空维修市场规模达24亿元,国外送修部分为65%,达到15.6亿元。2001年的调查显示,透过外商的投资与技术移转,国内现在已经可以承接30~40%国内航空器零部件的维修工作。 中国加入WTO之后,外资投资国内航空维修业的速度惊人。由于国家修改外资投资中国民航产业的规定,外商与中国的航空维修合作日益增加,法国航天、新加坡盈申集团、欧洲直升机公司等外资都宣布将会在中国设置维修厂,以便就近为中国市场的客户服务,以致国内维修市场的竞争日趋激烈。 二、中国民航机务维修系统资源(截止2009) 1、国内航空公司和机队发展概况 截至2009年10月底,国内依据CCAR-121部运营的航空公司共34家,注册在用大型运输航空器共1399架;依据CCAR-135部运营的航空公司共10家,注册在用小型航空器74架;依据CCAR-91部运营的通用航空公司68家,注册在用通用航空器650架。 国内运输航空器机龄分布情况为整个机队的平均机龄为6.7年,其中0-5年(含5年)机龄的航空器数量为716架,占51%;20年以上的航空器数量为13架(主要波音737-300F、波音737-300QC和S-76A飞机),仅占1%,当前老龄飞机(通常指机身年龄超过15年的飞机)占比并不高,但是11-15年机龄的航空器(245架,占18%)未来5年将陆续进入老龄飞机状态,对机队的运营安全管理要求将越来越高。 国内运输航空器运行和备份的发动机总数量为3134台,其中CFM56系列发动机数量最多,占一半以上,主要安装在波音737系列、空中客车A320系列和空中客车A340系列飞机上。 2、CAAC批准的维修单位概况 截至2009年年底,CAAC批准的国内维修单位为370家(包括91家仅实施航线维修工作的维修单位和34家运输航空公司的维修单位),国外/地区维修单位为332家。

Java课程设计-----飞机航班管理系统

一.引言 1.1项目的名称 飞机航班信息管理系统 1.2项目背景和目标 飞机航班信息管理系统主要能够查询飞机的航班情况,飞行线路,票价,折扣等等情况,并能够在数据库中更新维护飞机航班的信息,对飞机航班 数据库进行管理,如航班的增加,删除和修改等。我们的目标就是为该系 统提供后台连接数据库程序设计以及前台用户界面设计。 1.3项目的可行性研究 设计此系统需要java面向对象编程基础,数据库应用知识以及功能分析。 根据目前所开设的课程,学生已经具备这样的知识,有能力综合java编 程知识和数据库应用知识做出一个这样的飞机航班信息管理系统。二、需求分析 2.1系统概述 此系统提供给系统管理员和用户。系统管理员登陆后可以对飞机航班信息进行管理,如:添加飞机航班信息,删除飞机航班信息,修改飞机航班属性。用户登陆后能进行飞机航班信息查询,订票以及退订。 2.2系统运行环境 Java运行在eclipse软件上,数据库用mysql数据库 2.3功能需求描述 用户选择相关的服务项目可以查看相关航班基本信息,并且可以根据自己需求选择相应服务,系统的信息更新时,相关的信息经过相应处理后,会存入到飞机航班数据库中的航班信息记录表中;系统管理员根据航空公司实际情况可以更新航班信息,并通过修改信息处理后被保存到飞机航班表中。

三、系统设计 开发与设计的总体思想 飞机航班信息管理系统主要分为用户和系统管理员2类,因此也将该系统分为2个相应的大的功能模块。 用户可以通过服务项目选择查询相关航班情况,进行订票,退订等服务项目。系统会将数据库中相应信息反馈给顾客。 系统管理员负责管系统信息的及时更新,可以根据航空公司航班的具体的情况更新数据库。 系统模块结构图

飞行区围界管理系统规定

飞行区围界管理规定版本:01 编号:飞行区施工管理-G03 签发人:日期:2009-08-05审阅人:陆柯 编写人:畅 1.0 飞行区围界概述 1.1 飞行区围界作用或功能 首都机场飞行区围界是用于将飞行控制区与公共区进行有效隔离。其主要功能是防止任何人员从围界进入飞行控制区对空防造成的影响而采取的一种物理防设施。因此,围界应具备一定的防攀扒、防钻入功能。 飞行区围界实体长度是34.8KM(不含围界上建筑物),围界设施及其外3米的围是飞行区管理围。 1.2 围界分类及技术标准 1.2.1 围界的分类 首都机场飞行区围界依据各区域特点及使用时限不同,分为正式围界、临时围界和其它围界(防窥板) 1.2.2 围界的技术标准 飞行区围界技术标准是依据《国际民用航空公约—附件十七》、《民用航空运输机场安全保卫设施建设标准》、《民用机场飞行区技术标准》等规章而制定。 1.3 围界的细节描述 钢筋网围界(标准围界)

V型网 外挂刺圈 网片 桩柱 地梁 1.4 飞行区围界分布图 2.0 围界巡视及维护 围界巡视的目的是保障飞行区围界设施完好,并对巡视中发现的围界

破损及时进行修补。同时,围界巡视应针对不同围界特点,及时发现围界及围界周边可能存在的安全隐患,并采取有效的防措施,确保首都机场飞行区的运行安全和空防安全。 2.1 围界巡视检查 围界巡视维护工作包括日常性检查和周期性检查。 2.1.1 日常性检查 日常性检查的目的是及时保证现有的围界与围界建设标准一致,已确保围界的完好性。 日常检查围:围界立柱、网片及V型网、刺圈、围界底部及地梁以及围界立柱与网片之间的连接件等部位。 日常检查以工作人员每日通过徒步行走,以看的方式检查围界外观,还要对立柱及网片等关键部位用手触碰等方式进行检查。 注:人工检查Z2滑行东桥附近围界等距离滑行道中线较近的围界时,应注意避让航空器。 2.1.1.1 检查标准及措施 1)刺圈

ATA 22 自动飞行系统

ATA22 AFS自动飞行系统 自动飞行系统是现代化数字系统,它能在飞机的整个飞行过程中,从起飞到自动进近着陆和滑跑,为飞机提供制导。它是目前最先进的自动飞行系统。 一、AFS简介: 1、基本工作原理: 图22——1 自动飞行系统(AFS)用飞机传感器提供的所需信息进行飞机位置计算。另外,在它的存储器中有几个飞行计划,这些飞行计划由航空公司预制。每个飞行计划包括一个从离港到到达目的地的完整的飞行过程,包括垂直信息和中途的航路点。 知道了飞机位置和设置的飞行计划(由飞行员选择的),该系统能计算出指令信号送到飞行控制系统和发动机控制系统,以使飞机按飞行计划飞行。 2.基本组成: 图22——2

自动飞行系统(AFS)可分为四个主要部分: ——飞行管理(FM) ——飞行制导(FG) ——飞行增稳(FA) ——故障隔离和探测系统(FIDS) 前两部分功能由飞行管理与制导计算机系统(FMGCS)实现。 后两个功能由飞行增稳计算机系统(FACS)实现。 3.飞行管理与制导计算机系统(FMGCS) 图22——3 飞行管理(FM)部分主要提供飞行计划的计算。飞行计划包括纵向和横向制导功能。 飞行制导(FG)部分主要有以下三个功能: ——自动驾驶(AP) ——飞行指引(FD) ——自动油门(A/THR) FMGCs飞行管理与制导功能是由两个多功能控制显示组件(MCDU)和一个飞行控制组件(FCU)控制。 一般由MCDU提供机组与FMGCs之间的长期信息接口(如:飞行计划的选择和修改);而FCU提供短期的信息交换接口(如:AP自驾,FD飞行指引和A/THR自动油门功能的衔接)。 除MCDU和FCU外,FM和FG的信息主要显示在EFIS电子飞行仪表系统的显示器上,即主飞行显示器(PFD)和导航显示器(ND)。 (1)自动驾驶(AP)/飞行指引(FD)

飞行区管理部安全知识考试要点

飞行区管理部安全知识考试要点 一、单选 1、深圳机场目前正式机位总数95个,其中廊桥机位:24个;可停靠地最大机型是B747机型,T3建成后廊桥机位62个. 2、深圳机场一跑道长为3400 米,宽为45 米,(A)深圳机场二跑道长为3800 米,宽为60 米. 3、所有进入机坪内车辆环场路时速不得超过30km/h;航站楼卫星厅周边行车道时速不得超过15km/h;其他区域行车道时速不得超过25km/h. 4、《民用机场管理条例》地规定:在运输机场开放使用地情况下,确需在飞行区及与飞行区临近地航站区内进行施工地,应当取得机场所在地地区民航管理局地批准. 5、安全管理体系(SMS)地核心是风险管理. 6、航空器紧急事件地应急救援等级分三类:紧急出动;集结待命;原地待命. 7、机场管理机构应当至少每2年举行一次机场应急救援综合演练;机场应急救援机构应当有针对性地每年至少举行1次单项演练. 8、机场管理机构、航空运输企业及其他运行保障单位应当每年至少对其在机场控制区工作地员工进行一次复训和考核,复训时间不少于24学时. 9、民航总局第75号令中规定,车辆在航空器活动区行驶时地时速不得超过25 公里/小时. 10、根据民航局应急救援90号令地规定,机场救援范围为8KM. 11、民用航空器在运行过程中发生1人死亡(与航空器运行有关)构成重大飞行事故. 12、航空器遭受鸟击发生率最高地部位是发动机. 13、采用驾车方式检查时,除驾驶员外车辆上应当至少有一名专业检查人员,并且车速不得大于多少45公里/小时. 14、未经塔台管制员许可,人员、车辆进入运行中地跑道、滑行道地,由民航总局或民航地区管理局给予警告;情节严重地,对责任单位处以30000元地罚款. 15、《民用机场管理条例》规定使用无线电台(站)或者其他仪器、装置,对民用航空无线电专用频率地正常使用产生干扰地,情节严重地,处2万元以上10万元以下罚款 16、飞行区指标Ⅱ:按使用该机场飞行区地各类飞机中地最大翼展或最大主起落架外轮外侧边地间距,分为A、B、C、D、E、F六个等级,两者中取其较高等级,D类飞机翼展为36~<52米. 17、《民用机场使用许可规定》第四条明确规定:机场管理机构应按照本规定地要求,制定机场使用手册,并保持机场持续地符合运行基本要求. 18、深圳机场遇有热带风暴、台风、洪涝灾害等不正常情况时,按哪《深圳宝安国际机场三防应急处置预案》方案进行处置. 19、消防工作应贯彻预防为主,防消结合地方针,坚持专门机关与群众相结合地原则,实行防火安全责任制. 20、航班滑出后又滑回属保障服务事故征候. 21、进入航空器停放安全地带地保障车辆速度限制是5公里以内. 22、深圳机场15/33跑道飞行区等级为4E,16/34跑道飞行区等级为4F. 23、进入控制区地人员必领佩戴统一制发地隔离区通行证,并主动接受安全人员地检查,证件失效或不符者不得进入控制区.

飞行管理系统

第16章飞行管理系统 16.1飞行管理系统概述 随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。 16.2飞行管理系统的组成和功能 16.2.1飞行管理系统的组成 飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括: (1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心; (2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。 驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统 16.2.2飞行管理系统的功能 FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。 FMS在各飞行阶段的性能管理功能: (1)起飞前 通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。 (2)起飞 根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。 (3)爬升 根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。 (4)巡航 FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。 (5)下降 FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。 (6)进近 FMS以优化速度引导飞机到达跑道入口和着陆点。 16.2.3飞行管理计算机系统 由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

8202-38_飞机监修管理程序_V5R51【民用航空器维修人员考试】

旗开得胜 读万卷书行万里路1 1概述与适用范围 1.1本程序阐述飞机外委维修过程中的监修管理程序。 1.2本程序适用于工程部、发动机管理中心、生产计划部、质量部、航空器材部、航线维修部(含分维修地点及分支维修机构)、基地维修部、福州分公司机务部。 1.3程序属性 ■CCAR121 □CCAR145航线□CCAR145定检/部件 2依据文件 2.1AC-121-66 《维修计划和控制》。 2.2《维修工程管理手册》“航空器使用和维修计划”。 2.3《维修工程管理手册》“航空器定期检修”。 3术语和定义 监修:根据飞机送修合同对送修飞机实施监督修理的全过程。 4要求 4.1所需的人员岗位 4.1.1生产计划工程师、航班计划工程师、附件监控工程师 4.1.2授权检验员、质保工程师、质量部主管 4.1.3工程工程师、工程部主管、动力工程师、发动机管理中心主管 4.1.4航材库管理人员、航材计划人员 4.1.5整机放行人员、维修人员、工艺工程师、维修工程师 4.2职责 4.2.1生产计划部: a)根据监修项目组的要求,与承修方协调,动态调整飞机送修涉及的维修项目; b)了解飞机监修过程中出现的可能影响送修周期的问题,视情调整飞机送修计划和送修周期; c)接收监修项目组提供的附件拆换数据并在ARMS系统完成录入工作。

旗开得胜4.2.2质量部: a)负责飞机监修的组织工作,组织成立飞机监修项目组; b)了解监修工作的实施情况;监督监修项目组的工作,处理飞机监修过程中产生的重大质量问题。 4.2.3工程部、发动机管理中心:负责飞机监修过程中出现的重要修理项目、超标准修理项目方案的审核,为飞机监修工作提供必要的技术支持。 4.2.4航空器材部:负责飞机监修项目的航材保障和控制。 4.2.5各维修单位:负责派遣符合条件的工程师或维修人员参加飞机监修工作。 5规定 5.1监修项目组由以下成员组成: a)监修组组长:负责总体协调和控制飞机送修的成本、送修的周期和送修的质量; b)技术代表:负责监修项目的技术支持; c)质量代表:负责监修项目的质量控制; d)航材代表:负责监修项目的航材保障和控制。 5.2监修项目组由质量部组织成立,报飞机维修工程部总经理批准后生效。 5.3监修项目组应该需对在飞机接收检查中无法验证或检查的项目、重要维修工作项目进行现场监修,并确保委托维修单位: a)遵守中国民航适用的适航规章和要求; b)拥有获得民航局批准或认可的维修管理手册和相应的工作程序; c)所有的维修都按照厦航的维修协议及相关要求进行。 5.4监修项目组对监修过程中发现的问题进行记录,及时向承修方提出并责成其更正。 5.5监修项目组代表厦航实施飞机监修工作,包括但不仅限于完成: a)及时向工程部、发动机管理中心报告飞机监修过程中出现的重要修理项目、超标准修理项目; b)根据送修周期定期向质量部报告监修飞机的生产计划、进度和质量问题; c)在监修过程中与飞机维修工程部相关部门联络,以解决监修过程中存在的各类问题; d)负责送修的飞机及相关航材、设备、技术资料、维修记录等与飞机维修工程部相关部门的交接 读万卷书行万里路 2

飞行管理系统介绍

飞行管理系统介绍 一、飞行管理系统(FMC)组成和基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成:1、飞行控制系统(DFCS) 包括自动驾驶(A/P)和飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)和飞行指引。 2、自动油门系统(A/T) 其核心是一台自动油门计算机和两台发动机油门操纵的伺服机构,A/T 提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心是一台飞行管理计算机FMC和两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面和纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准和定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A和34N型飞机装备的是电子飞行仪表系统,3T0型飞机装备的还是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)和两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

(二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用是:1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错和失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重和环境温度提供最佳目标推力。(2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力和目标空速的设定。 (3)巡航(CRZ)—提供最佳高度和巡航速度,以及大圆航线和导航系统的选择和自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度和分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度和距离转入进近阶段。(5)进近(APP)—确定飞机在五边进近基准点时的高度、空速和距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油和飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)和自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序和辅助正常程序 1、正常程序 所谓正常程序就是自动飞行的标准程序,可分为如下七个飞行阶段:(1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提

基于RFID技术的飞机维修工具管理系统

基于RFID技术的飞机维修工具管理系 统 1.项目背景 高昂的维修费用占航空公司的支出费用最高可达到百分之二十,这是一个十分沉重的负担,在航空器的使用过程中,维修成本可达整个购买费用的三分之二。目前,331家国外/地区的维修单位,包括35家运输航空公司的维修单位在的389家国内维修单位得到了中国民用航空器的批准。我国民用航空业的增速较快,实现了跨越式的发展,目前我国民用航空器超过了1300余架,在整体维修保养方面的费用可达上百亿人民币。航空公司的安全准点运营离不开飞机的维修保养,良好的维修保养可以大大降低航空公司的运营成本。优秀的飞机维修团队是一个航空公司成功的重要因素。 当前世界各国航空市场增长迅速,包括A380、B787等新机型陆续投入使用,维修工具不管是数量还是种类都不断增加,它们的使用、保养,还有各种借还记录等工作十分繁琐复杂,时常出现各种差错,工具的借出和归还需要花大量的时间清点检查。目前各大民航企业在工具管理上都不同程度存在重视前期配备、轻视后期管理的现象,只有部分工具使用频繁,甚至有少量工具存在从未使用过的情况。针对这些现场,就需要有一个完善的工具管理方法来进行科学化的管理,也就是工具管理要有计划性、要能自动化。另外,随着民航企业对空防安全要求的日益提高,对借出的在飞机上使用的工具进行实时监控管理也将成为一种需要。

2.现状分析 航空维修是一项精细作业,工具的质量、精度、完整性等都影响飞机维修的质量,以至于影响飞行安全。工具的科学管理可以保证工具有效可用,并保证工具完好,不会缺失,所以要进行工具科学管理的研究。在飞机维修过程中使用的各种工具,同资料、设备一样,是飞机维护人员的左膀右臂。在日常的维护工作中,经常使用成百上千件工具,它们的种类繁多、规格复杂、数量很大。因此工具的科学管理,对单位的安全生产、提高劳动效率、改善维护质量、减小劳动强度、加速流动资金周转,都有着十分重要的意义。 目前,维修单位工具管理的主要任务是将合适的工具供应给各维护队伍;做好工具的分类编号;建立健全工具的清点制度;对需要修复、更换的工具,及时进行修复更换。但是由于缺乏足够的信息化手段,还停留在人工管理的初级阶段,各维修单位历来丢失的工具不在少数。 3.技术简介 RFID无线射频识别技术是利用雷达反射原理,通过天线向电子标签发出微波查询信号,电子标签被读写器微波能量激活,接受到微波信号后应答并发出带有标签数据信息的回波信号。射频识别技术的基本特点是采用无线电技术实现对静止的或移动的物体进行识别,达到确定待识别物体的身份、提取待识别物体的特征信息(或标识信息)的目的。 通过射频识别系统采集到的待识别物体的特征信息通常情况下先由中间软件进行处理,或直接将采集到的识别信息通过计算机信息处理技术(如数据库技术等)及计算机网络技术(Intranet & Internet技术)实现信息的融合、共享、远距离传送等直接服务于有关的业务应用系统。 基于RFID的飞机维修工具管理可以成为先进航空公司的重要组成部分,可以使得整体维修工作高效、快捷,是航空公司持续安全准点的运营的重要

飞机航班管理系统

飞机航班管理系统数据库设计 1 概述(设计题目与可行性分析) 1.1设计题目 本次课程设计的题目是飞机航班管理系统设计。根据给出初始条件建立一个管理飞机航班的数据库,能够从中查询飞机的航班情况,飞行线路,票价,折扣等等情况。并能在数据库中更新维护飞机航班的信息,进行需求分析、概念设计、逻辑设计和物理实现,实现飞机航班数据库,并且基于该数据库实现具有一定功能的应用程序。 1.2可行性分析 对于飞机航班管理,航空公司里可能有很多飞行班次。简单的书面管理无法满足对客户的服务需求和自身的高效运作。该系统实现后可对航班进行科学的微机管理,也使得用户可以直接在网上享受对航班的查询,订票,退票等服务,大大提高管理效率和服务水平。综上,飞机航班数据库是值得去现实的,下面从技术可行性、经济可行性和操作可行性3个方面进行分析: (1)技术可行性:与飞机航班管理数据库相类似的一些数据库,如学生学籍数 据库等都早已实现,为该数据库的设计和实现提供了一定的经验。同时 市场上和数据库相关的一些技术都发展的十分成熟了,如微软开发的 mssql、甲骨文开发的oracle、开源免费的mysql等都可以支持不同种类 数据库的开发。因此,该数据库的设计和实现在技术上是可以行得通的; (2)经济可行性:该飞机航班数据库设计并且实现后,可供用户相关的航班 服务,一方面可以节省部分人力资源减少对大量客户直接接待的费用, 提高工作效率;另一方面也可以更为科学和合理的管理飞机航班系统, 对其进行及时管理,以提高公司的服务水平。因此,该数据库的的实现 在经济上是可行的;

(3)操作可行性:通过基于飞机航班管理数据库的相关的应用系统的实现, 用户即便不是数据库方面的专业人员,只要懂得计算机相应的输入输出,在系统的提示下就可以完成对飞机航班数据库的相关的操作。因此,具 有操作可行性。 总体上来看,可以在尽可能短的时间里,以最小的代价实现飞机航班数据库及其相关的应用系统,供航空公司对其航班进行更科学的管理,使用户获得更方便的服务。 2系统目标和建设原则 2.1系统目标 飞机航班数据库的设计和实现需要航空公司根据自己的需求对本公司的飞机航班进行科学高效管理,并为用户提供方便实用的系统服务。数据库中需要保存航班的基本信息、并对航班信息做出及时的更新和维护。飞机航班主要包括1个记录表,此表包含航班的航班号,飞行时间,飞行路线,机票价格等信息,系统应对这些信息进行及时更新和维护。除了这些飞机航班数据库的基本组成表之外,该数据库的设计和实现还应当便于相关的应用程序开发人员的理解相关的信息,方便的进行相关的数据库操作,尽可能的为应用系统效率的提高奠定基础。 2.2建设原则 数据库建设实质数据库应用系统从设计、实施到运行维护的全过程。数据库建设的基本规律是“三分技术,七分管理,十二分基础数据”。在数据库建设中,开发技术固然重要,但是管理更为重要,而且包括项目管理和企业的业务管理。经过长期的实践,人们越来越深刻的认识到一个企业数据库设计的过程是企业管理模式的改革和提高的过程,只有把企业的管理做好才能实现技术创新,才能建设好一个数据库应用系统。“十二分基础数据”则强调了数据的收集、整理、组织和不断更新是数据库建设中的重要环节,基础数据的手机、入库时数据库建立初期工作量最大、最繁琐、最细致的工作,在以后数据库运行过程中更需要不断的把新的数据加到数据库中,使之成为一个“活库”,具有更高的使用价值。 同时,我们还不得不在进行结构设计的同时,也注意行为设计。数据库设计应该和应用系统设计相结合,也就是说,整个设计过程要把数据库结构设计和对

飞行区场地管理计划方案材料

第三章飞行区场地管理 3.1 概述 3.1.1 范围 飞行区场地主要包括跑道、升降带、跑道端安全区、防吹坪、净空道、滑行道、停机坪以及排水系统、其他土面区、围界、巡场道等。 3.1.2 目标 本章的目的是明确延安机场飞行区场地设施运行标准,建立飞行区场地巡视检查、维护保养和管理制度,通过标准、制度的落实,不断提高管理水平,确保飞行区场地设施符合《民用机场运行安全管理规定》、《民用机场飞行区技术标准》、《民用机场飞行区场地维护技术指南》等法律法规、技术标准的要求,始终处于适航状态。 3.2 安全目标 3.2.1 不发生因跑道、滑行道和机坪不符合标准而造成的飞行事故; 3.2.2不发生因跑道、滑行道、机坪、围界基础设施保障原因而造成的飞行事故征候; 3.2.3不发生因围界破坏入侵而造成的破坏航空器,劫持航空器、爆炸航空器空防事件; 3.2.4不发生因巡场路不符合标准而造成的道路交通安全事故; 3.2.5不发生因管理不到位造成的其他重大(含)以上安全事故。 3.3 组织机构图及职责 3.3.1 组织机构

3.3.2机场管理部及场务队职责 (1)负责飞行区道面的日常检查维护工作; (2)负责飞行区土面的日常检查维护工作; (3)负责飞行区围界、排水设施等的日常检查和维护工作;(4)负责飞行区割草、土面区碾压工作; (5)负责道面除冰雪等和场务机具日常维护保养工作。 3.4 管理工作主要依据 3.4.1法律、法规、标准及相关文件 《民用机场运行安全管理规定》 《国际民用航空公约附件十四》 《民用机场飞行区技术标准》 《民用机场安全信息管理规定》 《民用机场航空器活动区道路交通管理规则》 《民用机场飞行区场地维护技术指南》 3.4.2 相关参考文件 ICAO《机场勤务手册》 ICAO《机场设计手册》 ICAO《机场规划手册》

飞行管理系统介绍

飞行管理系统介绍 飞行管理系统介绍 一、飞行管理系统(FMC)组成与基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成: 1、飞行控制系统(DFCS) 包括自动驾驶(A/P)与飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)与飞行指引。 2、自动油门系统(A/T) 其核心就是一台自动油门计算机与两台发动机油门操纵的伺服机构,A/T提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心就是一台飞行管理计算机FMC与两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面与纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准与定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A与34N型飞机装备的就是电子飞行仪表系统,3T0型飞机装备的还就是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)与两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

飞行管理系统介绍

飞行管理系统介绍 (二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用就是: 1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错与失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重与环境温度提供最佳目标推力。 (2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力与目标空速的设定。 (3)巡航(CRZ)—提供最佳高度与巡航速度,以及大圆航线与导航系统的选择与自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度与分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度与距离转入进近阶段。 (5)进近(APP)—确定飞机在五边进近基准点时的高度、空速与距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油与飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)与自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序与辅助正常程序 1、正常程序 所谓正常程序就就是自动飞行的标准程序,可分为如下七个飞行阶段: (1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提供俯仰指令,起飞后400英尺RA高度以上,A/P衔接,同时选择L NA V(水平导航)与V

【民航】飞机维修控制和生产准备管理

版本:03-01 1.主题内容与适用范围 1.1主题内容 本程序阐明了东航各维修单位完成对航空器、航空器部件进行的航线维修、定期检修、工程指令执行、修理和其它维修工作的维修准备和生产控制。 1.2适用范围 本程序适用于东航工程技术公司各职能部门、维修单位。 子公司维修单位参照本程序执行。 1.3程序属性 ■CCAR-121■CCAR145航线■CCAR145定检/部件 2.引用文件和术语 2.1引用文件 2.1.1AC-121-66《维修计划与控制》 2.1.2东航工程手册MUEM第5章《维修计划与控制》 2.2术语 本程序采用《维修工程管理手册》和《维修管理手册》的有关术语、定义以及下述术语: 2.2.1维修计划:本程序所讲的维修计划是指按照飞机维修方案的要求所进 行的各类飞机检修工作的生产安排。它包括飞机的字母检、结构检修以及加改装和监控项目等。 2.2.2生产指令:指维修计划与控制部门为落实其维修计划和生产控制而发 布的命令。工程技术公司生产指令来自于下述5个方面: 1)维修计划与控制部门发布的航班计划及保障要求; 2)维修计划与控制部门发布的计划性维修工作指令(包括CMP项 目、EO、时控件和各类监控项目,如飞机缺陷、保留故障、保留维修工作程序页次:4-2-1

版本:03-01 工作项目等); 3)维修管理部MCC根据其对机队技术状态的监控情况,采取事后 干预或过程介入的方式,为指导维修单位排除重复性、疑难性故 障发出的生产指令,以及为及时解决航班不正常问题而进行的资 源调配指令(该指令通常以NRC、传真、邮件、电话形式或通过 点对点等通知方式进行发布); 4)维修管理部MRC发布的资源调配指令; 5)生产保障部为落实生产准备而签发的各类指令。 2.2.3指令维修:工程技术公司各维修单位根据生产指令,按照经批准的标 准完成指定的维修任务。 2.2.4维修生产指令单:指维修计划与控制部门根据维修需要向维修单位下 达维修任务的凭证。 2.2.5维修准备指令单:指维修计划与控制部门根据维修需要向生产保障部 下达维修准备任务的凭证。 2.2.6维修项目:包括A检、C检、大修等定检工作包项目、EO/TO项目、 时控件监控项目、生产监控项目、保留工作项目、故障保留项目、附加工作指令项目、非例行工作项目、暂缓修理项目等。 3.要求 3.1所需的人员岗位 1)飞机维修控制、机型/机队计划、工作单编制、部附件监控; 2)航材计划采购控制、生产保障运行管理、工具设备管理、飞机维修 设备保障、飞机维修设施保障; 3)机电系统工程管理、发动机/APU工程管理。 3.2需要的资料、工具和器材 无特殊要求。 3.3职责 3.3.1东航工程技术公司职能部门职责 维修工作程序页次:4-2-2

1.2-1:深圳机场飞行区相关管理单位职责

深圳机场飞行区相关管理单位职责 一、深圳宝安国际机场安全管理委员会办公室(机场公司安全管理部) (一)监督、检查、指导飞行区管理部对飞行区的安全管理工作。 (二)负责协调、研究有关飞行区安全管理的重大问题。 (三)负责飞行区基础设施合规性检查与监督整改。 (四)负责调查处理情节较严重的飞行区不安全事件。 (五)负责本手册的维护管理,定期检查、评估本手册的执行情况。 二、深圳市公安局机场分局 (一)负责深圳机场航空器活动区机动车号牌、行驶证、通行证、驾驶证的核发、回收。 (二)负责组织对已申领深圳机场航空器活动区机动车号牌的机动车年度检验或临时检验。 1

(三)负责深圳机场航空器活动区地面重大交通事故的调查处理。 (四)负责对机场各生产保障单位的危化品、管制物品管理情况开展检查、监督。 (五)负责接收机场各区域审核单位提交的控制区生产作业使用危化品、管制物品审核备案资料。 (六)负责对违反危化品、管制物品相关规定的单位和人员依法予以处理。 三、新闻中心 (一)媒体拍摄、采访的准入审核。 四、飞行区管理部 (一)负责飞行区适航保障(道面管理、灯光保障、鸟击防范)与管理,依据行业技术标准对航空器活动区实施管理与维护工作。 (二)负责飞行区物理围界、消防管网、供电照明、供排水等设施设备的巡视和维护管理工作。 1

(三)负责飞行区排水系统与雨排水泵站的维护与管理。 (四)依据国家、行业要求对飞行区施工与不停航施工管理。 (五)负责飞行区安全、服务管理,承担机场安委会下设机坪运行安全暨外来物管理专项领导小组、鸟击防范专项领导小组及跑道安全专项领导小组三个小组的日常办事机构职责。 (六)负责对进入飞行区的设备(车辆、非机动车及无动力设备)进行准入审核与管理,负责深圳机场航空器活动区机动车年度检验合格标志的核发。 (七)负责航空器活动区机动车驾驶证的申领考试和年度审验,对内场驾驶员实施管理。 (八)负责飞行区管制物品准入审核和管理,并对各单位落实情况进行检查、监督。 飞行区管理部各部主要涉外业务 部门名称主要涉外业务 1

相关文档