文档库 最新最全的文档下载
当前位置:文档库 › 电位分布、跨步电压和接触电压试验

电位分布、跨步电压和接触电压试验

电位分布、跨步电压和接触电压试验
电位分布、跨步电压和接触电压试验

电位分布、跨步电压和接触电压试验

当发生接地故障时,若出现过高的接触电压或跨步电压,可能发生危及人身安全的事故。所以对电压在1000V 以上的电气设备,应测量其接触电压和跨步电压。在发电厂和变电所附近地区还应测量地面的电位分布。

一般将距接地设备水平距离为0.8m 处,及沿该设备外壳(或构架)垂直于地面的距离为1.8m 的两点间的电压,称为接触电压,人体接触该两点时就要承受接触电压。测量接触电压,即测量这两点之间的电压如图15-11所示。

在接地体周围的电流密度大,致使电压降也大。而电流密度的大小与距离接地体距离的平方成反比,因此在一定范围之外,由于电流密度接近于零,该处即可作为大地的零电位点。 当电流经接地装置时,在其周围形成的不同电位分布,可用下式表示,即

g g

X U x r U = (15-34)

式中 U X ——至接地体距离为x 处的电压;

U g ——接地体的电压;

r g ——接地体的半径;

x ——距接地体距离;

l 的跨步约为0.8m,所以在接地体径向地面上水平距离为0.8m 两点间的电压,

称为跨步电压。人体两脚接触该两点时,就要承受跨步电压。

测量电压分布和跨步电压,应该选择经常有人出入的地区进行。距接地体最近处,其测量间约为0.8m ,测量点数可选5-7点,以后的间距可增大到5-10m,一般测到25-50m 远处即可。

测量用的接地极,可用直径8-10mm,长约300mm 的圆钢,埋入地中50-80mm,若在混凝土或砖块地面测量时,可用26cm ×26cm 的铜板或钢板作接地体。为使铜板或钢板与地接触良好,铜板或钢板上可压重物,板下的地也可用水浇湿。

一、用电流、电压表法测量

(一)测量接触电压

测量设备接触电压的试验接线如图15-11所示。

加上电压后读取电流和电压表的指示值,它表示当接地体流过电流为I 时的接触电压。然后按下式推算出当流过大电流I max 时的实际接触电压

KU I

I U Ue ==m ax (15-35) 式中 Ue ——接地体流过电流为I max 时的设备接触电压;

U ——接地体流过电流I 时实测的接触电压,V ;

K ——系数,其值为I

I max ; max I ——发生接地时通过接地体的最大电流;

I ——测量时的实际电流。

图15-11 测量设备接触电压的试验接线

1-接地体; 2-电压极;3-电流极; 4-电气设备

(二)测量电位分布和跨步电压

测量电位分布和跨步电压的接线,如图15-12所示。

图15-12 测量电位分布和跨步电压接线之一

(a )试验接线; (b )电位分布

1-接地体; 2-电压极;3-电流极;0-表示零电位处

按图15-12(a )加电压使流入接地体的电流为I 时,将电压极为2’插入零电位0处,即在该点对接地体1’往外延伸时,其电位差不再增加,此时,如沿直线方向朝接地体1’移动,并取等距离逐点测得电压U n ,U n-1,…,U 3,U 2,U 1。然后,以U g 分别减去各点测得的电压值,即得出各点(对零电位点0)的电位分布,如图15-12(b )所示。接地体流过大电流

I max 时,的实际电位,应乘以系数K 确定。

得出各点的电位,相距0.8m 两点间的跨步电压为

Ua=K(U n -U n-1) (15-36)

式中 U a ——任意相距0.8m 两点间的实际跨步电压,V ;

U a -U n-1——任意相距0.8m 两点间测量的电位差,V ;

K ——系数,其值等于接地体流过的大电流Imax 与测量时通入的电流之比。

二、用接地电阻测量仪测量

用接地最阻测量仪测量电位分布和跨步电压的接线,如图15-13所示。

图15-13 测量电位分布和跨步电压接线之二

按测量接地电阻的方法,测得接地体的电阻R g ,然后将电压极2’移至1,2,…,n 各点,依次得r 1,r 2…,r n ,由此得

g

mxa e R U r U 1= (15-37) ???

? ??-=g n n R r U U 1max (15-38) ()g mxa

n n k R U r r U 1--= (15-39)

式中 U e ——接触电压,V ;

U n ——任意点n 的电位,V ;

U k ——跨步电压,V ;

U max ——流经接地体的实际大电流为I max 时的对地电压,其值等于大电流与接体电阻R g 的乘积,V ;

R g ——接地电阻,Ω;

R n 、r n-1——电压极置于距接地体0.8m 的位置的1时,所测得的接地电阻。

r 1——电压极置于距接地体的0.8m 的位置1时,所测得的接地电阻。

在大接地短路电流系统发生单相接地或同点两相接地时,发电厂、变电所,电气设备接地置的电压和跨步电压不应超过下列数值

t

U f

e ρ17.0174+= (15-40) t U f

k ρ17.0174+= (15-41)

式中 U e —— 接触电压,V ;

U K —— 跨步电压,V ;

f ρ——人脚站立处面的土壤电阻率,Ω;

t ——接地短路(故障)电流的特续时间,S 0。

在3-66kV 不接地,经消弧线圈接地和高电阻接地系统,发生单相地故障后,当不迅速切除故障时,此时发电厂、变电所接地的装置的接触电压和跨步电压不应超过下列数值。

U e =50+0.5f ρ (15-42)

Uk=50+0.2f ρ (15-43)

在条件特别恶劣的场所,例如水田中,接触电压和跨步电压的允许值宜适当降低。

接触电压测量

接触电压测量 接触电压擦了系列产品可分为:DF9000大型地网变频大电流接地特性测量系统,DF910K大型地网变频大电流接地阻抗测量系统,DF902K变频抗干扰接地阻抗测量仪。1、DF9000大型地网变频大电流接地特性测量系统:系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)。精确测量接地阻抗,接地电抗,接地电阻,接触电压,跨步电位差,场区地表电位梯度,接触电压,接触电位差,跨步电压,转移电位,导通电阻,土壤电阻率等参数,可全面测量大型地网的各项特性参数,完全满足新版DL/T475-2006《接地装置特性参数测量导则》的要求。2、DF910K大型地网变频大电流接地阻抗测量系统:系统输出功率大(5-20KW),输出电压(0-1000V),输出电流(0-50A)。精确测量接地阻抗,接地电阻,接触电位差,接地电抗,导通电阻,土壤电阻率等参数。3、DF902K变频抗干扰接地阻抗测量仪:系统输出功率2kW,输出电压(0-200-400V).测试输出电流(0-10A)。精确测量接地阻抗,接地电阻,接地电抗,导通电阻,土壤电阻率等参数。可满常规接地网的测量。 主要用于 1.精确测量大型接地网接地阻抗、接地电阻、接地电抗; 2.精确测量大型接地网场区地表电位梯度; 3.精确测量大型接地网接触电位差、接触电压、跨步电位差、跨步电压; 4.精确测量大型接地网转移电位; 5.测量接地引下线导通电阻; 6.测量土壤电阻率变频抗干扰接地阻抗测试:也称大地网接地电阻测试仪,变频大电流接地阻抗测试仪,大型接地网接地阻抗测试系统、接地装

置特性参数测试系统、大地网接地阻抗测试仪,接地阻抗测试仪等。 DF9000变频大电流多功能地网接地特性测量系统: 一、概述 DF9000变频大电流多功能地网接地特性测量系统是上海大帆电气有限公司和上海交通大学联合研制的最新成果,主要用于精确测量大型接地网特性参数的软硬件系统,系统主要功能:精确测量接地阻抗,接地电阻、接地电抗,场区地表电位梯度,接触电压,跨步电压,土壤电阻率,地网电流分布情况等参数。DF9000变频大电流多功能地网接地特性测量系统通过对接地网注入一个异于工频的电流,有效地避免了50Hz及其它干扰信号引起的测量误差,可精确、经济、安全的测量接地网接地阻抗,接触电压,跨步电压,场区地表电位梯度等参数,同时使得测量过程变得方便而安全。DF9000变频大电流多功能地网接地特性测量系统主要包括:大功率变频信号源、耦合变压器、高精度多功能选频万用表、Rogowski线圈及其它附件等组成。 二、系统主要技术特点 ☆采用军用电子对抗数字滤波技术,抗干扰能力极强。(关键性能) 选频特性尖锐,通频带±0.3Hz。实测200V的干扰在±1Hz偏频测量引起的误差低于0.1mV,干扰抑制能力达到万分之一以上,远胜于部分进口仪器百分之几的抗干扰能力,保证了测试精度。系统还单独增加设计有50Hz陷波器,可完全滤除50Hz工频干扰。 ☆系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)彻底解决了同类设备输出功率和电压偏小,现场难以升流的问题。目前的地网测量设备大多功率偏小,如较常见的设备输出为100V/5A

雷电冲击电压实验

实验五雷电冲击电压实验 一、实验目的: 电气设备在电力系统运行中除承受正常运行的工频电压外,还可能受到暂时过电压及雷电过电压的袭击。本实验通过实验装置及控制平台模拟产生相应的雷电冲击波,观察长气隙击穿放电现象以及通过控制台观察冲击波的波形。进而了解冲击电压发生器的功能要求及技术要求,了解其工作原理、系统组成、具体结构、以及相关操作,明确冲击电压试验的有关注意事项,掌握完整的操作流程和操作技能,初步具备开展相关试验任务的能力。 二、实验项目: 通过雷击冲击电压发生器产生高压冲击波击穿长气隙放电。 三、实验说明: 1.冲击电压在系统中的存在形式和表现: 因雷电影响会在电力系统中产生大气过电压,有2种基本形式,即直击雷过电压和感应雷过电压,它们都表现为一段作用很短的过电压脉冲。这种过电压波一般会引起绝缘子闪络或避雷器动作,从而形成冲击截波。如果过电压幅值很大,其波头上升很快,引发的绝缘子闪络或避雷器动作就可能发生在波头部分,将形成冲击陡波。 因系统的倒闸操作、元件动作或发生故障等原因,是系统状态改变,引发过渡过程,可能产生涌动的电压升高,形成操作冲击波。它是一种作用时间较长的过电压波形。 2.冲击电压的特点: 雷电冲击电压波是一种作用时间很短的过电压脉冲波,具有单极性,一般为负极性,如果引起放电,其产生的冲击电流很强。 冲击截波对电感线圈类设备可能造成更加严重的威胁,而冲击陡波对冲击陡波对绝缘子内绝缘子内绝缘的威胁更大。 操作冲击波的能量来自系统内部,其作用时间比雷电波长得多,持续的能量累积造成的损害可能比雷电波更为严重。 3.冲击电压的波形及其参数: 大自然的雷电波或实际的操作波并不一致,但为了便于研究和工程应用,对统计结果进行优化和标准化,形成工程上应用的标准冲击波,主要包括以下4种:(1)雷电冲击电压全波 参数:T1/T2=1.2/50μs 精确要求:峰值≤±3% ,T1≤±30% , T2≤±20%

发电机轴电压监测

发电机轴电压监测 众所周知,大型汽轮发电机在正常运行中都会产生的轴电压,如果不采取有效的预防措施,或者预防措施失效,都将会导致轴瓦烧伤的严重后果。国内的发电机制造商都有消除轴电压危害的规范设计,就是在发电机大轴靠近汽轮机端处轴承外侧安装一个大轴接地碳刷,并在发电机大轴靠近励磁机端的轴承底座加装可靠 的绝缘垫片。这些装置只要正确地起作用,就可以解决大型汽轮发电机转子轴电压过高导致发电机轴瓦损坏的问题,但遗憾的是,国内众多发电厂实际运行情况显示,大型汽轮发电机轴瓦烧伤的事件仍时有发生,主要原因是缺少有效的在线监测手段来保证这些预防措施处于可靠的工作状态。只有采取了有效的在线监测手段,才可以彻底避免轴电压导致轴瓦烧伤事故的发生,为了寻求有效的监测方法,还得从分析轴电压的产生原因及危害途径入手。 发电机中轴电压主要有以下几个来源: (1) 由于汽轮发电机的轴封不好,沿轴向有高速蒸汽泄漏或汽缸内的高速喷射而使转轴本身带静电荷。 (2) 由于汽轮发电机的转子表面的不平整,毛刺、转轴上的螺栓、转轴上冷却风扇等在高速旋转时与周围气体(空气、氢气)发生摩擦而产生静电荷。上述两种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地而被消除。 (3) 由汽轮机最后一级动叶上甩出的水珠所形成的静态电压。如没有提供其它更为便捷的电流通道,该电压会逐渐增大,并通过轴承的油层放电。高温蒸汽温度降低时会发生正负电荷分离,随着蒸汽冲击叶片,电荷就聚集在叶片上。 (4) 直流电压场(发电机转子电压)中的交流波,会通过直流场的线圈和绝缘的电容在轴上形成一个相对地面的交流电压。该电压包括了励磁系统中的二极管或半导体闸流管交变所产生的高频电压峰值(直流同轴励磁机也存在脉动分量,只不过由于整流子极数较多,显得相对比较平缓) 。上述两种电压都很弱,而且如果通过接地刷等允许电流流出,该电压将逐渐衰减。正因为这个原因,应使用一个高电抗仪表测量这些相对于大地的电压。 (5) 因发电机磁场回路的不对称性,在发电机轴的末端会形成一个电压。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀) ,以及定、转子之间的气隙不均匀所致。该电压很强,如果不加以阻止,会形成一股强大的轴电流从轴的一端通过轴承框架流向轴的另一端。该电压有一个频率,主要是发电机的额定频率。 (6) 由于发电机定子绕组对转子铁心间存在耦合电容,转子对轴承间存在耦合电容。而由于电路、元器件、连接和回路阻抗的不平衡,发电机三相电压不平衡实际存在,即发电机定子中有零序分量存在。三相中性点电压将不可避免地产生位移。该电压将在由发电机定子—大轴—轴颈—轴瓦—轴承支架—机组底座组成的系统中产生零序电流,即轴承变为发电机零序回路的一部分。由轴承电容产生的发电机轴电压,虽然在数值上很低,但定子绕组对转子的耦合电容越大,轴电压越高。 轴电压监测系统工作原理 1 装置介绍 监测系统由安装在控制柜内的轴电压监控器、轴电流监控器和安装在发电机汽机联轴器端上发电机转子大轴接地装置组成,接地装置见图1,接地装置接线原理图见图2。

防雷接地计算书

工程设计计算书 110kV变电站工程施工图设计阶段 工程代号: B1481S 专业:电气计算项目:防雷接地计算书 主任工程师: 组长: 主要设计人: 校核: 计算: 防雷计算

一. 避雷针的保护半径计算 单支避雷针的保护范围 当5h .0h x <时, P )2h 5h .1(r x x -= 式中: x r —避雷在 水平面上的保护半径 h —避雷针高度 x h —被保护物的高度m P —高度影响系数, 1;P 30m,h =≤ 当h m ≥120>30m 时,h p 5.5= ; #1,#2,#5独立避雷针高度为24米,站内#3架构避雷针高度为26米,站内#4架构避雷针高度为26米(此避雷针为二期),全站取被保护物高度为10米。 (1) 对于#1,#2避雷针,当10h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)102245.1(??-?= 16m = (2)对于#3避雷针,当10h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)102625.1(??-?= =19m (3)对于#5避雷针,当5h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)52425.1(??-?= =26m

二. 两支避雷针的保护范围 1 两支等高避雷针的保护范围: (1) 两针外侧的保护范围按单支避雷针计算: (2) 两针间的保护最低点高度O h 按下式计算: 7P D h h o - = 式中:O h —两针间保护范围上部边缘最低点高度,m ; D —两避雷针间的距离,m ; (3) 两针间x h 水平面上保护范围的一侧最小宽度x b 按下式计算: 当o x h 2 1 h ≥ 时, )h h (b x o x -= 当o x h 2 1h < x o x h 2h 5.1b -= 2 两支不等高避雷针的保护范围 (1)两针外侧的保护范围分别按单支避雷针的计算方法确定。 (2)不等高化成等高避雷针间距离: 当P h h D D h h )(21 21'12--=≥时, 三 避雷针的具体保护范围计算 两避雷针间的距离按图纸上实际数据计算 (1)#1—#2针联合保护范围(等高), D=40.2 m ,10m h x = 7P D h h o -=1 740.2 24?- ==18.3m , o x h 2 1h ≥ )h h (b x o x -==3.8103.18=-m (2)#2—#3针联合保护范围(不等高), D=34.8m ,10m h x =

跨步电压

跨步电压 一、所谓跨步电压 就是指电气设备发生接地故障时,在接地电流入地点周围电位分布区行走的人,其两脚之间的电压。 1.电气设备碰壳或电力系统一相接地短路时,电流从接地极四散流出,在地面上形成不同的电位分布,人在走近短路地点时,两脚之间的电位差叫跨步电压。 2.定义 当架空线路的一根带电导线断落在地上时,落地点与带电导线的电势相同,电流就会从导线的落地点向大地流散,于是地面上以导线落地点为中心,形成了一个电势分布区域,离落地点越远,电流越分散,地面电势也越低。如果人或牲畜站在距离电线落地点8~10米以内。就可能发生触电 3.跨步电压事故,这种触电叫做跨步电压触电。 人受到跨步电压时,电流虽然是沿着人的下身,从脚经腿、胯部又到脚与大地形成通路,没有经过人体的重要器官,好像比较安全。但是实际并非如此!因为人受到较高的跨步电压作用时,双脚会抽筋,使身体倒在地上。这不仅使作用于身体上的电流增加,而且使电流经过人体的路径改变,完全可能流经人体重要器官,如从头到手或脚。经验证明,人倒地后电流在体内持续作用2秒钟,这种触电就会致命。 二.试验结果证明 脉冲电压幅值为0.6~30千伏时,跨步电压和接触电压对牛的内部肌体没有任何损伤。 如跨步电压的幅值提高到40~70千伏,而接触电压的幅值提 1. 跨步电压的演示图 高到42~56千伏时,牛的中枢神经系统和血液循环机能受到影响。这是暂时性影响,经过休息后可以完全恢复,没有生命危险。 2.如跨步电压的幅值提高到96千伏,接触电压的幅值提高到74千伏时,牛的呼吸失常,心脏活动机能损伤,产生不可逆过程,有生命危险。 一旦误入跨步电压区,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。 3.人站在接地短路回路上,两脚距离为0.8米,人身所承受的电压,称为跨步电压。 三.危害 当跨步电压达到40~50V时,将使人有触电危险,特别是跨步电压会使人摔倒进而加大人体的触电电压,甚至会使人发生触电死亡。 四.增设接地极改变跨步电压 增设垂直接地极对于降低接触电压和跨步电压具有非常显著的作用,一是垂直极的引入,降低了地电位升(GPR),而接触及跨步电压均与GPR有着直接的关系。二是因为增设垂直极后,大部分故障电流通过垂直极流入大地,相应减少了水平导体的散流量,因此地表面的水平方向电流密度大大减少,造成水平方向电场强度大大降低。

雷电冲击过电压的理论与试验1

雷电冲击过电压的理论与试验 一.引言 电能与人类的生存、发展有密切关系,而高电压与绝缘技术是其中一个很重要的知识体系,它是支撑电能应用的一根有力的支柱。 高电压技术是以试验研究为基础的研究高电压及其相关问题的应用技术。其内容主要涉及在高电压作用下各种绝缘介质的性能和不同类型的放电现象,高电压设备的绝缘结构设计,高电压试验和测量的设备及方法,电力系统的过电压与绝缘配合、高电压或大电流环境影响和防护措施,以及高电压、大电流的应用等。 目前,随着科技的发展、经济的需要,输电电压等级越来越高,输电距离越来越长,电网结构也越来越复杂。而高电压技术对于进一步发展超高压、特高压输电继续起着重要的推动作用。一些国家正在沿着传统的“外沿发展模式”,继续开展更高一级电压。 二.雷电冲击过电压理论 雷电冲击电压是有雷电放电形成电流通过被击物体流入大地,电流脉冲在被击物体阻抗上的压降形成冲击电压。雷电放电包括三个阶段:先导放电,主放电,余光放电。主放电电流幅值较小,但电流波前时间比第一分量小得多,易造成过电压。各分量中的最大电流和电流增长最大陡度是造成被击物体上过电压、电动力和爆破力的主要因素。在余光阶段流过较长时间的电流则是造成雷电热效应的重要因素之一。 波形组成 气隙的击穿有一个最低静态击穿电压Uo,但外加电压不小于Uo仅是气隙击穿的必要条件,欲使气隙击穿,还必须使该电压持续作用一定的时间。静态击穿电压U0 是使气隙击穿的最小电压。 雷电冲击电压分为:全波,截波--雷电冲击波被某处放电而截断的波形. (1) 全波:非周期性冲击电压,很快到峰值再逐渐下降 .如图1 作图:取峰值=1.0,0.9--B点,0.3--A点,0.5--Q点, 连AB线,交1.0于C点,交横轴O1点。 O1C--波前T=(t1-t2) t f=FO1--视在波前时间 t f/T=(1.0-0.0)/(0.9-0.3) t f=T/0.6=1.67T t t--视在半峰值时间

接地计算

修改码:0 表GD118 计算书首页 工程名称湖南华润鲤鱼江发电B厂设计阶段施工图 计算书名称全厂接地装置的接地电阻、接触电位和跨步电位计算 批准: 审核: 校核: 设计: 计算日期年月日

1.总述: 本计算书为湖南华润鲤鱼江发电B厂500kV开关站防雷接地计算。计算目的是为了校验升压站接地网布置的合理性,以及接地网表面最大接触电压和跨步电压应小于允许值。计算依据为中华人民共和国电力行业标准DL/T621-1997《交流电气装置的接地》(备案号:684-1997)。 2.入地短路电流计算: 2.1 鲤鱼江发电B厂远景主结线示意图: 鲤鱼江发电A厂远景规划4?300MW机组,每两台机组以发电机-变压器组扩大单元接线形式接入发电B厂500kV开关站。由于A厂资料暂缺,暂按两台300MW机组相当于一台600MW机组等效考虑计算。 短路点发生在500kV母线上,取S d=1000MVA,U d=525kV,则: 短路电流基准值I d=S d/3U d=1000/(3?525)=1099.71A 系统零序电抗X0=0.1161(以上均为归算在统一基准值下的电抗标幺值)。 主变零序电抗标幺值X T1*=0.15?1000÷720=0.2083 启备变零序电抗标幺值X T0*=0.20?1000÷50=4 由于启备变零序电抗远远大于主变零序电抗及系统阻抗,故在零序网络图中启备变分支可忽略不计。

X 0∑= X 0//( X T1*/6) =0.1161//(0.2083/6)=0.0267 单相接地短路电流I k =28.613 kA(短路电流数据见图F2351C-D-06) 流经变压器中性点电流: I n = I k ? X 0/{ X 0+ X T1*/6} =28.613?0.1161/{0.1161+0.0347} =22.03kA 3 全厂接地网的接地电阻及接触电压与跨步电压计算: 2005年07月初,本院勘测队在鲤鱼江发电B 厂厂区内,实测93个测量点, 测量时天气晴朗,地表干燥。从测量结果看,各点的电阻率偏高,属于高土壤电 阻率地区,现取平均值1797.05Ω·m ,季节系数ψ取1.2,则ρ=ψρ0=2156.46 Ω·m 。 全厂接地网基本是以水平接地体为主,且边缘闭合的复合接地网,水平 接地体采用—60×6镀锌扁铁,接地网长度L 1=810m ,宽度L 2=405m ,接地网外 缘边线总长度L 0=2780m ,水平接地极的总长度L=21400m ,接地网面积S=328050m 2。接地网沿长方向布置的均压带根数n 1=16,沿宽方向布置的均压带 根数n 2=21。 全厂接地网接地电阻R g ≈0.5ρ/ S =0.5×2156.46÷328050 =1.88Ω 全厂接地网均压带可近似认为等间距,均压带等效根数由下式计算: n=2(L/L 0)(L 0/4S )1/2 =2?21400÷2780?(2780/4328050)1/2 =16.95≈17 (B8) 均压带直径d=0.03m 2.3 入地短路电流及接触电压和跨步电压计算: 发电厂内发生接地短路,流经接地装置电流: I=(I k -I n )(1-ke 1) =(28.613-22.03)(1-0.5) (B1) =3.29kA 发电厂外发生接地短路,流经接地装置电流: I=I n (1-ke 2) =22.03? (1-0.1) (B2) =19.83kA 入地短路电流取上述两式中较大值,I=19.83kA 本厂属于有效接地系统,按接地规程规定,全厂接地装置的接地电阻应 R ≤I 2000=198302000 =0.10Ω。 接地装置电位U g =IR g

接触电压和跨步电压

接触电压和跨步电压? 在配电变压器低压侧中性点不接地的系统中,发生单相接地故障时,接地电流通过接地装置和大地是以接地点为中心向周围的大地扩散,此时,大地表面便形成了一个电位分布区,该分布区内的不同地点便具有不同的电位。电气设备如开关等若发生接地故障,这时人手接触接地故障的设备外壳(或构架等)时,人体的手与两脚之间便产生一个电位差,这个电位差便称为接触电压。 人体直接接触带电体的一相时,就形成带电体、人体、大地构成的回路,这样造成的触电称为单相触电。

单相触电 人体的两个不同部位同时接触两相电源带电体而引起的触电称为两相触电。 两相触电 架空导线断线落地,发生单相接地故障时,人若在接地点周围(电位分布区内)行走,两脚便处于不同电位的地面上,这时两脚之间的电位差称跨步电压。接触电压的大小与发生接地故障设备离开地下接地体的远近有关;若离开接地体愈近,接触电压就愈小;反之,接触电压则愈大。 跨步电压的大小与人离接地体(点)的远近也有关;人站立处离接地体(点)愈近,跨步电压就愈大缺;反之便愈小。

跨步电压触电

怎样防止跨步电压的危害? 高压线路断线后,落在地面上,或者低压线绝缘破损触碰在电杆的拉线上,电流就会从落地点向四面八方流入地内。如果一旦误入断线附近,产生的跨步电压就会对性命直接造成威胁。跨步电压是断线落地点或带电拉线入地点周围地面上任何两点间的电压,两点间距离愈大电压愈高。当人走进这个地区时,前脚着地点的电压,高于后脚落地点的电压,两脚间就存在电压差,因而就有电压加在人身上。人与电线落地点越近,跨步的步用越大,跨步电压就越高,触电后果就越严重。如果遇到高压线断落,自己又在跨步电压范围内,这个范围一般离电线落地点20m以内,这时,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。

轴电压测量及注意事项

发电部关于#1发电机轴电压测量的说明 一、发电机轴电压测量目的: 发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。所以在运行中,测量检查发电机组的轴及轴承间的电压是十分必要的,对于检修机组判定轴瓦绝缘是否良好具有重要意义。根据《电力设备预防性试验规程- DL/T 596—1996》,轴电压应小于10V。京海电厂#1发电机运行期间未进行轴电压测量,为了对近2年运行期发电机轴瓦绝缘情况准确判断,建议在B修前对#1发电机轴电压进行测量,发现问题,根据测量结果并在检修期内消除轴瓦隐患,有利于发电机长期稳定运行。 二、产生轴电压的原因 1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。 2.高速蒸汽产生的静电 由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。 为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 三、发电机结构特点 我厂330MW发电机由东方汽轮发电机厂生产。发电机冷却方式为水氢氢。在发电机进行轴瓦座绝缘测量,绝缘值要求最小不得低于0.5MΩ,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。

地网跨步电压、接触电压测量方法

地网跨步电压、接触电压测量方法 一、概述 当发生接地故障时,若出现过高的接触电压或跨步电压,可能发生危及人身安全的事故。一般将距接地设备水平0.8m处,以及与沿该设备金属外壳(或构架)垂直于地面的距离为1.8m出的两处之间电压,称为接触电压。人体接触该两处时就要承受接触电压。当电流流经接地装置时,在其周围形成不同的电位分布,人的跨步约为0.8m,在接地体径向的地面上,水平距离0.8m的两点间电压,称为跨步电压。人体两脚接触该两处时就要承受跨步电压。 1、电站地网对角线长度约:1000m。 2、电站单相接地故障电流取设计部门提供的15kA。 二、测量方法 一般可利用电流、电压三极法测量接地电阻的试验线路和电源来进行接触电压、跨步电压的测试。 1、测量接触电压 按接线图,加上电压后,读取电流和电压表的指示值,其电压值表示当接地体流过测量电流为I时的接触电压,流过短路接地电流Imax时的实际接触电压:Uc=U* Imax/I=KU Uc—接地体流过短路接地电流Imax时的实际接触电压(V) U—接地体流过电流I时实际的接触电压(V) K—X系数,其值等于Imax/I 2、测量跨步电压 按接线图,加上电压后,使接入接地体的电流为I,将电压极插入离接地体0.8,1.8,2.4,3.2,4.0,4.8,5,6m,以后增大到每5m移动一点,直到接地网的边缘,测量各点对接地体的电位。这一方向完成后,再在另一方向按上面的方法完成测量。 对地网两点之间最大电位差Umax,应乘以系数K,求出接地体流过电流Imax 的实际电位差。在地网设计上,一般要求这个值不大于2000V。 在电位分布图上可得到任意相距0.8m两点间的跨步电压:Ua= K(Un–Un-1) Ua—任意相距两点间的实际跨步电压(V) Un–Un-1—任意相距0.8m两点间测量的电压差(V) K—X系数,其值等于Imax/I

电机型式试验之匝间耐冲击电压

3.3 匝间耐冲击电压试 ⑴试验目的 用专用的匝间冲击电压试验仪对电机绕组施加模仿操作过电压和自然雷电过电压的冲击电压,可以有效的查出绕组匝间绝缘的损伤。 ⑴ 试验仪器 此次设计研究的是交流异步机的耐电压试验,目前较为流行的仪器为匝间冲击电压试验仪,其工作原理大致为:单相交流220V ,50Hz 通过一个调压器,供给一个升压变压器,电压升高后通过整流成为一个较高电压的直流电压,用一个由电路控制的闸流管将上述直流高电压突然加到被测试电机的线圈上,然后在用一个示波器显示该线圈的放电电压曲线,由于该曲线性状与线圈的匝数,磁路等参数有关,所以,可以通过观察他来判别被试线圈是否有匝间短路,匝数多少或者开路的故障。应该按照试验电压的大小和被测电机的容量来选择仪器的规格。 ⑵ 试验接线方法 ①三相绕组六个线端都引出时,可按下图a 所示接法,称为相接法,它试用于无换相装置的匝间仪,需要人工的倒相。 ②三相绕组已接成Y 形或△形时,则可按照下图的b ,c ,d ,e 所示的方法接线。 (a) (d) (b) (c)

(c) (f) 图3-4匝间耐电压试验接线图 对于具有一种额定电压的单速度电机,若接线方式固定,冲击试验电压应从接电源端子输入绕组,若有其多种接线方式而电源进线方式不固定,冲击试验电压应分别从可能的几种电源进线方式输入绕组,例如可以从U1、V1、W1端子进线,也可从U2、V2、W2端子进线。 ⑶试验电压和时间 试验时所加高压的数值与被试电机的额定电压,中心高度及使用条件有关,所加高压取冲击电压的峰值,其计算公式为 U Z=1.4K1K2U G (3-5) 式子中U z——冲击电压峰值V K1——运行系数,见下表 K2——尺寸系数,电机中心高≤100mm,取0.9:≥100mm,取1.0 绕线转子及并用电动机一律取1.0 U G——交流工频电压值 表3-4运行系数K的标准表 运行情况或要求K1 一般运行 1.0 浇水潜水 1.05 湿热环境,化工防腐,高速,一般船用 1.10 防暴增安 1.05—1.20 屏蔽运行,频繁启动或者逆转 1.10—1.20 剧烈震动,井用潜水,驱动磨头 1.20 特殊船用,耐氟制冷 1.30

发电机轴电压测量

发电机轴电压测量 一、发电机轴电压测量目的; 发电机组由于某些原因引起发电机组轴上产生了电压,如果在安装或运行中,没有采取足够的措施,当轴电压足以击穿轴与轴承间的油膜时,便发生放电,会使润滑冷却的油质逐渐劣化,严重者会使轴瓦烧坏,被迫停机造成事故。所以在运行中,测量检查发电机组的轴及轴承间的电压是十分必要的,对于检修机组判定轴瓦绝缘是否良好具有重要意义。根据《电力设备预防性试验规程-?DL/T?596—1996》,轴电压应小于10V。根据测量结果并在检修期内消除轴瓦隐患,有利于发电机长期稳定运行。 二、产生轴电压的原因: 1.由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁阻较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。 高速蒸汽产生的静电?由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻手,但它不易传导至励磁机侧,在汽机侧也有可能破坏油膜和轴瓦,通常在汽机轴上接引接地碳刷来消除。为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 三、发电机结构特点 330MW发电机由东方汽轮发电机厂生产。发电机冷却方式为水氢氢。在发电机进行轴瓦座绝缘测量,绝缘值要求最小不得低于Ω,否则要对轴瓦进行干燥处理,规范轴瓦安装工艺,直至轴瓦对地绝缘合格。

冲击电压试验

冲击电压试验说明 1.引用标准及定义 1.1标准 GB 14598.3 量度继电器和保护装置的绝缘配合要求和试验 Q/XJ 20.50. 继电保护和安全自动装置通用技术要求 1.2定义 介质试验:施加规定电压于绝缘物,以证明它符合制造厂所规定电路的额定绝缘电压的一种短时间试验。 冲击电压耐受试验的电压波形为1.2/50us,用以模拟来源于大气的过电压。它也包括由于低压设备的通断所产生的过电压。 施加规定的冲击电压于绝缘物,以证明装置能够耐受很高的和时间很短的过电压,而不致损坏的一种试验。 2.试验方法 2.1 试验部位 a) 每个电路和可接近的导电部分之间,每个独立电路的端子连接在一起; b) 独立电路之间,每个独立电路的端子连接在一起。 2.2冲击电压试验值 规定试验部位应能承受标准雷电波1.2/50 μs(见GB/T 14598.3—2006 中6.1.3)的短时冲击电压试验,试验电压的峰值为1 kV(额定绝缘电压≤63 V)或5 kV(额定绝缘电压>63 V)。对两个独立电路之间的试验,应按这两个电路所规定的较高的冲击电压进行试验。 2.3.冲击电压试验次数 正极性、负极性,每个极性各5次,中间间隔5 s。 3.结果评定 产品承受冲击电压试验后,其主要性能指标应符合企业产品标准规定的出厂试验项目要求。试验过程中,允许出现不导致绝缘损坏的闪络,如果出现闪络,则应复查绝缘电阻及介质强度,此时介质强度试验电压值为规定值的75%。 4、注意事项 冲击电压测试仪在工作时产生高能量(高电压、大电流)的浪涌。为安全起见,请阅读说明书,并正确使用本设备。使用中请注意以下几点: 1.当手潮湿或相对湿度超过75%时,请不要使用本设备。 2.注意使用本设备时接地状况良好。 3.因为有高压脉冲加到接线端子(Surge out),所以在接线时,务必要在确认高压电源处于断开状态(H.V.OFF灯亮,数字电压表指示为0)才能进行。 4.试验结束后,按STOP键停止发生脉冲,逆时针把电压调节旋钮旋到底,按H.V.ON/OFF关

跨步电压的危害及预防措施

跨步电压的危害及预防措施 一、概述 当的一根带电导线断落在地上时,落地点与带电导线的相同,电流就会从导线的落地点向大地流散,于是地面上以导线落地点为中心,形成了一个电势分布区域,离落地点越远,电流越分散,地面电势也越低。如果人或牲畜站在距离电线落地点8~10米以内。就可能发生事故,这种触电叫做。 人受到跨步电压时,电流虽然是沿着人的下身,从脚经腿、胯部又到脚与大地形成通路,没有经过人体的重要器官,好像比较安全。但是实际并非如此,因为人受到较高的跨步电压作用时,双脚会抽筋,使身体倒在地上。这不仅使作用于身体上的电流增加,而且使电流经过人体的路径改变,完全可能流经人体重要器官,如从头到手或脚。经验证明,人倒地后电流在体内持续作用2秒钟,这种触电就会致命。 脉冲电压幅值为~30千伏时,跨步电压和对牛的内部肌体没有任何损伤。 跨步电压示意图 如跨步电压的幅值提高到40~70千伏,而接触电压的幅值提高到42~56千伏时,牛的和血液循环机能受到影响。这是暂时性影响,经过休息后可以完全恢复,没有生命危险。 如跨步电压的幅值提高到96千伏,接触电压的幅值提高到74千伏时,牛的呼吸失常,心脏活动机能损伤,产生不可逆过程,有生命危险。 一旦误入跨步电压区,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。 二、危害

当跨步电压达到40~50V时,将使人有触电危险,特别是跨步电压会使人摔倒进而加大人体的触电电压,甚至会使人发生触电死亡。 当电气设备发生接地故障,接地电流通过接地体向大地流散,在地面上形成分布电位。这时若人们在接地短路点周围行走,其两脚之间.(人的跨步一般按米来考虑)的电位差,就是跨步电压。由跨步电压引起的人体触电,称为跨步电压触电。人体受到跨步电压作用时,人体虽然没有直接与带电导体接触,也没有放弧现象,但电流是沿着人的下身;从一只脚经胯部到另一只脚,与大地形成通路。触电时先是感觉脚发麻,后是跌倒。当触到较高的跨步电压时,双脚会抽筋而倒在地上。跌倒后,由于头脚之间的距离大,故作用于身体上的电压增高,触电电流相应增大,而且也有可能使电流经过人体的路径改变为经过人体的重要器官,如从头到脚或从头到手。因而增加触电的危害性。人体倒地后,电压持续2秒钟,人就会有致命危险。跨步电压的大小决定于人体离接地点的距离,距离越远,跨步电压数值越小,在远离接地点20米以外处,电位近似于零越接近接地点,跨步电压越高。 三、预防措施 1利用多种形式,各种宣传媒介,如黑板报、村广播、村民大会、放电影、田间地头、中小学生课堂等进行安全用电常识的宣传工作,讲跨步电压触电的危害及后果。 2村电工负责每年对本村供电区内的全部电力设备进行春检和秋检,落实安全措施,堵塞漏洞,预防事故的发生。 3架空线和接户线要经常维护,定期进行全面巡视检查,遇有大风、雨、雪、雾、冰雹、洪水等恶劣天气和用电高峰季节,要增加巡视检查次数和夜巡次数,对危及用电安全的设备、线路及时处理或采取暂停供电的应急措施。

冲击电压试验方法介绍

绝缘性能试验包括 冲击电压试验;介质强度试验;绝缘电阻测量。 绝缘性能试验的条件 大气条件不应超过下列范围: ——环境温度:+15℃~+35℃; ——相对湿度:45%~75%; ——大气压力:86kPa~106kPa。 试验的产品应处于干燥和无自热状态。 所有试验应在完整的装置上进行。 在试验过程中,产品不应施加输入激励量或辅助激励量。绝缘性能试验顺序 试验应按下列顺序进行: 冲击电压试验→介质强度试验→绝缘电阻测量 冲击电压试验方法 试验应依据GB/T 17627.1-1998 采用标准雷电脉冲。 发生器波形和特性

图中: T1——波前时间: 冲击峰值的30%和峰值的90%(图1中A、B两点)时刻之间的时间间隔T的1.67倍。O1——视在原点 超前相当与A点时间0.3T1的瞬间。它为通过A、B点所画直线与时间轴的交点。 T2——半峰值时间: 冲击的视在原点O1和电压减小到峰值一半的瞬间之间的时间间隔。 发生器的参数为: ——波前时间:1.2μs±30%; ——半峰值时间:50μs±20%; ——输出阻抗:500Ω±10%; ——输出能量:0.5J±10%。 每条试验导线的长度不应超过2m。 冲击试验电压的选定

试验电压的选定一般按以下原则选取: ——1.0kV(额定绝缘电压≤63V时); ——5.0kV(额定绝缘电压>63V时)。 由电压互感器和电流互感器直接供电的电路,或直接连接于站内直流电源的继电器电路,冲击电压试验应采用5kV。 试验方法 冲击电压应施加在继电器外部可接近的合适的点上,外露的导电部分应连接在一起并接地(外壳)。试验时每个极性应施加五个脉冲,脉冲间隔至少为1s。试验电压电平应是发 生器连接到继电器之前的开路电压。 除非另有规定,冲击电压试验应在下列部位进行: ——各带电的导电电路对地之间; ——电气上无联系的各带电的导电电路之间,每个独立电路的端子连接在一起。 试验中未涉及的电路应连接在一起并接地(外壳)。 除非很明显,应由制造厂规定哪些电路为独立电路。 除非另有规定,对两个独立电路之间的试验,应按这两个电路所规定的较高的冲击电压进行试验。 试验验收准则 试验期间不应出现破坏性放电(火花、闪络或击穿)。未造成击穿的电气间隙的部分放电可被忽略。 试验后,产品应满足所有相关性能的要求。 武汉三新电力设备制造有限公司是一家集电力检测、调试及电力技术服务为一体的高端解决方案提供商,电力测试设备一站式服务平台,变频串联谐振专业制作商,欢迎咨询采购交流!

ETAP接地网计算

接地网计算培训讲稿 一、关于接地网的基本知识。 在电力系统中,为了保护设备和人身的安全,接地现象是非常常见的。将电气装置、设施该接地部分经接地装置与大地做良好的电气连接称为接地。接地根据用途可以分为工作接地、保护接地、防雷接地和防静电接地。接地装置由接地体和接地线两部分组成。 埋入地中并且与大地直接接触的金属导体称为接地体;把电气装设施该接地部分经接地体连接起来的金属导体称为接地线。接地体又分为人工接地体和自然接地体。兼作接地体用的直接与大地接触的各种金属构件、非可燃气体或液体的金属管道、建筑物中的钢筋、电缆外皮、电杆基础上的避雷线和中性线等都是自然接地体;为满足接地装置接地电阻要求而专门埋设的接地体称为人工接地体。我们所研究的接地网就是一种人工接地体,接地网由由水平接地体和垂直接地体,接地网的材料一般有钢管、角钢、圆钢、扁钢和铜带,接地网祈祷的作用有泻放电流和均压作用。 不同形状接地体周围土壤电位分布演示。 电流经接地体流入大地,在大地表面形成分布电位。接地体和大地零电位点间的电压称为接地装置的对地电压(或对地电位)。接地线电阻和接地体的对地电阻(电流自接地体向外散流所遇到的电阻,又称散流电阻或扩散电阻)之和成为接地装置的接地电阻。接地线电阻基本上很小,所以可以认为接地电阻就等于扩散电阻。接地电阻数值上等于对地电位与从接地体流入大地电流的比值。按流过接地体的电流是工频电流求得的电阻称为工频接地电阻;按流过接地体的电流是冲击电流求得的电阻称为冲击接地电阻。接地电阻和土壤电阻率、接地体规格有关。所以改变接触电阻的主要手段就是改变土壤电阻率和改变接地体敷设。土壤的电阻率大小主要取决于土壤中导电离子的浓度和水分含量。干燥的土壤是不导电的,有时候为了降低土壤电阻率还会采用降阻济。 评估接地网是否满足要求的指标除了接地电阻和对地电位外,还有接触电压和跨步电压。人站在地面上里设备水平距离0.8米处手触到设备外壳、构架离地面1.8米处,加于人手与脚之间的电压称为接触电压;人在分布电位区域中沿散流方向行走,步距为 0.8米时两脚间的电压称为跨步电压。在大接地短路电流系统中接触电压和跨步电压应 满足: ;

发电机轴电压产生的原因、危害及处理措施

随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】 发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和

发电机轴电压产生的原因、危害及消除措施

仅供参考[整理] 安全管理文书 发电机轴电压产生的原因、危害及消除措施 日期:__________________ 单位:__________________ 第1 页共4 页

发电机轴电压产生的原因、危害及消除措施 ①磁通不对称。造成磁通不对称的原因,可能是由于定子铁芯局部磁阻较大、定子与转子气隙不均匀、分数槽电机(多为水轮发电机)电枢反应不均匀等所引起。 ②电机大轴被磁化。 ③高速蒸汽产生静电。 由于与发电机同轴相连的汽轮机的轴封不好,沿轴的高速蒸汽泄漏或蒸汽在汽缸内高速喷射等原因使轴带电荷,这种性质的轴电压有时很高,当人触及时感到麻手。 (2)危害及消除措施 高速蒸汽产生的静电荷,不易传导到励磁机侧,在汽轮机侧也有可能破坏油膜和轴瓦,通常在汽轮机轴上装设接地炭刷来消除。 对于其他原因所产生的轴电压,如果在安装时和运行中不采取有效的措施,当轴电压足以击穿轴与轴承间的油膜时,将产生一个由发电机大轴、轴颈、轴瓦、轴承支架及机组底座为回路的轴电流,虽然轴电压不高,通常在1V以下,个别机组为23V,但由于回路的电阻非常小,因此产生的轴电流可能很大,有时可达数百安培,轴电流会使轴承油的油质劣化,严重时会将轴瓦烧坏,被迫停机造成事故。 为了防止轴电流的产生,设计安装时,在位于发电机励磁机侧的轴承支架与底座之间己加装绝缘垫,同时将所有螺杆、螺钉(控制销)及油管等均已采取绝缘措施。 (3)测量轴电压的意义 由以上分析可知,发电机一侧的轴承支架与底座之间的绝缘垫是否保持良好的绝缘性能,对于防止发电机的轴和轴瓦的损坏以及轴承油质 第 2 页共 4 页

的劣化,保证机组的安全运行起着重要作用。因此,机组在安装时和运行中,通过测量比较发电机两端的电压和轴承与底座的电压,检查判断发电机轴承支架和底座之间的绝缘好坏是十分必要的,所以,交接试验标准和预防性试验规程中都把发电机轴电压的测量列为必做的试验项目。 第 3 页共 4 页

跨步电压触电是么回事

跨步电压触电是么回事

————————————————————————————————作者:————————————————————————————————日期:

跨步电压触电是怎么回事 实际上跨步电压触电也是属于间接触电形式。当两脚跨在为接地电流所确定的各种电位的地面上,且其跨距为 0.8m时,两脚间的电位差,称为跨步电压,由跨步电压造成的触电称为跨步电压触电。如图所示。

图接地电流由单根接地体向四周流散的情况 1—接地导线;2—接地体;3—流散电流 Ue—对地电压;Ie—接地电流;QF—油断路器 在图中,跨步电压为Us=φ1-φ2 式中 Us———跨步电压,V; φ1———人左脚所站处的电位,V; φ2———人右脚所站处的电位,V。接触电压则是指在接地电流回路上,一人同时触及的两点之间的电位差。接触电压通常以水平方向为0.8m,垂直方向1.8m 计算。图中的 Uc 表示人接触到油断路器 QF 时的接触电压,等于油断路器 QF 的电位φ3 和脚所站地方的电位φ之差,即 Uc=φ3-φ 接地电流是指由于绝缘损坏而发生的经故障点流入地中的电流,亦称

故障接地电流。在图中。接地电流经油断路器QF的外壳、接地导线、钢管接地体而散流入地中。下列情况和部位可能发生跨步电压触电。 ① 带电导体特别是高压导体故障接地或接地装置流过故障电流时,流散电流在附近地面各点产生的电位差,可造成跨步电压触电。 ② 正常时有较大工作电流流过的接地装置附近,流散电流在地面各点产生的电位差,可造成跨步电压触电。 ③ 防雷装置遭受雷击,或高大设施、高大树木遭受雷击时,极大的流散电流在其接地装置或接地点附近地面产生的电位差,可造成跨步电压触电跨步电压的大小受接地电流大小、人体所穿的鞋和地面特征、两脚之间的跨距、两脚的方位以及离接地点的远近等因素的影响。人的跨距一般按 0.8m 考虑。由于跨步电压受很多因素的影响,以及由于地面电位分布的复杂性,几个人在同一地带(如在同一棵大树下,或在同一故障接地点附近)遭到跨步电压触电完全可能出现截然不同的后果。人体受到跨步电压触电时,电流是沿着人的下身,从脚到脚与大地形成回路,使双脚发麻或抽筋并很快倒地。跌倒后由于头脚之间的距离大,使作用于人身体上的电压增高,电流相应增大,并有可能使电流通过人体内部重要器官而出现致命的危险。

相关文档
相关文档 最新文档