文档库 最新最全的文档下载
当前位置:文档库 › 二组分合金系统相图的绘制

二组分合金系统相图的绘制

二组分合金系统相图的绘制
二组分合金系统相图的绘制

综合测试实验

一、目的要求

1.用热分析步冷曲线法绘制铋-镉二组分金属相图

2.掌握热分析法的测量技术

二、基本原理

较为简单的二组分金属相图主要有三种:

一种是液相完全互溶,固相也完全互溶成固溶体的系统,最典型的为Cu-Ni 系统;一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,固相是部分互溶的系统,如Pb-Sn系统,本实验研究的是Bi-Cd系统。

热分析中的步冷曲线法是绘制相图的基本方法之一。它是利用金属及合金在加热和冷却过程中发生相变时,热量的释放或吸收及热容的突变,得到金属或合金中相转变温度的方法。

本实验是先将金属或合金全部熔化,然后让其在一定的环境中冷却,并在电脑上自动画出温度随时间变化的关系曲线—步冷曲线(见图1)。

当熔融的系统均匀冷却时,如果系统不发生相变,则系统的温度随时间的变化是均匀的,冷却速率较快(如图1中ab线段);若在冷却过程中发生了析出固体的相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统的冷却速率减慢,步冷曲线上出现转折(如图1中b 点)。当熔液继续冷却到某一点时(如图1中c点),系统以低共熔混合物固体析出,在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图1中cd线段);当熔液完全凝固后,温度才迅速下降(如图1中的线段)。

图1步冷曲线图2步冷曲线与相图

由此可知,对组成一定的二组分低共熔混合物体系,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的步冷曲

线的各转折点,即可画出二组分系统的相图(温度-组成图)。不同组成熔液的步冷曲线对应的相图如图2所示。

用步冷曲线法绘制相图时,被测系统必须时时处于接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。

三、仪器和试剂

1.仪器:

ZR-HX金属相图试验装置一套;电脑一台(四套公用)

2.试剂:

铋(分析纯、熔点为544.5 K)、镉(分析纯、熔点为594.1 K)

四、实验步骤

1.配制试样:

配制含铋质量分数分别为20%、40%、60%、80%的Bi-Cd合金150g,再称纯Bi、纯Cd各150 g,分别放入6个不锈钢试管中,上面滴入约1 mL的硅油。在放入感温元件的细筒中也要滴入几滴硅油。

2.准备工作

(1)根据控制器所接位置,分别选择“A”或“B”加热器(可以根据情况只接一个加热器)

(2)检查主机、从机和中继器的电源线连接是否可靠

(3)检查各从机温度传感器与仪器连接是否可靠

(4)用通讯电缆将中继器“主机”接口与主机串行通口连接

(5)用通讯电缆将中继器“从机”接口分别与从机连接

(6)检查各线、缆连接无误后先后接通从机、中继器和主机电源

(7)待从机启动滚屏完成后,设置从机参数

a.目标温度(加热终止温度)应高于被加热样品的熔点温度

b.加热功率(%)根据不同的升温速率,设置不同的加热功率(%)(满功率为500 W)

c.保温功率(%)根据不同的降温速率,设置不同的保温功率(%)(小于或等于10%)

d.本机编号对应于中继器“从机”接口所标的通道编号

3.开始实验

当所有准备工作完成后,即可开始进行实验。双击“多通道金属相图数据采集系统”图标,程序开始运行。

(1)参数设置

串口参数设置:

用以选择不同的串行端口和波特率(系统显示默认的通讯端口和波特率)。

(2)数据采集:

在“任务”菜单中选择“数据采集”,“运行指示”指示灯开始闪烁。

a.通道选择:

在“通道/加热”栏中选择需要采集数据的通道。既可以选择单个通道,也可以选择多个通道。当所选的通道被确认后,该通道的指示灯由灰变绿,“加热”复选框被激活,中继器相应的通道指示灯被点亮,开始计时并在“工作参数”栏相应通道的数据显示框内显示该通道采集的数据,同时在与该通道对应的坐标区内描点绘制曲线。

b.加热:

再选择“加热”选择框,该通道指示灯由绿变红。从机接收到主机发送的指令后,便根据所设置的加热功率开始对样品加热。

c.停止加热:

当温度达到或超过所设置的目标温度后从机会自动转为保温状态,样品温度将根据设置的保温功率以一定的速率下降。如果不设保温功率,则以自然散热的方式降温,也可以调整风扇旋钮加速降温。

d.只要“通道”选择框被选择,不论是否加热,所有数据都将被记录并描绘曲线。

e.其他通道的操作同上,只是当两个或两个以上的通道被选中时,中继器的通道指示灯将轮流闪烁。

(3)停止采集:

当数据采集完成后,再次点击“加热”选框,取消加热,然后再点击相应的通道选择框,取消通道选择。当所有的选项都取消后,在“任务”菜单中选择“停止采集”。

系统提示设置样品参数。将样品的组成和从曲线上读取的相变点温度,填入相应通道的“样品组成”数据栏和“相变点温度”数据栏。

(4)再次开始实验前,须按动从机“设置”键,确认从机所有设置,方可开始新一轮实验的数据采集任务。

4.文件操作

文件操作是对数据文件进行显示、保存、打印或转换成图像文件的操作。

(1)打开:

打开是指打开并读取已有的数据文件,然后在相应的通道坐标中描点绘制

成曲线。可同时显示四组曲线。

(2)保存文件:

将采集的实验数据保存为文本文件。

(3)另存为:

另存为是将当前屏幕显示的坐标和曲线保存为图像文件。

(4)打印:

将坐标和曲线输出为纸质文件。

(5)刷新和清除:

除去坐标区多余的图、线,保持图线清晰。

(6)数据文件均以文本格式保存,用户可根据自己的喜好使用“记事本”或其他编辑器按照给定的格式对其进行编辑,故不另外定制编辑器。注意在文件的结尾处必须键入“回车”键。

5.显示模式切换

通过显示模式切换,可将屏幕中某一通道的曲线单独显示,也可以将四个通道的曲线分为四个区域同时显示。

6.读取相变点温度

结合使用显示模式切换,通过移动“十字”光标,在曲线上读取样品的相变点温度,按给定的格式输入到对应通道的“相变点温度”数据栏中。

五、数据处理

1.从步冷曲线上查出各合金的转折温度,以横坐标表示质量百分数,纵坐标表示温度,绘出Bi-Cd二组分合金相图。

2.在作出的相图上,用相律分析低共熔混合物、熔点曲线及各区域内的相数和自由度数。

六、思考题

1.为什么冷却曲线上会出现转折点?纯金属、低共熔金属及合金的曲线形状为何不同?

2.解释步冷曲线上的过冷现象。

3.用加热曲线是否可以作相图?

附录一热电偶温度计

1.原理

将两种金属导线构成一闭合回路,如果两个接点的温度不同,就会产生一个电势差,称为温差电势。如在回路中串接一个毫伏表,则可粗略显示该温差电势的量值。这一对金属导线的组合就称为热电偶温度计,简称热电偶。

2.特点

(1)灵敏度高。如常用的镍铬-镍硅热电偶的热电系数达40 μV/K,镍铬-考铜的热电系数高达70 μV/K。用精密的电位差计测量,通常均可达到0.01℃的精度。

(2)重现性好。热电偶制作条件的不同会引起温差电势的差异。但一支热电偶制作后,经过精密的热处理,其温差电势-温度函数关系的重现性极好。由固定点标定后,可在较长时间内使用。

(3)量程宽。热电偶的量程仅受其材料适用范围的限制。

(4)非电量变换。温度的自动记录、处理和控制在现代科学实验和工业生产中是非常重要的。这首先要将温度这个非电参量变换为电参量,热电偶就是一种比较理想的温度-电变换器。

二组分简单共熔体系相图的绘制

二组分简单共熔体系相图的绘制

————————————————————————————————作者: ————————————————————————————————日期:

实验七二组分简单共熔体系相图的绘制 ------Cd~Bi二组分金属相图的绘制1实验目的及要求: 1)应用步冷曲线的方法绘制Cd~Bi二组分体系的相图。 2)了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。 2 实验原理:… 用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图,叫相图。 绘制相图的方法很多,其中之一叫热分析法。在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。从步冷曲线有无转折点就可以知道有无相变。测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图,如图Ⅱ一6一l所示。 纯物质的步冷曲线如①⑤所示,从高温冷却,开始降温很快,口6线的斜率决定于体系的散热程度。冷到A的熔点时,固体A开始析出,体系出现两相平衡(溶液和固体A),此时温度维持不变,步冷曲线出现bc的水平段,直到其中液相全部消失,温度才下降。 混合物步冷曲线(如②、④)与纯物质的步冷曲线(如①、⑤)不同。如②起始温度下降很快(如a′b′段),冷却到b′点的温度时,开始有固体析出,这时体系呈两相,因为液相的成分不断改变,所以其平衡温度也不断改变。由于凝固热的不断放出,其温度下降较慢,曲线的斜率较小(b′c′段)。到了低共熔点温度后,体系出现三相,温度不再改变,步冷曲线又出现水平段c′d′,直到液相完全凝固后,温度又迅速下降。 曲线⑧表示其组成恰为最低共熔混合物的步冷曲线,其图形与纯物相似,但它的水平段是三相平衡。 用步冷曲线绘制相图是以横轴表示混合物的成分,在对应的纵轴标出开始出现相变(即步冷曲线上的转折点)的温度,把这些点连接起来即得相图。 3仪器与药品: 加热电炉1只,热电偶(铜一康铜)1根,不锈纲试管8只,控温测定装置1台,计算机1台,镉(化学纯),铋(化学纯)。 4 实验步骤: 1)配制不同质量百分数的铋、镉混合物各100g(含量分别为0%,15%,25%,40%,55%,75%,90%,100%),分别放在8个不锈纲试管中。 2)用控温测定装置装置,依次测纯镉、纯铋和含镉质量百分数为90%,75%,55%,40%,25%,15%样品的步冷曲线。将样品管放在加热电炉中加热,让样品熔化,同时将热电偶的热端(连玻璃套管)插入样品管中,待样品熔化后,停止加热。用热电偶玻璃套管轻轻搅

实验六 二组分金属相图的绘制

实验六二组分金属相图的绘制 一、实验目的 1.学会用热分析法测绘Sn—Bi二组分金属相图。 2.了解热电偶测量温度和进行热电偶校正的方法。 二、预习要求 1.了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 2.掌握热电偶测量温度的原理及校正方法。 三、实验原理 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。 二元简单低共熔体系的冷却曲线具有图1所示的形状。

图1根据步冷曲线绘制相图 图2有过冷现象时的步冷曲线 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2。遇此情况,可延长dc线与ab线相交,交点e即为转折点。 四、仪器药品 1.仪器 立式加热炉1台;冷却保温炉1台;长图自动平衡记录仪1台;调压器1台;镍铬-镍硅热电偶1副;样品坩埚6个;玻璃套管6只;烧杯(250mL)2个;玻璃棒1只。

二组分金属相图的绘制

二组分金属相图的绘制 一.实验目的 1.用热分析法(冷却曲线法)测绘Bi —Sn 二组分金属相图。 2.了解固液相图的特点,进一步学习和巩固相律等有关知识。 二.实验原理 表示多相平衡体系组成、温度、压力等变量之间关系的图形称为相图。 较为简单的二组分金属相图主要有三种:一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu —Ni 系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi —Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如本实验研究的Bi —Sn 系统。在低共熔温度下,Bi 在固相Sn 中最大溶解度为21%(质量百分数)。 图1冷却曲线 图2由冷却曲线绘制相图 热分析法(冷却曲线法)是绘制相图的基本方法之一。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。通常的做法是先将一定已知组成的金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的冷却曲线(见图 1)。当金属混合物加热熔化后再冷却时,开始阶段由于无相变发生,体系的温度随时间变化较大,冷却较快(ab 段)。若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(bc 段)。当融熔液继续冷却到某一点时,如c 点,由于此时液相的组成为低共熔物的组成。在最低共熔混 合物完全凝固以前体系温度保持不变,冷却曲线出现平台,(如图cd 段)。当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(de 段)。 由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的冷却曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的冷却曲线的各转折点,即可画出二组分系统的相图(T - x 或T - w B 图)。不同组成熔液的冷却曲线对应的相图如图2所示。 图3可控升降温电炉前面板 1.电源开关 2.加热量调节旋钮 3、4.电压表 5.实验坩埚摆放区 6.控温传感器插孔 7.控温区电炉8.测试区电炉 9.冷风量调节

金属相图

实验 金属相图 [实验目的] 1.学会用热分析法测绘Pb - Sn 二组分金属相图。 2.掌握热分析法的测量技术与有关测量温度的方法。 [基本原理] 热分析法是先将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,将所得温度值对时间作图,所得曲线即为步冷曲线(如下图1)。每一种组成的Pb - Sn 体系均可根据其步冷曲线找出相应的转折点和水平台温度,然后在温度-成分坐标上确定相应成分的转折温度和水平台的温度,最后将转折点和恒温点分别连接起来,即为相图(如下图2)。 图1 步冷曲线 图2 步冷曲线与相图 [仪器结构] 图1 加热装置 图2 测量装置 仪器参数设置法: 最高温度:C 350℃ 加热功率:P1 400W 保温功率:P2 40W 报警时间:E1 30s 报警声音:n 0 按设置键:显示温度时就是退出了设置状态,可以进行实验。

[实验步骤] 1.配制样品。配制含锡量分别为20%,40%,61.9%,80%的铅-锡混合物各100g,装入4个样品管中,然后在样品管内插入玻璃套管(管中应有硅油,增加热传导系数),并在样品上方盖一层石墨粉; 2.将需加热的样品管放入一炉子中,将加热选择旋钮指向该加热炉(加热炉和选择旋钮上均有数字标号),并将测温传感器置于需加热的样品管中; 3.设定具体需加热的温度,加热功率和保温功率,本实验中这些参数依次设定为350o C,400W, 40W,参数设定完成后, 按下“加热”键,即进入加热状态; 4.当测量装置上的温度示值接近于330 O C时,可停止加热。待样品熔化后,用玻璃套管小心搅拌样品; 5.待温度降到需要记录的温度值时(比如305 C),可点击测量软件中的“开始实验”按钮,降温过程中,若降温速度太慢,可打开风扇;若降温速度太快,则可按“保温”键,适当增加加热量。当温度降到平台以下,停止记录。 按照上述步骤,测定不同组成金属混合物的温度—时间曲线。 [数据处理] 1.依实验数据绘制T-t步冷曲线,6根曲线绘制在同一张图上; 2.依样品的组成和步冷曲线中转折点和平台的温度绘制出Pb-Sn的T-w金属相图; 3.你所测得的Pb, Sn的熔点与教材(东北师大第90面)上的值的相对误差分别为: %, %. [问答题] 金属相图的用途有哪些? ---------------------------------------------------------------------------------------------------------------- 班级: 姓名: 学号: 实验日期: 分数: 教师:

二组分固液相图

5.4二组分系统的固~液平衡 5.4.1形成低共熔物的固相不互溶系统 当所考虑平衡不涉及气相而仅涉及固相和液相时,则体系常称为"凝聚相体系"或"固液体系"。固体和液体的可压缩性甚小,一般除在高压下以外,压力对平衡性质的影响可忽略不计,故可将压力视为恒量。由相律: 因体系最少相数为Φ=1,故在恒压下二组分体系的最多自由度数f *=2,仅需用两个独立变量就足以完整地描述体系的状态。由于常用变量为温度和组成,故在二组分固液体系中最常遇到的是T~x(温度~摩尔分数)或T~ω(温度~质量分数)图。 二组分固~液体系涉及范围相当广泛,最常遇到的是合金体系、水盐体系、双盐体系和双有机物体系等。在本节中仅考虑液相中可以完全互溶的特殊情况。这类体系在液相中可以互溶,而在固相中溶解度可以有差别。故以其差异分为三类:(1)固相完全不互溶体系;(2)固相部分互溶体系和(3)固相完全互溶体系。进一步分类可归纳如下: 研究固液体系最常用实验方法为“热分析”法及“溶解度”法。本节先在“形成低共熔物的固相不互溶体系”中介绍这两种实验方法,然后再对各种类型相图作一简介。 (一)水盐体系相图与溶解度法

1.相图剖析 图5-27为根据硫酸铵在不同温度下于水中的溶解度实验数据 绘制的水盐体系相图,这类构成相图的方法称为"溶解度法"。 纵坐标为温度t(℃),横坐标为硫酸铵质量分数(以ω表 示)。图中FE线是冰与盐溶液平衡共存的曲线,它表示水 的凝固点随盐的加入而下降的规律,故又称为水的凝固点降 低曲线。ME线是硫酸铵与其饱和溶液平衡共存的曲线,它 表示出硫酸铵的溶解度随温度变化的规律(在此例中盐溶解 度随温度升高而增大),故称为硫酸铵的溶解度曲线。一般 盐的熔点甚高,大大超过其饱和溶液的沸点,所以ME不可 向上任意延伸。FE线和ME线上都满足Φ =2,f *=1,这意 味温度和溶液浓度两者之中只有一个可以自由变动。 FE线与ME线交于E点,在此点上必然出现冰、盐和盐溶液三相共存。当Φ=3 时,f *=0 ,表明体系的状态处于E点时,体系的温度和各相的组成均有固定不变的数值;在此例中,温度为 -18.3℃,相应的硫酸铵浓度为 39.8%。换句话说,不管原先盐水溶液的组成如何,温度一旦降至 -18.3℃,体系就出现有冰(Q 点表示)、盐(I点表示)和盐溶液(E点表示)的三相平衡共存,连接同处此温度的三个相点构成水平线QEI,因同时析出冰、盐共晶体,故也称共晶线。此线上各物系点(除两端点Q和I外)均保持三相共存,体系的温度及三个相的组成固定不变。倘若从此类体系中取走热量,则会结晶出更多的冰和盐,而相点为E的溶液的量将逐渐减少直到消失。溶液消失后体系中仅剩下冰和盐两固相,Φ=2,f *=1,温度可继续下降即体系将落入只存在冰和盐两个固相共存的双相区。若从上向下看E点的温度是代表冰和盐一起自溶液中析出的温度,可称为"共析点"。反之,若由上往下看E点温度是代表冰和盐能够共同熔化的最低温度,可称为"最低共熔点"。溶液E凝成的共晶机械混合物,称为"共晶体"或"简单低共熔物"。不同的水盐体系,其低共熔物的总组成以及最低共熔点各不相同,表5-7列举几种常见的水盐体系的有关数据。 表5-7 某些盐和水的最低共熔点及其组成 盐最低共熔点((℃)最低共熔物组成ω x100 NaCl NaBr NaI KCl KBr KI (NH 4) 2 SO 4 MgSO 4 Na 2SO 4 KNO 3 CaCl 2-21.1 -28.0 -31.5 -10.7 -12.6 -23.0 -18.3 -3.9 -1.1 -3.0 -5.5 23.3 40.3 39.0 19.7 31.3 52.3 39.8 16.5 3.84 11.20 29.9

二组分金属相图的绘制.

实验六二组分金属相图的绘制 【实验目的】 1. 学会用热分析法测绘Sn—Bi二组分金属相图。 2. 了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 3. 了解热电偶测量温度和进行热电偶校正的方法。 【基本要求】 (1)学会用热分析法测绘Sn-Bi二组分金属相图。 (2)掌握步冷曲线的绘制和利用。 【实验原理】 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或两种金属混合物熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一平滑的步冷曲线;当体系内发生相变时,则因体系产生的相变热与自然冷却时体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。利用步冷曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。二元简单低共熔体系的冷却曲线具有图2-5-1所示的形状。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2-5-2。遇此情况,可延长dc线与ab线相交,交点e即为转折点。

图6-1 根据步冷曲线绘制相图 图6-2 有过冷现象时的步冷曲线 【仪器试剂】 立式加热炉1台;保温炉1台;镍铬-镍硅热电偶1副;不锈钢样品管4个;250mL烧杯1个。 Sn(化学纯);Bi(化学纯);石腊油;石墨粉。 【实验步骤】 1. 样品配制 用感量0.1g的台称分别称取纯Sn、纯Bi各50g,另配制含锡20%、40%、60%、80%的铋锡混合物各50g,分别置于坩埚中,在样品上方各覆盖一层石墨粉。 2. 绘制步冷曲线 (1) 将热电偶及测量仪器如图2-5-3连接好。 (2) 将盛放样品的坩埚放入加热炉内加热(控制炉温不超过400℃)。待样品熔化后停止加热,用玻璃棒将样品搅拌均匀,并在样品表面撒一层石墨粉,以防止样品氧化。 图6-3 步冷曲线测量装置 1.加热炉; 2.不锈钢管; 3.套管; 4.热电偶 (3) 将坩埚移至保温炉中冷却,此时热电偶的尖端应置于样品中央,以便反映

二组分固液系统相图的测定

二组分固液系统相图的测定 一、实验目的 1、利用步冷曲线建立二组分铅---锡固液系统相图的方法。 2、介绍PID 温度控制技术和热电阻的使用。 二、实验原理 本实验的目的是通过热分析法获得的数据来构建一个相图,用于表示不同温度、组成下的固相、液相平衡。不同组成的二组分溶液在冷却过程中析出固相的温度可以通过观察温度 – 时间曲线的斜率变化进行检测。当固相析出时,冷却速率会变得比较慢,这可归因于固化过程释放的热量部分抵消了系统向低温环境辐射和传导的热量。 A B B%a b c e f B (c )%I II III I II III B T/K t (a ) (b ) 图8.1 二元简单低共熔物相图(a ) 及其步冷曲线(b ) 图8.1(a )是典型的二元简单低共熔物相图。图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B %。在acb 线的上方,系统只有一个相(液相)存在;在ecf 线以下,系统有两个相(固相A 和固相B )存在;在ace 所包围的区域内,一个固相(固体A )和一个液相(A 在B 中的饱和熔化物)共存;在bcf 所包围的区域内,一个固相(固体B )和一个液相(B 在A 中的饱和熔化物)共存。c 点有三相(互不相溶的固

体A 和固体B ,以及A 、B 的饱和熔化物液相)共存,根据相律,在压力确定的情况下,三相共存时系统的自由度为零,即三相共存的温度为一定值,在相图上表现为一条通过c 点的水平线,处于这个平衡状态下的系统温度T c 、系统组成A 、B 和B (c )%均不可改变,T c 和B (c )%构成的这一点称为低共熔点。 热分析法是绘制相图的常用实验方法,将系统加热熔融成一个均匀的液相,然后让系统缓慢冷却,以系统温度对时间作图得到一条曲线,称为步冷曲线或冷却曲线。曲线的转折点表征了某一温度下发生相变的信息,由系统组成和相变点温度可以确定相图上的一个点,多个实验点的合理连接就形成了相图上的相线,并构成若干相区。图1(b )是与相图对应的不同组成系统的步冷曲线。 三、仪器与药品 SWKY-1型数字控温仪、KWL —09可控升降温电炉、Pt-100热电阻温度传感器、配套软件、样品管(南京桑力电子设备厂) 锡(化学纯),铅(化学纯),铋(化学纯),苯甲酸(化学纯) 本实验装置由三部分组成:SWKY-1型数字控温仪、KWL —09可控升降温电炉和数据采集计算机系统(图8.2)。 图8.2 合金相图测定实验装置图 ② ① ③ ④ ⑤

二组分简单共熔系统相图的绘制

实验报告 课程名称: 大学化学实验(P ) 指导老师: 成绩:_______________ 实验名称: 二组分简单共熔系统相图的绘制 实验类型: 物性测试 同组学生姓名: 【实验目的】 1. 用热分析法测绘Zn-Sn 相图。 2. 熟悉热分析法的测量原理 3. 掌握热电偶的制作、标定和测温技术 【实验原理】 本实验采用热分析法中的步冷曲线方法绘制Zn-Sn 系统的固-液平衡相图。将系统加热熔融成一均匀液相,然后使其缓慢冷却,每隔一定时间记录一次温度,表示温度与时间的关系曲线,称为冷却曲线或步冷曲线。当熔融系统在均匀冷却过程中无相变化时,其温度将连续下降,得到一条光滑的冷却曲线,如在冷却过程中发生相变,则因放出相变热,使热损失有所抵偿,冷却曲线就会出现转折点或水平线段。转折点或水平线段对应的温度,即为该组成合金的相变温度。对于简单共熔合金系统,具有下列形状的冷却曲线[图a(a)],由这些冷却曲线,即可绘出合金相图[图a(b)]。 在冷却过程中,常出现过冷现象,步冷曲线在转折处出现起伏[图a(c)]。遇此情况可延长FE 交曲线BD 于点,G 点即为正常的转折点。 用热分析法测绘相图时,被测系统必须时时处于或接近相平衡状态,因此,系统的冷却速度必须足够慢,才能得到较好的结果。 图a 步冷曲线(a )、对应相图(b )及有过冷现象出现的步冷曲线(c ) 【试剂与仪器】 仪器 镍铬-镍硅热电偶1支;UJ-36电位差计1台;小保温瓶1只;盛合金的硬质玻璃管7只;高 温管式电炉2只(加热炉、冷却炉);调压器(2KW )1只; 坩埚钳1把;二元合金相图计算机测试系统1套。 试剂 锡、锌、铋(均为AR );石墨粉。 【实验步骤】 1. 热电偶的制作:取一段长约0.6m 的镍铬丝,用小瓷管穿好,再取两段各长0.5m 的镍硅丝,制作热 电偶(此步骤一般已事先做好)。 2. 配置样品:在7只硬质玻璃管中配制各种不同质量分数的金属混合物:100%Bi ;100%Sn ;100%Zn ; 45%Sn+55%Zn ;75%Sn+25%Zn ;91.2%Sn+8.8%Zn ;95%Sn+5%Zn 。为了防止金属高温氧化,表面放置石墨粉(此步骤由实验室完成)。 3. 安装:安装仪器并接好线路。 4. 加热溶化样品,制作步冷曲线:依次测100%Zn ,100%Bi ,100%Sn ,45%Sn+55%Zn ,

物理化学实验报告二组分简单共熔合金相图绘制

一、实验目的 1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。 2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。 二、主要实验器材和药品 1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳 2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡 三、实验原理 压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。 较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。 研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。此法适用于常温F易测定组成的系统,如水盐系统。 热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。根据步冷曲线可以判断体系有无相变的发生。当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。这是因为相变时的热效应使温度随时间的变化率发生了变化。因此,由步冷曲线的斜率变化可以确定体系的相变点温度。测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。 图3- 15(b)是具有简单低共熔点的A- B二元系相图,左右图中对应成分点a.b.c、d.e 的步冷曲线。下面对步冷曲线作简单分析。 在固定压力不变的条件下,相律为: f=c-φ+1 (3-6-1) 式中:c为独立组分数;为相数。 对于纯组分熔融体系,c=1,q=1。在冷却过程中若无相变化发生,其温度随时间变化关系曲线为平滑曲线。到凝固点时,固液两相平衡,=2,自由度为0,温度不变,出现水平线段。等体系全部凝固后,其冷却情况同纯熔融体系一样,呈一平滑曲线。图3- 15(a)中曲线ave 属于这种情况。 曲线C是低共培体冷却曲线,情况与a.c相似.水平线段的出现是因为当冷却到头能点温度r。时,A和B同时标出,且固相中的比例与溶液中相同,因此溶液浓度不变,从街具备

二组分固液相图的绘制

表-1 t/min T/℃ 纯铅锡20% 锡40% 锡61.9% 锡80% 纯锡 0 395.4 395.3 397.5 398.7 399.3 394.5 1 385.3 387.0 396.8 385.3 391.3 384.9 2 374.4 378.5 396.6 375.0 383.5 375.5 3 365.3 369.8 367.3 365.1 375.0 365.7 4 355.2 363. 5 353.8 354. 6 367.8 357.9 5 346.8 356.9 345.0 346.2 359.8 350.0 6 338. 7 348. 8 335.1 336. 9 353.1 341.8 7 329.6 342.1 327.2 329.6 346.7 334.5 8 322.9 335.8 319.5 322.6 339.6 327.6 9 317.8 328.8 311.5 315.4 333.9 320.8 10 311.8 323.2 305.2 309.3 327.3 314.8 11 306.6 316.2 298.6 303.6 321.1 307.2 12 302.2 311.8 293.2 297.3 315.8 302.5 13 298.6 307.2 288.1 292.0 311.0 296.3 14 294.4 302.5 282.1 286.6 306.4 291.2 15 288.7 298.9 276.8 285.0 302.2 286.1 16 283.4 295.3 271.2 275.2 297.4 280.4 17 277.9 291.1 264.8 269.3 293.0 275.5 18 270.6 287.3 259.4 264.4 288.5 271.1 19 264.0 282.3 254.5 257.7 283.3 266.5 20 256.8 277.5 248.9 254.4 278.6 261.7 21 250.8 272.2 244.3 250.2 273.5 257.6 22 245.3 266.2 239.3 245.8 269.3 252.9 23 239.2 261.3 235.1 241.3 265.1 249.2 24 234.5 256.7 231.0 237.4 260.5 245.3 25 230.0 252.0 226.5 233.0 256.6 241.1 26 225.1 247.9 222.7 229.4 252.9 237.6 27 221.0 244.2 219.0 225.9 248.8 233.8 28 217.1 240.3 215.0 221.9 245.3 230.5 29 212.7 236.7 211.5 218.7 241.1 227.2 30 209.1 232.6 208.2 215.4 238.7 223.7 31 205.6 229.2 204.5 211.9 234.9 220.9 32 201.7 225.7 201.5 209.6 231.2 224.5 33 198.1 221.9 198.1 209.4 228.3 230.6 34 194.7 218.7 195.4 208.1 225.3 231.1 35 191.7 215.0 192.9 206.7 222.0 231.1 36 188.7 212.0 190.3 204.9 219.3 230.9

二组分金属相图的绘制思考题汇总

二组分金属相图的绘制思考题汇总 1.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成? 答: 将其熔融、冷却的同时记录温度,作出步冷曲线,根据步冷曲线上拐点或平台的温度,与温度组成图加以对照,可以粗略确定其组成。 2.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么? 答: (1)混合物中含Sn越多,其步冷曲线水平段长度越长,反之,亦然。 (2)因为Pb 和Sn的熔化热分别为23.0和59.4jg-1,熔化热越大放热越多,随时间增长温度降低的越迟缓,故熔化热越大,样品的步冷曲线水平段长度越长。 3.有一失去标签的Pb-Sn合金样品,用什么方法可以确定其组成? 4.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么? (查表: Pb 熔点327℃,熔化热23.0jg-1,Sn熔点232℃,熔化热59.4jg-1) 5、何谓热分析法?用热分析法绘制相图时应注意些什么? 热分析法是相图绘制工作中的一种常用的实验方法,按一定比例配制均匀的液相体系,让他们缓慢冷却,以体系温度对时间作图,则为步冷曲线。曲线的转折点表征了某一温度下发生的相变的信息。 6、为什么要控制冷却速度,不能使其迅速冷却? 答:

使温度变化均匀,接近平衡态,必须缓慢降低温度,一般每分钟降低5度。 7、如何防止样品发生氧化变质? 答: 温度不可过高,空气不能过多和样品接触。 8、用相律分析在各条步冷曲线上出现平台的原因。 答: 因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上 的斜率发生改变,出现折点。当温度达到了两种金属的最低共熔点,会出现平台。 9、为什么在不同组成融熔液的步冷曲线上,最低共熔点的水平线段长度不同?答: 不同组成,各组成的熔点差值不同,凝固放热对体系散热的补偿时间也不同。 10.样品融熔后为什么要保温一段时间再冷却? 答: 使混合液充分混融,减小测定误差。 11.对于不同成分混合物的步冷曲线,其水平段有什么不同? 答: 纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔温度时出现水平段。而平台长短也不同。 12.作相图还有哪些方法?

二组分合金系统相图的绘制

综合测试实验 一、目的要求 1.用热分析步冷曲线法绘制铋-镉二组分金属相图 2.掌握热分析法的测量技术 二、基本原理 较为简单的二组分金属相图主要有三种: 一种是液相完全互溶,固相也完全互溶成固溶体的系统,最典型的为Cu-Ni 系统;一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,固相是部分互溶的系统,如Pb-Sn系统,本实验研究的是Bi-Cd系统。 热分析中的步冷曲线法是绘制相图的基本方法之一。它是利用金属及合金在加热和冷却过程中发生相变时,热量的释放或吸收及热容的突变,得到金属或合金中相转变温度的方法。 本实验是先将金属或合金全部熔化,然后让其在一定的环境中冷却,并在电脑上自动画出温度随时间变化的关系曲线—步冷曲线(见图1)。 当熔融的系统均匀冷却时,如果系统不发生相变,则系统的温度随时间的变化是均匀的,冷却速率较快(如图1中ab线段);若在冷却过程中发生了析出固体的相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统的冷却速率减慢,步冷曲线上出现转折(如图1中b 点)。当熔液继续冷却到某一点时(如图1中c点),系统以低共熔混合物固体析出,在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图1中cd线段);当熔液完全凝固后,温度才迅速下降(如图1中的线段)。 图1步冷曲线图2步冷曲线与相图 由此可知,对组成一定的二组分低共熔混合物体系,可以根据它的步冷曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的步冷曲

线的各转折点,即可画出二组分系统的相图(温度-组成图)。不同组成熔液的步冷曲线对应的相图如图2所示。 用步冷曲线法绘制相图时,被测系统必须时时处于接近相平衡状态,因此冷却速率要足够慢才能得到较好的结果。 三、仪器和试剂 1.仪器: ZR-HX金属相图试验装置一套;电脑一台(四套公用) 2.试剂: 铋(分析纯、熔点为544.5 K)、镉(分析纯、熔点为594.1 K) 四、实验步骤 1.配制试样: 配制含铋质量分数分别为20%、40%、60%、80%的Bi-Cd合金150g,再称纯Bi、纯Cd各150 g,分别放入6个不锈钢试管中,上面滴入约1 mL的硅油。在放入感温元件的细筒中也要滴入几滴硅油。 2.准备工作 (1)根据控制器所接位置,分别选择“A”或“B”加热器(可以根据情况只接一个加热器) (2)检查主机、从机和中继器的电源线连接是否可靠 (3)检查各从机温度传感器与仪器连接是否可靠 (4)用通讯电缆将中继器“主机”接口与主机串行通口连接 (5)用通讯电缆将中继器“从机”接口分别与从机连接 (6)检查各线、缆连接无误后先后接通从机、中继器和主机电源

物理化学实验报告讲义二组分金属相图的测定

实验30 二组分金属相图的测定 预习要求 1.理解热分析法。 2.理解步冷曲线上的转折点及停歇线表示的含义。 3.本实验所测定的Zn-Sn二组分,在液相及固相的相互溶解情况。 4.使用热电偶测量温度时的注意事项。(参阅附录1.2.3) 实验目的 1.用热分析法(步冷曲线法)绘制Zn-Sn二组分金属相图。 2.掌握热电偶测量温度的基本原理和自动平衡记录仪的使用方法。 实验原理 简单的二组分金属相图主要有三种:①液相完全互溶,凝固后固相也能完全互溶成固溶体的系统,如Cu-Ni,溴苯-氯苯;②液相完全互溶,固相完全不互溶的系统,如Bi-Cd; ③液相完全互溶,固相部分互溶的系统,如Pb-Sn。本实验研究的Zn-Sn系统属于第二种。在低共熔温度下,Zn在固相Sn中的最大溶解度为w Zn=0.09。 热分析法是绘制金属相图的基本方法之 一,即利用金属或合金在加热或冷却过程中发 生相变时,相变热的吸收或释放引起热容的突 变,来得到金属或合金中相转变温度的方法。 通常的做法是将金属或合金加热至全部熔 化,然后让其在一定的环境中自行冷却,每隔 一定时间记录一次温度,表示温度与时间关系 的曲线,即为步冷曲线(见图3-13)。 当熔融的系统均匀冷却时,如果不发生相 图3-13步冷曲线 变,则系统温度随时间的变化是均匀的,冷却 速度较快(如图中ab线段);若在冷却过程中 发生相变,由于在相变过程中伴随着放热,所以系统的冷却速率减慢,步冷曲线上出现转折(如图中b点);当系统继续冷却到某一温度时(如图中c点),系统中有低共熔混合物析出,步冷曲线出现温度的“停顿”;在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图中cd线段);当系统完全凝固后,温度又开 始下降(如图中de线段)。 图3-14 固相完全不互溶的A-B二组分金属相图及其步冷曲线

实验 二组分金属相图的绘制.

《物理化学实验》讲义 第三部分 实验 德州学院化学系 王敦青 二组分固---液相图的绘制 一、实验目的 1.学会用热分析法测绘Sn —Bi 二组分金属相图。 2.了解热分析法测量技术。 3.掌握SWKY 数字控温仪和KWL-08可控升降温电炉的基本原理和使用。 二、预习要求 了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 三、实验原理 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却, 每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。 二元简单低共熔体系的冷却曲线具有图1所示的形状。 图1 根据步冷曲线绘制相图 拐点后,开始有固体凝固出来,液相成分不断变化,平衡温度也不断随之改变,直到达到其低 共熔点温度,体系平衡,温度保持不变(平台);直到液相完全凝固后,温度又迅速下降。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2。遇此情况,可延长DC 线与AB 线相交,交点E 即为转折点。 图3是二元金属体系一种常见的步冷曲线。 当金属混合物加热熔化后冷却时,由于无相变发生,体系的温度随时间变化较大,冷却较快(1~2 段)。若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(2~3段)。当融熔液继续冷却到某一点时,如3点,由于此时液相的组成为低共熔物的组成。在最低共熔混合物完全凝固以前体系温度保持不变,步冷曲线出现平台,(如图3~4段)。当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(4~5段)。若图III-5-4中的步冷曲线为图III-5-5中总组成为P 的混合体系的冷却曲线,则转折点2 相当于相图中的G 点,为纯固相开始析出的状态。水平段3~4相当于相图中H 点,即低共熔物凝固的过程。因此,根据一系列不同组成混合体系的步冷 拐点:相变温度 平台 A+L B+L L A+B

二组分简单共熔体系相图的绘制

实验七二组分简单共熔体系相图的绘制 ------Cd~Bi二组分金属相图的绘制 1 实验目的及要求: 1)应用步冷曲线的方法绘制Cd~Bi二组分体系的相图。 2)了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。 2 实验原理:… 用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图,叫相图。 绘制相图的方法很多,其中之一叫热分析法。在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。从步冷曲线有无转折点就可以知道有无相变。测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图,如图Ⅱ一6一l所示。 纯物质的步冷曲线如①⑤所示,从高温冷却,开始降温很快,口6线的斜率决定于体系的散热程度。冷到A的熔点时,固体A开始析出,体系出现两相平衡(溶液和固体A),此时温度维持不变,步冷曲线出现bc的水平段,直到其中液相全部消失,温度才下降。 混合物步冷曲线(如②、④)与纯物质的步冷曲线(如①、⑤)不同。如②起始温度下降很快(如a′b′段),冷却到b′点的温度时,开始有固体析出,这时体系呈两相,因为液相的成分不断改变,所以其平衡温度也不断改变。由于凝固热的不断放出,其温度下降较慢,曲线的斜率较小(b′c′段)。到了低共熔点温度后,体系出现三相,温度不再改变,步冷曲线又出现水平段c′d′,直到液相完全凝固后,温度又迅速下降。 曲线⑧表示其组成恰为最低共熔混合物的步冷曲线,其图形与纯物相似,但它的水平段是三相平衡。 用步冷曲线绘制相图是以横轴表示混合物的成分,在对应的纵轴标出开始出现相变(即步冷曲线上的转折点)的温度,把这些点连接起来即得相图。 3 仪器与药品: 加热电炉1只,热电偶(铜一康铜)1根,不锈纲试管8只,控温测定装置1台,计算机1台,镉(化学纯),铋(化学纯)。 4 实验步骤: 1)配制不同质量百分数的铋、镉混合物各100g(含量分别为0%,15%,25%,40%,55%,75%,90%,100%),分别放在8个不锈纲试管中。 2)用控温测定装置装置,依次测纯镉、纯铋和含镉质量百分数为90%,75%,55%,40%,25%,15%样品的步冷曲线。将样品管放在加热电炉中加热,让样品熔化,同时将热电偶的热端(连玻璃套管)插入样品管中,待样品熔化后,停止加热。用热电偶玻璃套管轻轻

物理化学-实验七:二组分固液相图的绘制

实验七 二组分固-液相图的绘制 一、实验目的及要求 1.掌握用步冷曲线法测绘二组分金属固液平衡相图的原理和方法; 2.了解采用热电偶进行测温、控温的原理和装置。 二、实验原理 用来表示多相体系的温度、压力与体系中各组分的状态、组成之间关系的平面图形称为相图。二组分固-液相图是描述体系温度与二组分组成之间关系的图形。由于固液相变体系属凝聚体系,一般视为不受压力影响,因此在绘制相图时不考虑压力因素。 若二组分体系的两个组分在固相完全不溶,在液相可完全互溶,一般具有简单低共熔点,其相图具有比较简单的形式。根据相律,对于具有简单低共熔点的二组分体系,其相图可分为三个区域,即液相区、固液共存区和固相区。绘制相图时,根据不同组成样品的相变温度(即凝固点)绘制出这三个区域的交界线—液相线,即图1(b )中的T 1E 和T 2E ,并找出低共熔点E 所处的温度和液相组成。 步冷曲线法又称热分析法,是绘制相图的基本方法之一。它是将某种组成的样品加热至全部熔融,再均速冷却,测定冷却过程中样品的温度 – 时间关系,即步冷曲线。根据步冷曲线上的温度转折点获得该组成的相变点温度。 步冷曲线有三种形式,分别如图1(a )中的a 、b 和c 三条曲线。a 曲线是纯物质A 的步冷曲线。在冷却过程中,当体系温度到达A 物质凝固点时,开始析出固体,所释放的熔化热抵消了体系的散热,使步冷曲线上出现一个平台,平台的温度即为A 物质的凝固点。纯B 步冷曲线e 的形状与此相似。 a b c d e a b c d e A B x B t 液相区 固液共存区固相区低共熔点 T 1 T 2 T T (a )(b )E 图1 步冷曲线 b 曲线是由主要为A 物质但含有少量B 物质样品的步冷曲线。由于含有B 物质,使得凝固点下降,在低于纯A 凝固点的某一温度开始析出固体A ,但由于固体析出后使得B 的浓度升高,凝固点进一步下降,所以曲线产生了一个转折,直到当液态组成为低共熔点组成时,A 、B 共同析出,释放较多熔化热,使得曲线上又出现平台。如果液相中B 组分含量比共熔点处B 的含量高,则步冷曲线形状与此相同,只是先析出纯B ,如图中曲线d 。 c 曲线是当样品组成等于低共熔点组成时的步冷曲线。形状与A 相同,但在平台处A 、B 同时析出。 配制一系列不同组成的样品,测定步冷曲线,找出转折点温度及平台温度,将温度与组

二组分合金相图的绘制实验报告

二组分合金相图的绘制 一、实验目的: 1.通过实验,用热分析法测绘锡-铋二元合金相图。 2.了解热分析法的测量技术与有关测量温度的方法。 二、实验原理: 绘制相图常用的基本方法,其原理是根据系统在均匀冷却过程中,温度随时间变化情况来判断系统中是否发生了相变化。将金属溶解后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线。若熔融体系在均匀冷却的过程中无相变,得到的是平滑的冷却线,若在冷却的过程中有相变发生,那么因相变热的释放与散失的热量有所抵偿,步冷曲线将出现转折点或水平线段,转折点所对应的温度即为相变温度。 时间(a)纯物质(b)混合物(c)低共熔混合物 图1 典型步冷曲线 对于简单的低共熔二元合金体系,具有图1所示的三种形状的步冷曲线。由这些步冷曲线即可绘出合金相图。如果用记录仪连续记录体系逐步冷却温度,则记录纸上所得的曲线就是步冷曲线。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此体系的冷却速度必须足够慢才能得到较好的结果。 Sn—Bi合金相图还不属简单低共熔类型,当含Sn 81%以上即出现固熔体。 三、实验仪器和药品: 仪器和材料:金属相图实验炉(图2),微电脑温度控制仪,铂电阻,玻璃试管,坩埚,台天平。 药品:纯锡(CR)、纯铋(CR),石墨。

四、实验步骤: 1.配制样品 用感量为0.1g的托盘天平分别配制含铋量为30%、58%、80%的锡铋混合物各100g,另外称纯铋100g、纯锡100g,分别放入五个样品试管中。 2.通电前准备 ①首先接好炉体电源线、控制器电源、铂电阻插头、信号线插头、接地线。 图2 金属相图实验炉接线图 ②将装好药品的样品管插入铂电阻,然后放入炉体。 ③设置控制器拨码开关:由于炉丝在断电后热惯性作用,将会使炉温上冲100℃—160℃(冬天低夏天高)。因此设置拨码开关数值应考虑到这一点。例如:要求样品升温为350℃,夏天设置值为170℃。当炉温加热至170℃时加热灯灭,炉丝断电,由于热惯性使温度上冲至350℃后,实验炉自动开始降温。 ④将炉体黑色旋钮(电压指示旋钮)反时针旋转到底,处于保温状态。3.通电工作 ①通电升温:接通电源,控制器显示室温,加热灯亮,炉体上电压表指示电压值,炉体开始升温。 ②炉体自动断电:当炉内温度(即显示温度)高于设置温度后,加热灯灭,电压表指零,炉内电流切断,停止加热。 ③限温功能:为了防止拨码开关值设置过大而损坏铂电极,软件功能使拨码开关百位数不大于2,即温度最高设置值为299℃(万一拨码开关百位数大于2,程序中也认为是2)这样温度上冲后不会超过铂电阻的极限值500℃。 ④一次加热功能:由于实验中按先升温后降温的顺序进行,所以软件中采取一定的措施使得温度降到低于拨盘值时仍不加热,只有操作人员按复位键或重新通断一次电源,炉体才重新开始加热至拨码开关值。 ⑤中途加热:当炉体升温未达到要求温度时,如果显示温度小于299℃,则可增加拨码开关数值后再按一下复位键,加热继续进行。当显示温度超过299℃时,把黑色旋钮向顺时针旋动(工作人员不能离开),这时炉体继续加热,注意应提前切断炉丝电流(防止热惯性使温度上冲过高),即反时针旋动黑色旋钮至电压指示为零。 ⑥保温功能:由于冬季气温较低,为防止温度下降太快,不易发现拐点平台

相关文档
相关文档 最新文档