文档库 最新最全的文档下载
当前位置:文档库 › 并网光伏发电系统设计与仿真

并网光伏发电系统设计与仿真

并网光伏发电系统设计与仿真
并网光伏发电系统设计与仿真

并网光伏发电系统设计分析与仿真

1、绪论

在能源形势日益严峻和环境污染问题日益严重的今天,开发利用绿色可再生能源以实现可持续发展是人类必须采取的措施,分布式发电成为世界各国争相发展的热点,其中太阳能无疑是符合可持续发展战略的理想的绿色能源。随着太阳能电池研究进程的加快和转换效率的不断提升,光伏发电成本呈现出快速下降趋势,社会普遍认同光伏发电作为可再生能源的作用与应用前景,开展光伏发电(Photovoltaic(PV))的应用推广也更具有现实意义。同时光伏发电正在由边远农牧区和特殊场合应用向并网发电规模化方向发展,由补充能源向替代能源方向过渡。光伏并网发电已经成为太阳能光伏利用的主要方式之一。开展并网光伏发电的研究,对于缓解能源和环境问题,研究高性能光伏发电系统,合理正确利用太阳能光伏发电,不仅具有理论意义同样也具有重大的现实意义。

光伏发电作为分布式发电的一种,其工作特点是利用并网逆变器将太阳能电池组件产生的直流电转换成符合电网要求的交流电并入公共电网,光伏系统产生的电能除供给交流负载外,将剩余电能反馈给电网。可任意组合光伏系统的容量,分散使用最佳,可作为大电厂、大电网集中式供能的重要补充,也是新一代能源体系的重要组成部分。

2、光伏系统介绍及阵列输出特性分析

光伏发电系统通常由光伏阵列、能量优化控制器、储能组件及逆变器等部分组成。光伏发电系统一般分为独立光伏发电系统和并网光伏发电系统两大类。独立光伏发电系统是指供用户单独使用的光伏发电系统,如在边远地区使用的家用光伏电源等。并网光伏发电系统是指与电网系统相连的光伏发电系统。

2.1独立光伏发电系统

不与电网相连的光伏发电系统称为独立光伏发电系统,如图2-1所示。由于独立光伏发电系统中太阳能是唯一的能量来源,为了保证系统的正常工作,系统中必定存在一个储能环节来储存和调节整个系统的能量。

图2-1 独立光伏发电系统

2.2并网光伏发电系统

并网光伏发电系统如图2-2所示,光伏发电系统直接与电网连接,其中逆变器起很重要的作用,要求具有与电网连接的功能。目前常用的并网光伏发电系统具有两种结构形式,其不同之处在于是否带有蓄电池作为储能环节。带有蓄电池环节的并网光伏发电系统称为可调度式并网光伏发电系统,由于此系统中逆变器配有主开关和重要负载开关,使得系统具有不间断电源的作用,这对于一些重要负荷甚至某些家庭用户来说具有重要意义;此外,该系统还可以充当功率调节器的作用,稳定电网电压、抵消有害的高次谐波分量从而提高电能质量。不带有蓄电池环节的并网光伏发电系统称为不可调度式并网光伏发电系统,在此系统中,并网逆变器将太阳能电池板产生的直流电能转化为和电网电压同频、同相的交流电能。当主电网断电时,系统自动停止向电网供电;当有日照照射、光伏系统所产生的交流电能超过负载所需时,多余的部分将送往电网;夜间当负载所需电能超过光伏系统产生的交流电能时,电网自动向负载补充电能。

太阳能电池板

DC/DC

电网

控制器

逆变器

交流负载

图2-2 并网光伏发电系统

2.3光伏阵列建模

三相两级式光伏并网发电系统的结构图如图2-3所示,光伏阵列的直流电压经过DC/DC 升压,DC/AC 逆变器,RL 滤波器与电网相连。

dc

u dc

i dc

C pv

i a

i b

i c i a V b V c

V a

U b

U c

U R L

图2-3光伏系统模型

实际使用的光伏电池等效电路的形式如图2-4所示。

Iph

Rs

Rsh

Ish

VD

Voc IL

RL VL

ID

图2-4 光伏电池等效的电路

为光生电流,其值与光伏电池的面积及太阳光照强度成正比;为二

极管的暗电流,反映了光伏电池P-N结的扩散电流大小;为旁路电阻,反映电阻损耗,为串联电阻,反映漏电流损耗。因此理想光伏电池的等效电路只相当于一个电流为,的电流源和一个二极管并联。

当光伏电池接入一定负载后,负载便有电流通过,其值为光伏电池输出的负载电流,当负载被短路时,光伏电池输出的短路电流为,为在1000 光源的照射下,光伏电池输出端开路时所测得的输出电压值。为了寻找光伏电池输出电流的物理表达式,列出以下方程。

(2-1)

(2-2)

(2-3) 其中为等效二极管的端电压

(2-4) 代表光伏电池内部等效二极管P-N结反向饱和电流;

q为电子电荷,;

K 为波尔兹曼常量,;

A是常数因子(正偏电压大时A值为1,正偏电压小时A值为2);

T为绝对温度。

将式(2-3)、(2-4)代入(2-1)中,得出光伏电池输出电流的表达式:

(2-5)

单个光伏电池输出功率只有1W-2W,输出电压只有0.5V左右,无法满足并网发电的需求,通过光伏电池到光伏模板到光伏阵列的组合方式,可以保证较大的直流电流和电压输出,达到并网的条件要求。因此,光伏阵列的I-V特性等同于光伏电池的I-V特性。建立光伏阵列的数学模型,采用SUNFECH公司的STP2505-20/Wd型号光伏电池为例,其中包括:、Voc、等参数,就能在一定精度下等效仿真光伏阵列的I-V特性,满足计算机分析的需求。表2-1列出了该种光伏模块的输出特性参数表。

表2-1 SUNFECH公司的STP2505-20/Wd光伏电池参数

250W 29.5V

7.8A Voc 37.4V

8.4A 效率15.4%

工作温度-最大系统电压1000V DC

2.4光伏电池的等效模型

在上述中推导出来的光伏电池输出电流表达式(2-5),是基于物理原理的最基本的解析表达式,但由于光伏电池供应商不向用户提供表达式中的若干参数如、、等,且其参数与环境的关联度较大,难以在工程实践中得到广泛应用,因此不适用于光伏发电系统的工程设计和应用,需要在式(2-5)的基础上做以下近似:

(1)忽略项,因为通常较大,为几千欧姆,所以该项远小于光电流,可以省略不记。

(2)假设=,这是由于在通常情况下Rs远小于二极管正向导通电阻,并定义在:

1)光伏电池开路状态时,,;

2)最大功率点处,,。

设定两个中间参数A,B,通过以上两个条件建立硅太阳电池的工程用数学模型,光伏电池的I-V方程可简化为

(2-6) 在最大功率点时,,,可得

(2-7) 由于在常温条件下可忽略式中的“-1”项,解出A

(2-8) 注意到开路状态下,当时,,并将(2-8)带入(2-6)并忽略“-1”项得:

(2-9)

因此,通过式(2-8)、(2-9)只需要输入光伏电池通常的技术参数、、、,就可以通过计算得出A和B,进而由式(2-7)得到光伏阵列输出电压和电流的关系。

由于式(2-7)描述的特性曲线是在标准日照强度和标准电池温度条件下得到的,当两者条件发生变化时,需要对原表达式进行修正才能正确描述实际环境条件下的I-V特性曲线。通常可采用的方法是由光伏电池供应商提供的参数,即标准日照强度和标准温度下的参数值,估算出实际日照强度和实际温度下的参数再代入实用表达式(2-7)得到实际情况下的I-V特性曲线。其过程如下:

(2-10)

(2-11)

(2-12)

(2-13)

(2-14)

(2-15)

(2-16) 假设I-V特性曲线基本形状不变,系数a、b、c的典型值

2.4光伏电池的仿真分析

以表2-1列举的光伏模块参数为仿真对象,依照上节推导出的公式在MATLAB/SIMULINK下建立仿真模型对光伏电池进行I-V特性分析。建立的模型图如图2-5所示:

图2-5 光伏阵列仿真模型

在光照强度为,温度的外部环境下,得到如下仿真结果。其中图2-6为输出I-V曲线,该曲线与纵轴的交点为光伏电池短路电流,与横轴的交点为开路电压参数。当该曲线所围矩形面积最大时即使图2-7中P-V曲线的最高点,即所谓的最大功率输出点。

图2-6 光伏电池的输出I-V特性曲线

图2-7 光伏电池的输出P-V特性曲线

当光伏电池温度保持在25°C,仅改变光照强度,、、、时,光伏阵列I-V,P-V 特性曲线如图2-8所示。

图2-8同一温度、不同光照下的I-V曲线

由图2-8、2-9可知,在温度不变、光照强度改变的情况下,光伏电池的输出与光照强度成正比关系,即光照越强,输出越大。

图2-9同一温度、不同光照下的P-V曲线

3、最大功率点跟踪算法的分析

最大功率点跟踪原理是光伏阵列的输出功率与福照度、温度和直流侧电压的变化有密切关系,具有非线性特性,如图3-1所示。在一定的福照度和温度条件下,光伏阵列具有唯一的最大功率点,即图中的M点,与之相对应的电压、电流称之为最大功率点电压,和最大功率点电流。只有当光伏阵列工作在M点的时候,才能输出当前温度和福照度条件下的最大功率。因此,在光伏发电系统中,提高系统整体效率的一个重要途径就是实时调整光伏阵列的直流侧电压,使之始终工作在最大功率点附近,这个过程就称之为最大功率点跟踪(maximum power point tracking,MPPT)。

Y 轴

Im

图3-1 光伏阵列的输出特性曲线

3.1定电压跟踪法

定电压跟踪法其实是一种稳压控制,这种方法实际上就是一种简化了的MPPT ,但是CVT 法没有考虑到外界环境对光伏阵列输出电压的影响,在外界环境条件变化较大的地区,CVT 法并不能在所有的条件下对最大功率进行跟踪。CVT 法把光伏阵列电压始终控制在最大值处,控制极简单,外界环境不变时输出直流电压稳定,极大提高了输出的电能质量,但相对的,跟踪精度也较差,适应性弱,无法跟随环境的变化,常常造成输出功率的损失,外界环境变化较大时可能会使得电池电压低于设定值,造成输出功率为零,使系统利用率严重降低,加剧电网功率缺额。对于集中式接入的大规模光伏发电系统,较大的功率缺失将对电网的稳定性造成一定的影响;对于分布式接入的光伏发电系统,功率的缺失将加剧配电网的负担,改变潮流的分布,可能增大网络中的损耗。

3.2扰动观察法

扰动观察法是目前研究较热门同时也是较为常用的最大功率点跟踪方法,也称为登山法(Hill Climbing Method )。其基本工作原理为:周期性的给光伏阵列的输出电压加扰动,比较其输出功率与前一周期的输出功率的大小,如果功率增加则在下一个周期以相同方向加扰动,否则改变扰动的方向。扰动观

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

基于Matlab软件平台的光伏并网系统仿真实训

绪论 新能源是21世纪世界经济发展中最具决定力的五大技术领域之一。随着世界经济的快速发展,对能源需求逐年增长,而地球上以石油和煤为主的矿物资源日渐枯竭,能源已成为制约各国经济发展的瓶颈。同时,随着化石燃料的燃烧,所产生的二氧化碳在大气中的浓度急剧增加,生态环境逐渐恶化,使地球逐渐变暖。随着人类社会的发展,改善生态环境的呼声越来越高,开发利用无污染的新能源,对促进社会文明与进步,发展经济,改善人民生活具有重大的意义。太阳能作为一种清洁、高效和永不衰竭的新能源,在日常生活中受到了各国政府的重视,各国都将太阳能资源利用作为国家可持续发展战略的重要内容。 太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。

目录 第一章基于Matlab软件平台的光伏并网系统仿真实训......................... 错误!未定义书签。 1.1 Matlab软件介绍...................................... 错误!未定义书签。 1.2 光伏并网系统 (8) 第二章光伏并网逆变器电路工作原理 (13) 2.1 逆变器定义 (13) 2.3 逆变器功能作用 (13) 2.3.2 孤岛检测技术 (14) 2.3.3 智能电量管理及系统状况监控系统 (14) 第三章SG3525芯片 (15) 3.1芯片特点 (15) 3.2 管脚功能管脚图 (16) 3.3 结构设计内部结构图 (17) 第四章制图 (18) 4.1 用protel绘制原理图 (18) 4.2 根据原理图生成PCB电路板图 (18) 第五章焊接与调试 (19) 5.1 电路前面板的设计 (19) 5.2 调试结果 (20) 第六章实训结论 (21)

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

光伏发电系统设计方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (6) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (7)

3.3光伏阵列设计 (12) 3.4系统效率分析 (15) 四、电气部分 (16) 4.1概述 (16) 4.2系统方案设计选型 (16) 4.3电气主接线 (20) 4.4主要设备选型 (20) 4.5防雷及接地 (30) 4.6电气设备布置 (31) 4.7电缆敷设及电缆防火 (31) 五、工程案例 ........................................................................... 错误!未定义书签。 六、系统配置以及报价.............................................................. 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规》; 2)GB50057《建筑物防雷设计规》; 3)GB31/T316—2004《城市环境照明规》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规》; 6)GBJ16—87《建筑设计防火规》; 7)《中华人民国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。 近几年,我国光伏行业发展也非常迅速。国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

校级综合智慧能源实验平台技术需求

校级综合智慧能源实验平台技术需求 1、平台定位与目标 本平台目标是一个建设成一个跨学科、高水平的实验研发平台。 (1)跨学科:该平台能够涵盖我校电气、能源动力、自动化、计算机、经管等主干学科方向; (2)先进性:聚焦当前国内外能源互联网、综合能源系统领域的关键方向的前沿技术,打造涵盖诸多先进技术并将我校重点研发技术与成果充分融合的综合智慧能源实验研发平台。 (3)应用性:以当前在能源互联网领域开展应用或者具有应用潜力的技术为导向。 (4)人才培养:为我校与行业培养研究型、工程型的复合人才。 2、平台的基本形式 平台以物理仿真为主(动模实验平台),可以与软件仿真平台相结合,构成数字物理仿真平台,但二者之间必须紧密结合。 3、平台的主要特色 3.1模块化设计与灵活组合 实现电、冷热、气各部分可以相互独立运行但又彼此联系,整个实验平台构成不同功能模块,模块之间灵活组合,形成不同复杂程度的实验系统。另一方面,通过固定与灵活接线配合,模拟不同运行场景。 3.2平台的高水平与可扩展性 平台应尽可能考虑多种能源电力前沿技术的实验、研究与开发;关键技术与设备尽可能做到成熟产品与开源设备组合接入;配置一定端口,方便中试模块与后期研究设备接入。 4、平台的主要技术特征 (1)多种能源形式互补 平台需要考虑冷、热、电、气以及其他能源形式的协调控制与调度。考虑到

当前能源互联网与综合能源系统中电能是主要能源形式,围绕该领域的前沿技术交叉科研方向最多、技术发展最快,因此,平台的能源形式以电能为主,其他多种能源形式互补协同。 结合我校已有并准备应用于本平台的实验设备,并在此基础上提出目前行业广泛使用或者具有重要科研意义的能源形式。 (2)源网荷储协调 平台要考虑异质能量流在源网荷储整个环节的控制、优化与各种高级应用功能的实现。考虑到现实中源、网、储、荷四个主要环节中主要是通过电能形式进行能量的生产、传输、储存、使用。因此这种协调大多数情况下主要是以电能流为主、其他能流为辅的协调。 (3)新技术新设备应用 本项目希望尽可能将前沿的技术、理念应用到本平台,以确保平台的跨学科与高水平特色。 考虑将综合能源、能源互联网领域的前沿技术如5G通信、PMU、虚拟同步机等技术应用到本实验平台,并设计相应的实验场景与内容。其他相关的前沿技术如有可能也可以论证应用到本平台的可能性并进行应用。 5、平台的各层级特点与要求 本次方案设计按照能源层、信息层与高级应用层予以设计,其中能源层集成了包含冷热电气等不同类型的源网荷储设备,是整个平台的基础;信息层则涵盖整个平台的信息感知、量测、控制等环节,实现整个平台的稳定运行,是整个实验研发平台的中枢;高级应用层则实现整个实验研发平台的优化、实验与高级应用模块,是整个平台的大脑。 5.1能源层 5.1.1源侧 源侧需要结合我校已有并准备应用于本平台的实验设备,并在此基础上提出目前行业广泛使用或者具有重要科研意义的源侧模拟装置,并进行设计。 5.1.2网侧 主要是围绕区域(园区)级能源互联网或综合能源系统的特点,开展电网、冷/热网、气网的规划设计。

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

光伏发电系统_毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

光伏发电并网系统工程设计技术探讨

光伏发电并网系统工程设计技术探讨 摘要:太阳能光伏系统主要利用太阳能电池组件与其他辅助设备将太阳能转变 为电能,分为独立系统、并网系统与混合系统三种。它最大特点是光伏阵列产生 的直流电经过并网逆变器转换成符合电网要求的交流电,直接接入电网网络,并 网系统中PV 方阵所产生电力除了供给交流负载外,多余电力还能及时反馈给电网。而且我国幅员辽阔,日照时间和面积有很大优势,为太阳能光伏发电系统的 应用提供了良好的条件。 关键词:光伏发电并网系统;工程设计;技术; 随着社会的飞速进步,传统能源的紧缺及其对环境带来的负面影响给新能源 的蓬勃发展带来了新的契机。可以肯定,在未来的几十年中以太阳能为首的新能 源势必将逐步取代传统能源。目前,光伏发电技术主要应用于独立光伏系统与并 网光伏发电系统。 一、太阳能光伏发电并网系统的核心关键技术 并网发电系统一般由太阳组件,并网逆变器等组成。通常还包括数据采集系统、数据交换、参数显示和监控设备等。并网发电方式是将太阳能电池阵列所发 出的直流电通过逆变器转变成交流电能输送到公用电网中,无需蓄电池进行储能,相比较而言,并网发电较便宜,而且完全无污染。并网发电系统采用的并网逆变 器拥有自动相位和电压跟踪装置,能够非常好的配合电网的微小相位和电压波动,不会对电网造成影响。太阳能光伏发电并网系统所运用的核心技术有最大功率点 追踪(MPPT)技术、注入电网的谐波电流控制及控制与保护。①对太阳能光伏 发电系统运用的最大功率点追踪技术来说,英文全称为Maximum Power Point Tracking,主要对光伏系统的电气模块工作状态进行调节,使光伏板能够输出更多电能,并将太阳能电池组件产生的直流电有效地储存在蓄电池中,光伏电池的输 出功率和最大功率点追踪控制器的工作电压有直接的关系,只有在最合适的电压 之下,其输出功率才有唯一的最大值。而当前应用的最大功率点追踪技术主要有 在线扰动法、下山法、微分法及模糊规则法四种,能够动态地对太阳能辐射能量 进行追踪。②为了保证电能的质量,要抑制注入电网的谐波电流,保证在最低水平,主要的方法有提高载波频率、合理整定参数、滤波器设计以及群控技术等。 对于控制与保护来说,主要难点在于速度要求、与电网配合方面,常见的保护措 施有抗孤岛保护可整定短路、过欠压/频保护及通讯接口对接。 二、光伏发电并网系统工程设计技术 1.子系统的构成。太阳能光伏发电系统的各个子系统都是相对独立的,均是 由光伏子系统、直流监测配电系统以及并网逆变器系统等构成,将各个子系统的 进行有机结合后,再进行380V 三相交流电接至升压变,最后进入供电网络。 2.主设备选型。在大多数情况下,单台逆变器的容量越大,单位造价就会相 对较低,但是当单台逆变器容量过大时,一旦出现故障就会对整个电网系统产生 重大的影响,因此需要依据光伏组件安装场地的真实状况,选取适合额定电量的 并网型逆变器。在当前国内生产的并网逆变器单台容量最大可以达到500kVA,但是100kVA 及以上的产品的运行不足。为确保光伏发电场能够稳定、经济的运行,并网型逆变器能通过分散成组相对独立并网的方式,这就能够促进整个光伏发电 系统的顺畅运营。并网型逆变器需要过、欠电压,过、欠频率,进行短路保护, 防孤岛效应,逆向功率保护等保护方式。每个逆变器都需要连接到多个串光伏电 池组件,而这些电池组件可以利用直流监测配电箱连接到逆变器。直流监测配电

分布式并网光伏发电系统的设计

华准6MW分布式光伏发电项目 4MWp龙蓬子站 10kV升压站初步设计说明书

项目负责人:审核:校对:设计:

目录 1总的部分 4 1.1设计依据 4 1.2设计遵循标准及规范 4 1.3 工程建设必要性及规模 5 1.4 项目概述 5 1.5 系统接线 5 2系统部分 6 2.1电力系统 6 2.2系统继电保护及安全自动装置 6 2.3调度自动化 7 2.4系统通信 8 3电气一次部分 8 3.1电气主接线 8 3.2 短路电流及主要设备、导体选择 9 3.3绝缘配合及过电压保护 10 3.4 雷电过电压保护 10 3.5接地 11 3.6 电气设备布置及配电装置 11 3.7 站用电及照明 11 3.8 电缆设置 12 4 电气二次部分 12 4.1 计算机监控 12 4.2系统概述 12 4.3 系统监控范围 13

4.4 系统构成 13 4.5 系统功能 14 4.6 继电保护 14 4.7 二次设备的布置 15 5.直流系统 15

1总的部分 1.1设计依据 1)南京南瑞太阳能科技有限公司与东南大学建筑设计研究院有限公司电力工程设计研究分院签订的工程设计服务合同2)华准6MW分布式光伏发电项目4MWp龙蓬子站接入系统报告1.2设计遵循标准及规范 火力发电厂设计技术规程(DL 5000-2000) 火力发电厂初步设计文件内容深度规定(DL/T5427-2009) 火力发电厂厂用电设计技术规定(DL/T 5153-2002) 火力发电厂和变电所二次接线设计技术规程(DL/T5136-2012) 电力工程直流系统设计技术规程(DL/T 5044-2004) 火力发电厂和变电所照明设计技术规定(DL/T5390-2007) 电力工程电缆设计规范(GB50217-2007) 电缆防火措施设计和施工验收标准(DLGJ154-2000) 高压配电装置设计技术规定(DL/T5352-2006) 导体和电器选择设计技术规定(DL/T5222-2005) 建筑物防雷设计规范(GB50057-2010) 交流电气装置的过电压保护和绝缘配合(DL/T620-1997) 交流电气装置的接地设计规范(GB\T50065-2011) 火力发电厂厂内通信设计技术规定(DL/T5041-2012) 继电保护和安全自动装置技术规程(GB14285-2006) 电测量及电能计量装置设计技术规程(DL/T5137-2001) 火力发电厂与变电所设计防火规范(GB50229-2006) 35KV~110KV变电所设计规范(GB50059-2011) 电能质量电压波动和闪变(GB12326-2008) 电能质量电力系统供电电压允许偏差(GB12325-2008)

5kW并网型可调度式光伏发电系统设计

辽宁工业大学 光伏发电技术课程设计(论文)题目: 5kW并网型可调度式光伏发电系统设计 院(系): 专业班级: 学号: 121806015 学生姓名: 指导教师:(签字) 起止时间: 2015.12.14-2015.12.25

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气教研室Array 注:成绩:平时40% 论文质量60% 以百分制计算

摘要 近些年来,能源问题迫使世界各国对新能源开发和利用。太阳能因其自身的优势成为最有前途的一种新能源。将太阳能转换为电能越来越多的成为人们关注的焦点,只要成功,前途无量。但太阳能光伏发电仍旧存在着一些缺点,如成本高、能量转换率低,需要不断地改良,优化。对于光伏发电而言,并网模式是将其效率最大化最为理想的方式,因此要做好并网光伏发电系统的设计优化,才能满足电网对发电质量的要求,以及本身的安全运行。本文先对光伏发电进行了回顾,而后重点介绍了并网光伏发电系统,并提出了并网光伏发电系统设计的优化建议。 关键词:无线传感器网络;室内定位;RSSI;加权质心;混合定位

目录 第1章绪论 (1) 1.1光伏发电系统概况 (1) 1.2本文研究内容 (2) 第2章光伏发电系统总体设计 (3) 第3章发电系统设备选择及设计 (4) 3.1太阳能电池板的选择 (4) 3.2蓄电池参数计算及选择 (5) 3.3逆变器设计 (6) 3.4汇流箱设计 (9) 3.5并网逆变器控制保护设计 (11) 第4章总结 (13) 参考文献 (14) 附录A 光伏并网系统结构图 (16) 附录B 并网发电系统原理图 (17)

太阳能光伏发电系统设计报告

西安思源学院能源学院 课程设计 题目:西安市发电系统设计 课程:太阳能光伏发电系统设计专业:电力及其自动化 班级:电力0902 姓名:杨欣 指导教师: 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍--------------------------------------------3 2中国北京市光照辐射气象资料-------------------------------------------------------9 3独立光伏系统设计--------------------------------------------------------------------11 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)---------------------------------11 3.2蓄电池容量设计(电压:24V,48V)--------------------------------------------11 3.3太阳能电池板容量设计,倾角设计-----------------------------------------------11 3.4太阳能电池板安装间隔计算及作图。--------------------------------------------14 3.5逆变器选型-----------------------------------------------------------------------------15 3.6控制器选型-----------------------------------------------------------------------------15 3.7系统发电量预估------------------------------------------------------------------------17

相关文档
相关文档 最新文档