文档库 最新最全的文档下载
当前位置:文档库 › 正弦定理与余弦定理

正弦定理与余弦定理

 正弦定理与余弦定理
 正弦定理与余弦定理

正弦定理与余弦定理

1.正弦定理和余弦定理

(1)S =1

2ah (h 表示边a 上的高);

(2)S =12bc sin A =12ac sin__B =1

2

ab sin C ;

(3)S =p (p -a )(p -b )(p -c ),其中p =1

2

(a +b +c ).

判断正误(正确的打“√”,错误的打“×”)

(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .( )

(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( ) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .( )

(4)在△ABC 中,a 2+b 2

(教材习题改编)在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°

D .150°

解析:选B.cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.

所以B =60°,所以A +C =120°.

在△ABC 中,若a =18,b =24,A =45°,则此三角形( ) A .无解 B .有两解

C .有一解

D .解的个数不确定 解析:选B.因为a sin A =b

sin B

所以sin B =b a ·sin A =2418×sin 45°=22

3.

又因为a

在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为________.

解析:由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =1

2(负值舍去),由bc =2,可得△ABC

的面积S =12bc sin A =12×2×12=1

2.

答案:1

2

(优质试题·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.

解析:依题意得2b ×a 2+c 2-b 22ac =a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 2

2bc ,即a 2+c 2-b 2=ac ,所以

2ac cos B =ac >0,cos B =1

2.又0

3.

答案:π

3

利用正弦、余弦定理解三角形

[典例引领

]

(1)(优质试题·高考全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于1

3BC ,则cos A =

( )

A.310

10

B.1010

C .-

1010

D .-31010

(2)(优质试题·高考全国卷Ⅰ)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12 B.π6 C.π4

D.π3

【解析】 (1)设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=

2

2c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=5

2c 2,则b

=102c .由余弦定理,可得cos A =b 2

+c 2

-a 2

2bc =52c 2+c 2-92c

2

2×10

2

c ×c

=-10

10,故选C.

(2)因为sin B +sin A (sin C -cos C )=0,所以sin(A +C )+sin A ·sin C -sin A ·cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0,因为sin C ≠0,所以sin A +cos A =0,所以tan A =-1,因为A ∈(0,π),所以A =

4

,由正弦定理得sin C =c ·sin A

a =

222=

12,又0

6

.故选B. 【答案】 (1)C (2)B

(1)正、余弦定理的选用

解三角形时,如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.

(2)三角形解的个数的判断

已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.

[通关练习]

1.(优质试题·张掖市第一次诊断考试)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sin B -a sin A =1

2a sin C ,则cos B 为( )

A.74

B.34

C.73

D.13

解析:选B.由b sin B -a sin A =1

2a sin C ,且c =2a ,得b =2a ,所以cos B =a 2+c 2-b 22ac =

a 2+4a 2-2a 24a 2=3

4

.

2.已知△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( ) A.π6 B.π3 C.2π3

D.5π6

解析:选C.法一:因为(2a +c )cos B +b cos C =0,所以(2sin A +sin C )cos B +sin B cos C =2sin A cos B +sin(B +C )=2sin A cos B +sin A =0,

因为sin A ≠0,所以cos B =-1

2,又B 为△ABC 的内角,所以B =2π3.故选C.

法二:因为(2a +c )cos B +b cos C =0, 所以(2a +c )·a 2+c 2-b 22ac +b ·a 2+b 2-c 2

2ab =0,

所以b 2=a 2+c 2+ac , 所以cos B =a 2+c 2-b 22ac =-1

2,

所以B =2π

3

.

3.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =3,∠B =2∠A ,cos A =6

3

,则b =________.

解析:在△ABC 中,由cos A =

63,∠B =2∠A ,可得sin A =33

再由正弦定理a sin A =b sin B ,可得333=b

22

3,

求得b =2 6. 答案:2 6

利用正弦、余弦定理判定三角形

的形状

[典例引领]

(1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形

D .不确定

(2)(优质试题·山西怀仁月考)若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,那么△ABC 一定是( )

A .直角三角形

B .等腰三角形

C .等腰直角三角形

D .等边三角形

【解析】 (1)由正弦定理得sin B cos C +cos B sin C =sin 2A ,则sin(B +C )=sin 2A ,由三角形内角和,得sin(B +C )=sin A =sin 2A ,即sin A =1,所以∠A =π

2.即△ABC 为直角三角形.

(2)法一:利用边的关系来判断:

由正弦定理得sin C sin B =c b ,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c

2b .

又由余弦定理得cos A =b 2+c 2-a 2

2bc

所以c 2b =b 2+c 2-a 2

2bc

即c 2=b 2+c 2-a 2,所以a 2=b 2, 所以a =b .又因为a 2+b 2-c 2=ab . 所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二:利用角的关系来判断:

因为A +B +C =180°,所以sin C =sin(A +B ),

又因为2cos A sin B =sin C ,

所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.

又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,

由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°

所以△ABC 为等边三角形. 【答案】 (1)A (2)D

若将本例(1)条件改为“2sin A cos B =sin C ”,试判断△ABC 的形状.

解:法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,故△ABC 为等腰三角形. 法二:由正弦定理得2a cos B =c ,再由余弦定理得 2a ·a 2+c 2-b 2

2ac =c ?a 2=b 2?a =b ,

故△ABC 为等腰三角形.

判定三角形形状的两种常用途径

[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.

[通关练习]

1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c

b <cos A ,则△ABC 为( )

A .钝角三角形

B .直角三角形

C .锐角三角形

D .等边三角形

解析:选A.已知c b <cos A ,由正弦定理,得sin C

sin B <cos A ,即sin C <sin B cos A ,所以sin(A

+B )<sin B cos A ,即sin B ·cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,所以△ABC 是钝角三角形.

2.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .

(1)求角A 的大小;

(2)若sin B +sin C =1,试判断△ABC 的形状. 解:(1)由题意知,

根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .①

由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,

A =120°.

(2)由①得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,故sin B =sin C =1

2.

因为0°

与三角形面积有关的问题(高频考点)

求解与三角形面积有关的问题是高考的热点,三种题型在高考中时有出现,其试题为中档题.高考对正、余弦定理应用的考查有以下三个命题角度: (1)求三角形的面积;

(2)已知三角形的面积解三角形;

(3)求有关三角形面积或周长的最值(范围)问题.

[典例引领]

角度一 求三角形的面积

(优质试题·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A

+3cos A =0,a =27,b =2. (1)求c ;

(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解】 (1)由已知可得tan A =-3,所以A =2π

3

.

在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π

3,即c 2+2c -24=0.

解得c =-6(舍去),c =4.

(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π

6.

故△ABD 面积与△ACD 面积的比值为

1

2AB ·AD ·sin π6

1

2

AC ·AD =1.

又△ABC 的面积为1

2×4×2sin ∠BAC =23,所以△ABD 的面积为 3.

角度二 已知三角形的面积解三角形

(优质试题·江西南昌十校模拟)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,

且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S △ABC =57

4,则b 的值为________.

【解析】 由sin A sin B =5c 2b ?a b =5c 2b ?a =5

2c ,①

由S △ABC =12ac sin B =574且sin B =74得1

2ac =5,②

联立①②解得a =5,c =2,由sin B =74且B 为锐角知cos B =3

4

,由余弦定理知b 2=25+4-2×5×2×3

4=14,b =14.

【答案】

14

角度三 求有关三角形面积或周长的最值(范围) 问题

(优质试题·沈阳市教学质量检测(一))已知△ABC 的三个内角A ,B ,C 的对边分别为

a ,

b ,

c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________. 【解析】 由题意得:4×1

2

bc sin A =a 2-b 2-c 2+2bc ,

又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ????A +π4=1,又0

2bc sin

A =1

2bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,所以bc ≤16,所以S 的最大值为

8.

【答案】 8

与三角形面积有关问题的解题策略

(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =1

2bc sin A ,一般是已知哪一个角

就使用含哪个角的公式.

(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.

(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.

[通关练习]

1.(优质试题·云南省第一次统一检测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =b cos C +c sin B ,且△ABC 的面积为1+2,则b 的最小值为( ) A .2 B .3 C. 2

D. 3

解析:选A.由a =b cos C +c sin B 及正弦定理,得sin A =sin B cos C +sin C sin B ,即sin(B +C )=sin B cos C +sin C sin B ,得sin C cos B =sin C sin B ,又sin C ≠0,所以tan B =1. 因为B ∈(0,π),所以B =π4.由S △ABC =1

2ac sin B =1+2,得ac =22+4.又b 2=a 2+c 2-

2ac cos B ≥2ac -2ac =(2-2)(4+22)=4,当且仅当a =c 时等号成立,所以b ≥2,b 的最小值为2,故选A.

2.(优质试题·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B

2.

(1)求cos B ;

(2)若a +c =6,△ABC 的面积为2,求b .

解:(1)由题设及A +B +C =π得sin B =8sin 2B

2,故

sin B =4(1-cos B ). 上式两边平方,整理得 17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =15

17

.

(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =17

2.

由余弦定理及a +c =6得 b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×17

2×????1+1517 =4. 所以b =2.

应用正、余弦定理的解题技巧

(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要注意分类讨论.

(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.

1.(优质试题·兰州市实战考试)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若b 2=ac ,c =2a ,则cos C =( ) A.2

4

B .-

24

C.34 D .-34

故选B.

2.(优质试题·广东广雅中学、江西南昌二中联考)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( ) A .2∶3 B .4∶3 C .3∶1

D .3∶2

解析:选C.由正弦定理得3sin B cos C =sin C -3sin C cos B ,3sin(B +C )=sin C ,因为A +B +C =π,所以B +C =π-A ,所以3sin A =sin C ,所以sin C ∶sin A =3∶1,选C. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =22

3,a =3,S △ABC

=22,则b 的值为( ) A .6 B .3 C .2

D .2或3

解析:选D.因为S △ABC =22=1

2

bc sin A ,

所以bc =6,又因为sin A =223,所以cos A =1

3,又a =3,由余弦定理得9=b 2+c 2-2bc cos

A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3.

4.(优质试题·安徽合肥模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =22

3,

b cos A +a cos B =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9π

D .36π 解析:选C.已知b cos A +a cos B =2,由正弦定理可得2R sin B cos A +2R sin A cos B =2(R 为△ABC 的外接圆半径).利用两角和的正弦公式得2R sin(A +B )=2,则2R sin C =2,因为cos C =223,所以sin C =13

,所以R =3.故△ABC 的外接圆面积为9π.故选C.

5.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若b sin A -3a cos B =0,且b 2=ac ,则a +c b 的值为( )

A.22

B. 2 C .2

D .4

解析:选C.在△ABC 中,由b sin A -3a cos B =0, 利用正弦定理得sin B sin A -3sin A cos B =0,

所以tan B =3,故B =π3

.

由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+c 2-ac , 即b 2=(a +c )2-3ac ,

又b 2=ac ,所以4b 2=(a +c )2,求得a +c b

=2.

6.在△ABC 中,A =π

4,b 2sin C =42sin B ,则△ABC 的面积为________.

解析:因为b 2sin C =42sin B , 所以b 2c =42b ,所以bc =42, S △ABC =12bc sin A =12×42×2

2=2.

答案:2

7.在△ABC 中,a =4,b =5,c =6,则sin 2A

sin C =________.

解析:由余弦定理:cos A =b 2+c 2-a 22bc =25+36-162×5×6=3

4,

所以sin A =7

4,cos C =a 2+b 2-c 22ab =16+25-362×4×5=18,

所以sin C =378,所以sin 2A

sin C =2×34×7

437

8=1.

答案:1

8.已知△ABC 的周长为2+1,面积为1

6sin C ,且sin A +sin B =2sin C ,则角C 的值为

________.

解析:将sin A +sin B =2sin C 利用正弦定理化简得: a +b =2c ,因为a +b +c =2+1,

所以2c +c =2+1,即c =1,所以a +b =2, 因为S △ABC =12ab sin C =16sin C ,所以ab =1

3.

因为cos C =a 2+b 2-c 22ab =a 2+b 2-1

2ab

=(a +b )2

-2ab -12ab =2-2

3-123

=1

2,则C =π3

.

答案:π3

9.(优质试题·高考北京卷)在△ABC 中,∠A =60°,c =37a .

(1)求sin C 的值;

(2)若a =7,求△ABC 的面积.

解:(1)在△ABC 中,因为∠A =60°,c =3

7a ,

所以由正弦定理得sin C =c sin A a =37×32=33

14.

(2)因为a =7,所以c =3

7

×7=3.

由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b ×3×1

2,

解得b =8或b =-5(舍).

所以△ABC 的面积S =12bc sin A =12×8×3×3

2

=6 3.

10.(优质试题·贵州省适应性考试)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B =4,b sin A =3. (1)求tan B 及边长a 的值;

(2)若△ABC 的面积S =9,求△ABC 的周长. 解:(1)在△ABC 中,a cos B =4,b sin A =3, 两式相除,有b sin A a cos B =sin B sin A sin A cos B =tan B =3

4,

又a cos B =4,所以cos B >0,则cos B =4

5,故a =5.

(2)由(1)知,sin B =35,由S =1

2ac sin B =9,得c =6.

由b 2=a 2+c 2-2ac cos B =13,得b =13. 故△ABC 的周长为11+13.

1.(优质试题·长沙市统一模拟考试)△ABC 中,C =2π

3,AB =3,则△ABC 的周长为( )

A .6sin ????A +π

3+3

B .6sin ????A +π

6+3

C .23sin ?

???A +π

3+3

D .23sin ?

???A +π

6+3

解析:选C.设△ABC 的外接圆半径为R ,则2R =

3

sin

2π3

=23,于是BC =2R sin A =23sin A ,

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

1正弦定理和余弦定理-教学设计-教案

教学准备 教学目标 1. 知识目标:理解并掌握正弦定理,能初步运用正弦定理解斜三角形;技能目标:理解用向量方法推导正弦定理的过程,进一步巩固向量知识,体现向量的工具性情感态度价值观:培养学生 在方程思想指导下处理解三角形问题的运算能力; /难点教学重点2. 重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判 断解的个数。教学用具 3. 多媒体标签 4. 正弦定理 教学过程 讲授新课在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角 根据锐BC=a,AC=b,AB=c, ABC.与边的等式关系。如图11-2,在Rt中,设角三角函数中正弦函数的定义,有 . ,又,则,中,ABC从而在直角三角 形.

思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: ,根上的高是CDABC1(证法一)如图.1-3,当是锐角三角形时,设边AB CD=据任意角三角函数的定义,有,则. . 同理可得,从而

是钝角三角形时,以上关系式仍然成立。(由学生课后ABC类似可推出,当自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ] 理解定理[)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系 数为同1 ( ;使一正数,即存在正数k,,

等价于2(),,。从而知正弦定理的基本作用为: ;①已知三角形的任意两角及其一边可以求其他边,如②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 . 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。. 评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 2(1)题。)、(页练习第第随堂练习[]511

三角形正弦余弦定理

正弦定理,余弦定理 (课 堂) 选择 9 一,下列余弦定理正确的是哪一个 ( ) C 、 同弧所对的圆周角相等 D 、 圆内接四边形对角互补 六,三角形的三个角之比是 1:2:3,则最大的角 十二,在三角中, A 则角_等于 2 A 、30 o 已知 A 、60 o cc o B 、90 C 、 30°或150° A 、a 2 =b 2 +c 2 C 、 120 o D 、150 o 2 2 2 B 、a =b +c +2bccosA 七,下列哪个三角形是直角三角形 ( ) 十三,三角形中, 列正确的是 2 2 2 C 、 b =a +c -accosB A 、1,1,2 1,1,73 A 、a 2 =b 2 +c ,2 2 , 2 _ _ D 、b =a +c -2accosB 二,下列正弦定理公式变形正确的 是哪一个 ( ) D 、3,4,4 C 、 a -A a sin A =— R 2Rsin A = a b cos150o sin B sin A , csin C b = ----- sin B a 2 J 3 2 73 2 A 1 sin —=- 2 2 150o D 、60 o B = 60°,则 下 2 -bc B 、b 2 = a 2 + c 2 - ac = a2+b2-ab C. 一 =b 2 +c 2 12bc 三,下列关于三角形的表达式错误 的是 ( ) A 、A + B +C " ab =sin As in B a sin A C 、-= ------- b sin B a si n B =bsi n A 四,下列有关三角形外接圆的表达 式错误的是 ( A 、a =2Rsin A c =2Rsi nC 十四, 三角中, A = 45o ,则下列 cos120o 73 2 =b 2 +c 2 + J 2bc B 、a 2 = b 2 +c 2 - J 2bc a ——=2R sin A sin A C 、 =2R 列哪一句是错误的 ) A 、直径所对的圆周角是 180o 十,cosA<0,则此三角形一定 是 ( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形 ,在三 =丄 2 , ) 中,已知 sin A A 等于 30o 150o D 、 =a 2 + c 2 -72ac c 2 = a 2 卄2 -72ab 在三角形 则 A 、30o C 、 60° D 、 90o B 、直径所对的圆周角是 90 o C 、 30o 或150 o D 、60 o 45° 十六,在三角形中, A+B = 2C ,贝 U C

(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正弦余弦公式总结

正弦余弦公式总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)] tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)] 3.和差化积公式 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-1/2* [cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2* [sin(a+b)+sin(a-b)] cos(a)sin(b)=1/2* [sin(a+b)-sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 2sin2(a/2)=1-cos(a) 2cos2(a/2)=1+cos(a) tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)] tan2(a/2)= [1-cos(a)]/[1+cos(a)] 7.万能公式 sin(a)=2tan(a/2)/[1+tan2(a/2)] cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)] tan(a)=2tan(a/2)/[1-tan2(a/2)] 8.其它公式(推导出来的) a*sin(a)+b*cos(a)=2+b2其中 tan(c)=b/a a*sin(a)-b*cos(a)= √a2+b2cos(a-c) 其中 tan(c)=a/b

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理余弦定理

第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a km D .2a km 解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦 定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×? ?? ??-12=3a 2, ∴AB =3a . 答案B 2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km

C .3 3 km D .2 3 km 解析 如图,由条件知AB =24×15 60=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =AB sin45°sin30°=3 2. 答案B 3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里 D .70海里 解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120° = 502+302-2×50×30cos120°=70. 答案D 4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m

正弦与余弦定理和公式高中数学知识点梳理

正弦与余弦定理和公式高中数学知识点 梳理 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形

中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题 (3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sin A+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,C=90,a=1,c=4,则sinA 的值为 2.已知为锐角,且,则的度数是( ) 3.在△ABC中,若,A,B为锐角,则C的度数是() 4.若A为锐角,且,则A=() 5.在△ABC中,AB=AC=2,ADBC,垂足为D,且AD= ,E 是AC中点, EFBC,垂足为F,求sinEBF的值。

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

人教新课标版数学高二-2014版数学必修五练习1-1正弦定理与余弦定理

习题课 正弦定理与余弦定理 双基达标 (限时20分钟) 1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ). A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B . 答案 C 2.在△ABC 中,若a 2=bc ,则角A 是 ( ). A .锐角 B .钝角 C .直角 D .60° 解析 cos A =b 2+c 2-a 2 2bc = b 2+ c 2 -bc 2bc = ????b -c 22+3c 2 4 2bc >0,∴0°<A <90°. 答案 A 3.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于 ( ). A.21 B.106 C.69 D.154 解析 设BC =a ,则BM =MC =a 2. 在△ABM 中, AB 2=BM 2+AM 2-2BM ·AM cos ∠AMB , 即72=14a 2+42-2×a 2×4·cos ∠AMB ① 在△ACM 中, AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC 即62=42+14a 2+2×4×a 2·cos ∠AMB ② ①+②得:72+62=42+42+1 2 a 2,

∴a =106. 答案 B 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________. 解析 ∵a 2+c 2-b 2=3ac , ∴cos B =a 2+c 2-b 22ac =3ac 2ac =32,∴B =π 6. 答案 π 6 5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________. 解析 由sin B +cos B =2sin ????B +π 4=2得 sin ????B +π4=1,∴B =π 4. 由正弦定理a sin A =b sin B 得 sin A =a sin B b = 2sin π 4 2 =12 , ∴A =π6或56 π. ∵a <b ,∴A <B ,A =π 6. 答案 π6 6.在△ABC 中,内角A 、B 、C 成等差数列,其对边a ,b ,c 满足2b 2=3ac ,求A . 解 由A 、B 、C 成等差数列及A +B +C =180°得B =60°,A +C =120°. 由2b 2=3ac 及正弦定理得 2sin 2B =3sin A sin C , 故sin A sin C =12 . cos(A +C )=cos A cos C -sin A sin C =cos A cos C -1 2, 即cos A cos C -12=-1 2, cos A cos C =0, cos A =0或cos C =0,

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

三余弦定理与三正弦定理

1. 设A 为面上一点,过A 的直线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC,∠BAC,∠OAB 三角的余弦关系为: cos∠OAC=cos∠BAC×cos∠OAB (cos∠BAC 和cos∠OAB 只能是锐角) 通俗点说就是,斜线与平面内一条直线夹角θ的余弦值 =斜线与平面所成角1θ的余弦值?射影与平面内直线夹角的 余弦值. 三余弦定理(又叫最小角定理或爪子定理) 定理证明:如上图,自点O 作OB⊥AB 于点B ,过B 作BC⊥AC 于C ,连OC ,则易知△ABC、△AOC、△ABO 均为直角三角 形.OA AC AB AC OA AB ===θθθcos ,cos ,cos 21 ∴ 21cos cos cos θθθ?= 辅助记忆:这三个角中,角θ是最大的,其余弦值最小,等于另外两个角的余弦值之积。斜线与平面所成角1θ是斜线与平面内所有直线所成的角中最小的角。 2.设二面角M -AB -N 的度数为α,在平面M 上有一条射线AC ,它和棱AB 所成角为β,和平面N 所成的角为γ,则 sin γ=sin α·sin β(如图) 三正弦定理 定理证明:如上图,过C 作CO⊥平面N 于点O ,过O 作直线OB⊥二面角的棱于点B ,连OA ,CB ,则易知△CAO,△CBO,△ABC 均为直角三角形. 于是,sin =AC CO ,sin =BC CO ,sin β=AC BC ∴ sin γ=sin α·sin β β

如果将三余弦定理和三正弦定理联合起来使用,用于解答立体几何综合题,你会发现出乎意料地简单,甚至不用作任何辅助线! 例1 如图,已知A1B1C1-ABC是正三棱柱,D是AC中点,若AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.(1994年全 国高考理科数学23题)

正弦定理与余弦定理

第28讲 正弦定理与余弦定理 1.在△ABC 中,a 2=b 2+c 2+bc ,则角A 等于(C) A .60° B .45° C .120° D .30° 因为cos A =b 2+c 2-a 22bc =-12, 又因为0°

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

讲义1 正弦定理和余弦定理

讲义一 正弦定理和余弦定理以及其应用 洞口三中 方锦昌 一、知识与技能: 掌握正弦定理和余弦定理,并能加以灵活运用。 二、知识引入与讲解: Ⅰ、正弦定理的探索和证明及其基本应用: 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C ==2R 例1.(1)、已知?ABC 中,∠A 060= ,a =求sin sin sin a b c A B C ++++ (=2) (2)、已知?ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3) Ⅱ、余弦定理的发现和证明过程及其基本应用: 例2.(1)、在?ABC 中,已知=a c 060=B ,求b 及A ( =b 060.=A ) (2)、在?ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。 例3.在?ABC 中,已知7a =,5b =,3c =,判断?ABC 的类型。 分析:由余弦定理可知 222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+???>+???<+??ABC 是锐角三角形 ? (注意:是锐角A ?ABC 是锐角三角形?) 解:222753>+,即222a b c >+, ∴ABC 是钝角三角形?。 练习: (1)在?ABC 中,已知sin :sin :sin 1:2:3A B C =,判断?ABC 的类型。 (2)已知?ABC 满足条件cos cos a A b B =,判断?ABC 的类型。 (答案:(1)ABC 是钝角三角形? ;(2)?ABC 是等腰或直角三角形) 例4.在?ABC 中,060A =,1b =,求sin sin sin a b c A B C ++++的值 分析:可利用三角形面积定理111sin sin sin 222 S ab C ac B bc A ===以及正弦定理sin sin a b A B =sin c C ==sin sin sin a b c A B C ++++ 解:由1sin 2 S bc A ==得2c =,则2222cos a b c bc A =+-=3,即a 从而 sin sin sin a b c A B C ++++2sin a A == 例题5、某人在M 汽车站的北偏西20?的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。公路的走向是M 站的北偏东40?。开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米。问汽车还需行驶多远,才能到达M 汽车站?

正弦定理和余弦定理

正弦定理和余弦定理 【知识梳理】 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三: 形式四: 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 222 2cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二: 【典型例题】 111sin sin sin 222ABC S ab C bc A ac B ?===::sin :sin :sin a b c A B C =sin ,sin ,sin 222a b c A B C R R R ===222cos 2b c a A bc +-=222cos 2a c b B ac +-=222 cos 2a b c C ab +-=

题型一:利用正弦定理解三角形 1.在ABC ?中,若5b =,4B π∠=,1sin 3A =,则a = . 2.在△ABC 中,已知a = 3,b =2,B=45°,求A 、C 和c . 题型二:利用余弦定理解三角形 1.设ABC ?的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,4 1cos = C . (Ⅰ)求ABC ?的周长;(Ⅱ)求()C A -cos 的值. 2. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.

正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b A R a R R C c B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin = = = ======变形有:为外接圆的半径 三角形的面积公式: A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 ab c b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a 2cos 2cos 2cos cos 2cos 2cos 22222 222 22222222222-+= -+= -+= -+=-+=-+=变形有: 判断三角形的形状: 为锐角三角形 ,为直角角三角形 为钝角三角形 ABC b a c c a b c b a ABC c b a ABC c b a ?+<+<+2222222222 222 22,, 三角形中有: 形为正三角形 成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A C B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+? 两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+ cos()cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n αβα βαβ+=- ()βαβαβαt a n t a n 1t a n t a n t a n +-=- ()tan tan tan 1tan tan αβ αβαβ ++=- 二倍角公式: α α ααβ β ααααα2 22 2 2t a n 1t a n 22t a n 1 c o s 2s i n 21s i n c o s 2c o s c o s s i n 22s i n -= -=-=-== 半角公式:

正弦定理与余弦定理

精心整理 正弦定理与余弦定理 一、三角形中的各种关系 设ABC ?的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系: 1、三内角关系 三角形中三内角之和为π(三角形内角和定理),即A B C π++=,; 2、边与边的关系 三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即 ,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<; 3、边与角的关系 (1)正弦定理 三角形中任意一条边与它所对应的角的正弦之比都相等,即 2sin sin sin a b c R A B C ===(这里,R 为ABC ?外接圆的半径). 注1:(I )正弦定理的证明: 在ABC ?中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c R A B C ===(这里,R 为ABC ?外接圆的半径) 证:法一(平面几何法): 在ABC ?中,作CH AB ⊥,垂足为H 则在Rt AHC ?中,sin CH A AC = ;在Rt BHC ?中,sin CH B BC =

sin ,sin CH b A CH a B ∴==sin sin b A a B ?=即 sin sin a b A B = 同理可证: sin sin b c B C = 于是有 sin sin sin a b c A B C == 正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系. (Ⅲ)正弦定理适用的范围: (i )已知三角形的两角及一边,解三角形; (ii )已知三角形的两边及其中一边所对应的角,解三角形;

高中数学必备知识点正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求x边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a

相关文档 最新文档