文档库 最新最全的文档下载
当前位置:文档库 › 各地高程基准转换

各地高程基准转换

各地高程基准转换

1985年国家高程基准=1956年黄海高程基准-0.029m 1985年国家高程基准=吴淞江高程基准-1.717m 1956年黄海高程基准=吴淞江高程基准-1.688m 1985年国家高程基准=珠江高程基准+0.557m

1956年黄海高程基准=珠江高程基准+0.586m

广州高程基准=1985年国家高程系+4.26/4.439m

广州高程基准=1956年黄海高程系+4.41m

广州高程基准=珠江高程基准+5.00m

饶平:珠基=韩基-2.285m

汕头:珠基=韩基-2.353m

练基=珠基+13.057m

汕头高程系的高程-2.042=珠江基面高程系统高程

各种高程的换算关系

港口水利工程高程、水位关系转换 56黄海高程基准和85国家高程基准的关系 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。 1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。 各高程系统之间的关系 56黄海高程基准:+0.000 85高程基准(最新的黄海高程):56高程基准-0.029 吴淞高程系统:56高程基准+1.688 珠江高程系统:56高程基准-0.586 我国目前通用的高程基准是:85高程基准

一直没搞清楚56黄海高程基准和85高程基准的关系!总算搞明白了!还不明白的看一下吧! 标高/绝对标高/高度/建筑标高/结构标高 绝对标高:相对对海平面的高度, 海平面的标高规定为0,在以上的为正值, 以下的为负值,相平的为0,也叫海拔高度,高程 相对标高:对于一个地区, 通常市政国土部门会测量出某个特定的、固定的点的绝对标高, 其他的测点相对于绝对标高的高度,其上为正,下为负; 建筑标高:建筑标高和结构标高差别在于装修,通常情况下,施工放线会在结构高度上作出而不是装修高度,一些地区经常忽略掉建筑标高和结构标高的差别。 以上的量单位只能是米(m)高度,值具体的、竖直方向上的距离 只能为正或者0,不能为负数,单位是毫米(mm) 在生产建设和手工计算习惯意识里, 标高;是在建筑房屋时所用的一个术语,一般都是建筑第一层地面是0点,在建筑方线时以这一平面为基点,向下或向上算高度! 高程;通俗地讲,就是某一水平面或一点,与相对照的海平面平均高度的高差,其高程即海拔为多少米,称为水准点。 从某一指定基准面起算的地面点的高度,称为高程。由于选用的基准面的不同,因而可产生不同的高程系统。采用平均海平面,即大地水准面作为高程起算面建立起来的高程系统,称为绝对高程或海拔。这

我国常见高程系统及转换关系

高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为: “1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。在上海地区,“吴淞高程基准”=“1956年黄海高程”-1.6297(米)=“1985年国家高程基准”-1.6007(米),远离上海的地区,

海拔高程换算

1956黄海高程水准原点的高程是72.289米。 1985国家高程系统的水准原点的高程是72.260米。 废黄河零点高程”=吴凇高程基准-1.763(米)[南海] 废黄河零点高程”=1956年黄海高程+0.161(米) 废黄河零点高程”=1985国家高程基准+0.19(米) 1956年黄海高程”=1985年国家高程基准+0.029(米) 1956年黄海高程”=吴凇高程基准-1.688(米) 1956年黄海高程”=珠江高程基准+0.586(米) 1985年国家高程基准=1956年黄海高程-0.029(米) 1985年国家高程基准=吴凇高程基准-1.717(米) 1985年国家高程基准=珠江高程基准+0.557(米) 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫

“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的

中国高程系统

高程系统 高程系统的换算是令人困扰的一个严重问题。我国历史上形成了多个高程系统,例外部门例外时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 一.常用高程系统 (1) 1956黄海高程系统 以青岛验潮站1950—1956年验潮资料算得的平衡海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 (2) 1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定从头计算黄海平衡海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精细水准测量接测位于青岛的中华人民共和国水准原点。 (3)吴淞(口)高程系统 清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高程起算基准。吴淞高程系与1956年黄海高程系的基面差。江苏省水利厅于1953年以精细水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程

我国常见的高程系统及其换 算关系

我国常见的高程系统及其换算关系高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包 括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为: “1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准”

各水准高程起算基准面关系

各水准高程起算基准面关系 一、高程系统的一般意义 变化曲线基面是指计算水位和高程的起始面。在水文资料中涉及的基面有:绝对基面、假定基面、测站基面、冻结基面等四种。 (1)绝对基面。是将某一海滨地点平均海水面的高程定义为零的水准基面。我国各地沿用的水准高程基面有大连、大沽、黄海、废黄河口、吴淞、珠江等基面。 (2)假定基面。为计算测站水位或高程而暂时假定的水准基面。常在水文测站附近没有国家水准点,而一时不具备接测条件的情况下使用。 (3)测站基面。是水文测站专用的一种假定的固定基面。一般选为低于历年最低水位或河床最低点以下0.5m~1.0m。 (4)冻结基面。也是水文测站专用的一种固定基面。一般测站将第一次使用的基面冻结下来,作为冻结基面。 二、常用高程系统 高程系统的换算是令人困扰的一个重要问题。我国历史上形成了多个高程系统,不同部门不同时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 (1)波罗的海高程 波罗的海高程十0.374米=1956年黄海高程 中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。

2)黄海高程 系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 (3)1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。 1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。 (4)吴凇(口)高程系统 该高程系统比较混乱,不同地区采用数值不一,如采用,需要仔细核对。 宁波:“1985国家高程基准”注记点=“吴淞高程系统”注记点-1.87 嘉兴::“1985国家高程基准”注记点=“吴淞高程系统”注记点-1.828(?) (5)广州高程及珠江高程 广州高程= 1985国家高程系+ 4.26(米) 广州高程=黄海高程系+ 4.41(米) 广州高程=珠江高程基准+ 5.00(米) (6)大连零点 入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,称为“大连零点”。该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为 3.765米。原点设在吉林省长春市的人民广场内,已被毁坏。该系统于1959年以前在中国东北地区曾广泛使用。1959年中国东北地区精密水准网在山海关与中国东南部水准网连接平差后,改用1956年黄海高程系统。大连基点高程在1956年黄海高程系的高程为3.790米。

GPS高程测量与转换方法的研究

GPS高程测量与转换方法的研究 【摘要】本文介绍了大地高、正常高和正高的概念和三者相互之间的关系,阐述了GPS高程拟合的原理,详细介绍了常用的GPS高程拟合方法,如绘等值线图法、多项式曲面拟合法、曲面样条拟合法、多面函数拟合法等。并给出了GPS水准拟合精度的评定方法和指标。结合工程的应用实例,用MATLAB语言编程实现多种GPS高程拟合的技术方案,并对拟合结果进行比较分析。 【关键词】GPS高程拟合;正常高;大地高 1 GPS水准拟合模型概述 目前,国内外用于GPS水准高程计算的各种方法主要有:绘等直线图法;解析内差法(包括曲线内差法、三次样条函数法和Akima法);曲面拟合法(包括多项式曲面拟合法、多面函数法、曲面样条拟合法、移动曲面法、高阶回归方程逼近法和移动曲面法);加权均值法等。 似大地水准面与椭球面之间的高程差,一般称为高程异常,则正常高与大地高之间的转换关系为:H=H■+ζ(1) 其中,ζ为高程异常。 具体的工作原理为: 图1 1.1 等值线图示法 其原理是:设在某一区内,有m个GPS点用几何水准联测,其中n个点的正常高(联测水准的点称为己知点),根据GPS观测获得的点的大地高,按公式求出n个已知点的高程异常。然后,选定适合的比例尺,按n个已知点的平面坐标(经GPS网平差获得)展绘在图纸上,并标注相应的高程异常,再用1-5cm 的等高距,绘出测区的高程异常图。在图上内插出未联测几何水准的(m-n)个点(未联测几何水准的GPS点称为待定点)的高程异常,从而求出这些待定点的正常高。 1.2 解析内插法 在认定沿线似大地水准面为一条连续而光滑的曲线的前提下,可应用解析内插法,求待定点的正常高。其原理是:根据高程控制点的平面坐标及其高程异常值,通过构造一个插值函数来拟合测线方向上的似大地水准面曲线,然后据此内插其它点的高程异常。

黄海高程与吴淞高程的换算

吴淞与废黄河、黄海、八五基准点的关系: 1、吴淞=废黄河+1.763m; 2、吴淞=黄海+1.924m; 3、吴淞=八五基准+1.953m。 一、吴淞零点和吴淞高程系:清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高程起算基准。 2:吴淞高程系与1956年黄海高程系的基面差。江苏省水利厅于1953年以精密水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程控制网,参加国家测绘总局主持的1957年中国东南部地区精密水准网平差。平差后的水准点高程均为1956年黄海高程系,佘山水准基点既有黄海高程(44.4350米),又有吴淞高程(46.0647米),两者之差为1.6297米,即在上海地区吴淞高程系基面比1956年黄海高程系基面低1.6297米,远离上海的地区,同一点的两个高程值之差会略有不同。 3:1956黄海高程水准原点的高程是72.289米。1985国家高程系统的水准原点的高程是72.260米。

中国高程系统

高程系统 高程系统的换算是令人困扰的一个重要问题。我国历史上形成了多个高程系统,不同部门不同时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 一.常用高程系统 (1) 1956黄海高程系统 以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为 72.289米。 (2) 1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点。 (3)吴淞(口)高程系统 清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高程起算基准。吴淞高程系与1956年黄海高程系的基面差。江苏省水利厅于1953年以精密水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程

中国高程系统知识

我国常见的高程系统及其换算关系 空间基准2010-11-10 18:49:37 阅读111 评论0 字号:大中小订阅 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程系” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。在上海地区,“吴淞高程基准”=“1956年黄海高程”-1.6297(米)=“1985年国家高程基准”-1.6007(米),远离上海的地区,此值又有不同。该高程系与其他高程系的换算关系为: “吴凇高程基准”=“1956年黄海高程”+1.688(米) “吴凇高程基准”=“1985年国家高程基准”+1.717(米) “吴凇高程基准”=“珠江高程基准”+2.274(米) 4.“珠江高程基准” 珠江高程基准是以珠江基面为基准的高程系,在广东地区应用较为广泛。该高程系与其他高程系的换算关系为: “珠江高程基准”=“1956年黄海高程”-0.586(米) “珠江高程基准”=“1985年国家高程基准”-0.557(米) “珠江高程基准”=“吴凇高程基准”-2.274(米) 以上四种高程基准之间的差值为各地区精密水准网点之间的差值平均值,以上差值数据取自《城市用地竖向规划规范》(CJJ83-1989)。 除以上四种高程系统外,在我国的不同历史时期和不同地区曾采用过多个高程系

高程转换

高程转换 珠江高程+5.00(m)=广州高程 珠江高程+0.59(m)=黄海高程 珠江高程+0.74(m)=国家85高程 **我国高程系统大全 一、高程系统的一般意义 变化曲线基面是指计算水位和高程的起始面。在水文资料中涉及的基面有:绝对基面、假定基面、测站基面、冻结基面等四种。 (1)绝对基面。是将某一海滨地点平均海水面的高程定义为零的水准基面。我国各地沿用的水准高程基面有大连、大沽、黄海、废黄河口、吴淞、珠江等基面。 (2)假定基面。为计算测站水位或高程而暂时假定的水准基面。常在水文测站附近没有国家水准点,而一时不具备接测条件的情况下使用。 (3)测站基面。是水文测站专用的一种假定的固定基面。一般选为低于历年最低水位或河床最低点以下0.5m~1.0m。 (4)冻结基面。也是水文测站专用的一种固定基面。一般测站将第一次使用的基面冻结下来,作为冻结基面。 二、常用高程系统 高程系统的换算是令人困扰的一个重要问题。我国历史上形成了多个高程系统,不同部门不同时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 (1) 波罗的海高程 波罗的海高程十0.374米=1956年黄海高程 中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。 (2) 黄海高程 系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 (3) 1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。 1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。 (5) 广州高程及珠江高程 广州高程= 1985国家高程系+ 4.26(米) 广州高程=黄海高程系+ 4.41(米) 广州高程=珠江高程基准+ 5.00(米) (6)大连零点 入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,称为“大连零点”。该高程系的基点设在辽宁省大连市的大连港原一号码头东转

水文的高程基准

水文的高程基准 水文资料的利用不会仅限于单站,因此站网观测资料就一定需要有系统性,各项要素也需要具有技术上的一致性。水面相对于某个起算面的自由高度即是水位。因此在水文站网实施水文测验,水位观测必须要有统一的高程基准,由于历史等原因,我国各地曾经采用各自的高程基准,以致不同测站的水位无法直接相互衡量、比较,给资料的使用带来不少麻烦。由此可见,高程基准的控制不仅是水位观测的重要基础也是整个水文测验最重要的基础,水位起算基准面、水尺零点基准等就成为关键的技术内容之一 1 基面与高程控制系统 1.1 基面 静止的水面所形成的曲面被称之为水准面,水准面是重力等位面。水准面的重要物理特征是曲面上各处重力相等,物体在水准面上作平移运动时重力不做功,也可以说水准面上水面是静止不流动的。以水为平,海拔为高,水准面就是用以衡量高度的参照面。为了得到可以普遍适用的高程基准面,需要一个能符合整个地球物理性质的统一的水准面,这个环绕地球的封闭的水准面被称之为大地水准面。因为客观条件不同,人们实际确定的大地水准面就会有所不同,把经过某一个特定位置点的大地水准面称为基面,作为高程的起算基准面。例如经过青岛验潮站平均海平面的“黄海基面”。 1.2 高程及其方向 在很多水文测验和测量教材中都给出了高程的定义:高程是地面点到高度起算面的垂直距离。但是,都没有细说高程的方向和从起算面出发去往某地面点的高程增长路径。测绘学意义上,高程是某地面点在地球重力方向上的高度。由于地球内部质量分布的不均匀,致使地球重力场不是一个简单和规则变化的力场,水准面也就呈现为不规则起伏的曲面。空间上每一个高度都可以有一个水准面,水准面之间的距离就是高差,俗话说“水往低处流”,其实所谓高低,虽然表现出是空间落差,实际上是重力位差。高程既然沿重力线为方向增减,那么某一地点精确的高程,其方向线是曲线。因此,椭球体的地球表面上每个点高程其方向都是不同的。某一位置点沿着地球重力线(曲线),相对于大地水准面的距离,称

平面高程双转点法

平面高程双转点法 在施工测量过程中,对施工现场测量控制点的保存是一件相 当头痛的事,常规的测站点要考虑到架设仪器的位置,点位的保存,特别开挖过程中的公路,遂洞,水电工程中的地下厂房,交通洞………等,哪就有点难了,当然常规是用支导线点引进施工现场,这些点位都必须要考虑到架设仪器的位置,在施工现场………如何保护点位等等。 还有是测量过程中的错误杜绝,测量精度等……….。 由于近年来测绘仪器的发展,全站仪的普及运用,这里介绍一种方法对一般导线点的缺陷避免有着积极的防患作用的方法,由于布点形势像(长江委综勘局常用于航测综合法的一种经纬仪、平板仪高程导线布设方法)双转点法。就以”平面双转点法”命名吧。 布点形势如图: 具体作法: 1. 从已知点设站时,往前方测时一次发出两个觇点1和2,距离近,大多用小棱杆带小棱镜把(前觇点)控制点位放在公路两边不易被破坏的位置,在隧道中可以放在洞的边壁墙牢固的地方,也可以边壁墙上的锚钉桩等等,反正施工中不容易损坏的位置,不需要考虑仪器架设条件,分别用直接测坐标的方法观测前视两觇点,将其观测数据存入全站仪内存。 如图: 2. 仪器迁站到下一位置可以任意放到理想的地方架设。只需和二至三点通视即可,用全站仪中的后方交会法(该功能一般全站仪都有)观测两点求得本测站, 3.的平面坐标和高程(此时的量得仪器高可得地面高程,不减仪器高为视线高)。又将其测得数据存入全站仪内存。

重复1。的操作得4。和5的数据, 重复2。的操作得6的数据……。依此类推……。 优点: 1.控制点可测放位置增加了,增强了保存的可能性。 2.测站(仪器)架设是任意的,架设仪器速度加快(不必要对中),减少了仪器对中误差,只要能和两点以上的控制点通视。 3. 精度问题不必担心 平面: (1) 一般全站仪精度是3+2的精度,测角精度为最小读数1秒。 (2) 仪器内部计算,不存在输入错误的可能。 (3) 全站仪计算在测距边能保证的条件下是三边加一角,有多余观测一个,比支(引点)导线增加了一个检查条件。 (4) 减少了仪器的对中和对中误差。 高程:

我国常用的高程系统

我国常用的高程系统 (2012-04-15 16:31:57) 转载▼ 分类:测天量地 标签: 教育Array 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高 程基准”等四种。

1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面, 叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资 料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄 海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧 的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米)

高程换算

我国常见的高程系统及其换算关系作者:周杰鑫 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~197 9年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为:“1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。在上海地区,“吴淞高程基准”=“1956年黄海高程”-1.6297(米)=“1985年国家高程基准”-1.6007(米),远离上海的地区,此值又有不同。该高程系与其他高程系的换算关系为: “吴凇高程基准”=“1956年黄海高程”+1.688(米) “吴凇高程基准”=“1985年国家高程基准”+1.717(米) “吴凇高程基准”=“珠江高程基准”+2.274(米) 4.“珠江高程基准” 珠江高程基准是以珠江基面为基准的高程系,在广东地区应用较为广泛。该高程系与其他高程系的换算关系为: “珠江高程基准”=“1956年黄海高程”-0.586(米) “珠江高程基准”=“1985年国家高程基准”-0.557(米) “珠江高程基准”=“吴凇高程基准”-2.274(米) 以上四种高程基准之间的差值为各地区精密水准网点之间的差值平均值,以上差值数据取自《城市用地竖向规划规范》(CJJ83-1989)。 除以上四种高程系统外,在我国的不同历史时期和不同地区曾采用过多个高程系统,如“广州高程基准”、“大沽零点高程”、“渤海高程”、“波罗的海高程”、“大连零点高程”、“废黄河零点高程”、“坎门零点高程”和“安庆高程系”等。不同高程系间的差值因地区而异,以下高程系的换算关系仅供参考,具体差值以当地测绘主管部门提供值为准。

大沽高程换算

大沽高程2008-12-20 08:53 大沽高程是由高程基准面起算的地面点高度。由于选用的基准面不同,会有不同的高程。如其基准面在海洋上与平均海水面相吻合,就称为绝对高程。由平均海水面起算的地面点高度,称为海拔。我国以黄海平均海面作为水准基面。为了将水准基面可靠地标定在地面上,须设置永久性水准原点,由精密水准测量测定这一原点对于验潮站平均海面的高程。我国的水准基点设在青岛观象山上,相对黄海平均海面的高程为72.289米。由按国家统一规范测定高程的一系列水准点构成的网,称为国家高程控制网或国家水准网,可为国家经济建设、国防建设、地形测量和有关科学研究等提供地面点高程。 由于历史原因,计量河水、洪水水位的海拔基准也有所不同。2003年9月,黄河最大支流渭河发生特大洪灾,华县水文站出现的342.76米这一历史最高水位,即指大沽高程基准。大沽高程比黄海高程要高1.163米。 近代,西方列强在华享有诸多特权。为确保外国船只在中国沿海和内河航行的安全,由其控制的海关在海港、河港码头设置水尺,观测潮水位和江河水位,掌握了许多水文资料。《辛丑条约》签订后,海河干流由各国驻津领事团共管。为便于列强船只通行,1902年,英国海军驻华舰队派炮船“兰勃勒”号测量大沽浅滩,绘制了水下地形图。海河工程局以大沽口北炮台处寻常高潮的最低海面为零,作为高

程基准面,称“大沽零点”,高程是大沽浅滩外潮标(水尺)的53.34厘米。当时,在大沽口北炮台院内埋有标石,其顶高为大沽高程16.1英尺。该标石后被毁。海河工程局还成立测水机构,1902年起在海河干流陆续设置十余处潮水位站,1904年在德国码头测流量。 1917年海河流域暴发特大洪水。北洋政府派熊希龄负责水灾善后。1918年3月20日,顺直水利委员会在意租界五马路成立,熊任会长,有外籍人士3人,曾任印度工务部长的英国人罗斯,被聘为技术部长,负责水文技术。该会以整治直隶河道为主要任务,实施了一些建设和测量工程,1925年编制了《顺直河道治本计划书》。还负责海河、黄河流域的水利行政。 1928年9月26日,该会被改组为华北水利委员会,初由内务部管辖,1931年又归内政部。著名水利专家李仪祉任主席兼总工程师。该会下设总务、技术等处,以华北各河湖流域及沿海区域为管辖范围,开展防洪、灌溉、航运、水力及水利工程。该会有“以科学方法设计水利建设之新式机关”之称,聚集了一大批掌握近代西方水利科技的年富力强专家,如李书田、曾世英、徐世大、高镜莹、须恺、张含英、王华棠、彭济群、李赋都等。该会编制完成了海河流域第一部河系规则———《永定河治本计划》,在天津筹建了中国第一个水工试验所,还对海河水系各河实施了整治,完成了海河放淤等一批水利工程。该会还制订了十年水利实施计划,由于抗日战争爆发,未及全面实施,内迁重庆后,各项工程呈停滞状态。抗战胜利后,华北水利

GPS高程拟合的转换方法

GPS 高程拟合的转换方法 (河北理工大学) 摘要:本文从GPS 定位系统的组成和介绍开始,分析研究了GPS 高程的使用意义和不足,说明大地高、正常高和正高的概念及转换关系,阐述了GPS 高程拟合的原理。讨论了绘等值线图法,解析内插法中的多项式曲线拟合方法、三次样条曲线拟合方法和Akima 曲线拟合方法,曲面拟合中的多项式曲面拟合法、多面函数曲面拟合法、曲面样条拟合法和移动曲面拟合方法。研究并分析了GPS 水准拟合的精度评定。 关键词:大地高,正常高,高程异常,高程拟合 1 引言 GPS 系统由GPS 卫星星座(空间部分)、地面监控系统(地面控制部分)和GPS 信号接收机(用户设备部分)等三部分组成。(见图1.1) 图1.1全球定位系统((GPS)构成示意图 GPS (Global Positioning System/全球定位系统)系统是一种以空间卫星为基础的无线电导航与定位系统,是一种被动式卫星导航定位系统,能为世界上任何地方,包括空中、陆地、海洋甚至于外层空间的用户,全天候、全时间、连续地提供精确的三维位置、三维速度及时间信息,具有实时性的导航、定位和授时功能。 GPS 卫星星座21颗工作卫星和3颗在轨备用卫星组成,这24颗卫星均匀分布在6个轨道平面上。卫星轨道平面相对地球赤道平面的倾角约为55°,各轨道平面升交点的赤经相 GPS

差60",在相邻轨道上,卫星的升交距角相差300°,轨道平均高度约为20200km ,卫星运行周期为11时58分(恒星时12h )。这一分布方式,保证了地面上任何时间、任何地点至少可同时观测到4颗卫星。GPS 卫星的作用是接收和播发由地面监控系统提供的卫星星历。地面监控系统由主控站、注入站和监测站三部分组成,它们主要负责编算GPS 星历将其发射到GPS 卫星上,监测和控制GPS 卫星的“健康”状况,保持各颗卫星处于同一时间标准,即处于GPS 时间系统.。GPS 信号接收机的主要任务是接收GPS 卫星发射的信号,以获取必要的导航定位信息,并经数据处理而完成导航定位工作。当GPS 卫星在用户视界时,接收机能捕获到按一定卫星高度截止角所选择的待测卫星,并能跟踪这些卫星的运行:对所接收到的GPS 信号具有变换、放大和处理的功能,以便测量出GPS 信号从卫星到接收机天线的传播时间,解译出GPS 卫星所发射的导航电文,实时地计算出测站的三维坐标位置,甚至三维速度和时间。 GPS 水准高程拟合模型的研究是为了实现由GPS 大地高求出水准高,用GPS 水准代替几何水准,提高GPS 水准测量的精度,发挥GPS 技术提供三维坐标的优越性;结合实际工程,将各种模型应用到不同的地形条件下,经过模型优选,分析比较和精度评定,得出具体的结论,指导生产和工程实践。数据的处理,采用五种拟合方法编写程序实现似大地水准面拟合的模型程序化,在一定条件下,拟合所得到的结果可以满足四等水准测量的精度要求,具有一定的使用价值。 2 GPS 水准高程基本概念 图2.1大地高、正高、正常高关系(不考虑垂线偏差) 大地高程系统是以参考椭球面为基准面的高程系统,它是一个几何量, 不具有物理意义。 大地水准 地水准考椭球

GPS高程拟合及转换方法

浅谈GPS高程拟合技术 1、前言 GPS(Global Positioning System)即全球定位系统,是1973年美国国防部为了满足军事部门对海上、陆地和空中设施进行高精度导航和定位的要求而研究的新一代高精度卫星导航系统。GPS是以人造卫星为基础的无线电导航系统,它是利用天空中均匀分布的24颗GPS卫星轨道参数及其载波相位信号,通过地面接收设备接收其发射信息,实时地测定地面接收载体的三维位置。 我院从1999年开展了GPS技术在公路勘测中的应用研究。几年来的生产实践,我们认识到了GPS技术在平面控制测量和路线中桩、边桩放样方面具有传统测量工作不可比拟的优势,可以极大的降低劳动作业强度,提高作业效率,但GPS技术在高程测量方面的应用还一直处于研究状态。本文结合几年来的生产实践仅就GPS技术在高程拟合方面的应用谈谈自己的观点: 2、高程异常 GPS测得三维坐标高程为各GPS点在WGS—84坐标系中的大地高H,而公路勘测所用的地面高程是相对于似大地水准面的正常高H正,两者之间的差值称为高程异常,用公式可表示为: ζ=H—H正 式中:ζ—为高程异常 要将GPS所求的大地高转换成正常高,关键是求得精确的高程异常ζ。 目前通常采用二次曲面函数对高程异常进行曲面拟合,对于GPS水准联测点P K拟合模型可写为 ζK=a0+a1Δx k+a2Δy k+a3Δx2k+ a4Δy2k+ a5Δx kΔy k—εk 式中Δx k=x k—x0 Δy k=y k—y0 x0,y0是参考点的坐标,一般取重心坐标;x k,y k是P k点的平面坐标,也可是大地纬度和大地经度;εk为拟合残差。按最小二乘法可求得拟合系数a为 a=(A T A)-1A Tζ 式中a=[ a0 a1…a n]T ζ==[ζ0 ζ1…ζn]T 1 Δx1 Δy1 Δx21 Δy21 Δx1Δy1 1 Δx 2 Δy2 Δx22 Δy22 Δx2Δy2 A= ……………… ……………… 可以看到,在采用二次曲面拟合时,至少应有6人GPS水准联测点,当少于6个时,则应去掉二次项拟合系数σ3,σ4,σ5,即采用平面系数拟合,此时拟合模型为

相关文档