文档库 最新最全的文档下载
当前位置:文档库 › 文科数学解析几何小专题

文科数学解析几何小专题

文科数学解析几何小专题
文科数学解析几何小专题

文科数学解析几何小综合专题练习

一、选择题

1.若抛物线2

2y px =的焦点与双曲线22

122

x y -=的右焦点重合,则p 的值为()

A .2-

B .2

C .4-

D .4

2.若焦点在x 轴上的椭圆1222=+m y x 的离心率为2

1

,则=m A .3 B .

3

2

C .83

D .23

3.经过圆2

2

20x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是

A.10x y ++=

B.10x y +-=

C.10x y -+=

D.10x y --=

4.设圆C 与圆2

2

(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为

A.抛物线

B.双曲线

C.椭圆

D.圆

5.已知双曲线的顶点与焦点分别是椭圆的22

221y x a b

+=(0a b >>)焦点与顶点,若双曲线

的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为 A .

13 B .1

2

C .33

D .22

二、填空题

6.在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 .

7.巳知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为3

2

,且G 上一点到G 的两个焦点的距离之和

为12,则椭圆G 的方程为 .

8.已知双曲线22221x y a b -=的离心率为2,焦点与椭圆

22

1259

x y -=的焦点相同,那么双曲线

的焦点坐标为 ;渐近线方程为 。

9.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是

10.已知以F 为焦点的抛物线2

4y x =上的两点A 、B 满足3AF FB =,则弦AB 的中点到准线的距离为______. 三、解答题

11.已知圆C :224x y +=.

(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||23AB =,求直线l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量

OQ OM ON =+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.

12.过点C (0,1)的椭圆22

221(0)x y a b a b

+=>>的离心率为32,椭圆与x 轴交于两点(,0)A a 、

(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD

交于点Q .

(1)当直线l 过椭圆右焦点时,求线段CD 的长;

(2)当点P 异于点B 时,求证:OP OQ ?为定值.

13.已知平面上两定点M (0,-2)、N (0,2),P 为平面上一动点,满足

||||MN PN MN MP ?=?.

(1)求动点P 的轨迹C 的方程;

(2)若A 、B 是轨迹C 上的两不同动点,且NB AN λ=(λ∈R ).分别以A 、B 为切点作轨迹C 的切线,设其交点为Q ,证明AB NQ ?为定值。

14.已知椭圆E 的中心在坐标原点O ,两个焦点分别是(1,0),(1,0)A B -,一个顶点为(2,0)H 。 (1)求椭圆E 的标准方程;

(2)对于x 轴上的点(,0)P t ,椭圆E 上存在点M ,使得MP MH ⊥,求t 取值范围。

15. 已知椭圆22

2:1x C y m

+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右

顶点,定点A 的坐标为(2,0)

(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值; (3)若PA 的最小值为MA ,求实数m 的取值范围.

16.P 为椭圆x 225+y 2

16=1上任意一点,F 1、F 2为左、右焦点,

(1)若PF 1的中点为M ,求证:|MO |=5-1

2|PF 1|;

(2)若∠F 1PF 2=60°,求|PF 1|·|PF 2|之值;

(3)椭圆上是否存在点P ,使PF 1→·PF 2→

=0,若存在,求出P 点的坐标,若不存在,试说明理由.

2013届高三文科数学小综合专题练习――解析几何

参考答案

一、选择题DB C A D 二、填空题

6.2

8y x = 7.

193622=+y x . 8. (4,0±) 30x y += 9.()2222

=++y x 10.83

三、解答题

11. 解(1)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为

()3,1和()3,1-其距离为32

,满足题意.

②若直线l 不垂直于x 轴,设其方程为()12-=-x k y ,

即02=+--k y kx

设圆心到此直线的距离为d ,则24232d -=,得1=d ∴1

|2|12++-=

k k ,3

4

k =

, 故所求直线方程为3450x y -+=

综上所述,所求直线为3450x y -+=或1=x (2)设点M 的坐标为()00,y x ,Q 点坐标为()y x ,

则N 点坐标是()0,0y ∵OQ OM ON =+,

∴()()00,,2x y x y = 即x x =0,2

0y y =

又∵420

20

=+y x ,∴44

2

2

=+y x 由已知,直线m //ox 轴,所以,0y ≠,

∴Q 点的轨迹方程是

22

1(0)164

y x y +=≠,轨迹是焦点坐标为

12(0,23),(0,23)F F -,长轴为8的椭圆,并去掉(2,0)±两点。

12.解:(1)由已知得3

1,

2

c b a ==

,解得2a =,所以椭圆方程为 2

214

x y +=.

椭圆的右焦点为(3,0),此时直线l 的方程为 3

13

y x =-

+, 代入椭圆方程得

27830x x -=,解得1283

0,7

x x ==

, 代入直线l 的方程得 121

1,7

y y ==-,所以831(,)77D -,

故2283116

||(

0)(1)777

CD =-+--=. (2)当直线l 与x 轴垂直时与题意不符.

设直线l 的方程为1

1(0)2

y kx k k =+≠≠且.代入椭圆方程得

22(41)80k x kx ++=.

解得12280,41

k

x x k -==+,代入直线l 的方程得2122141,41k y y k -==+,

所以D 点的坐标为2

22814(,)4141k k k k --++.

又直线AC 的方程为

12x y +=,又直线BD 的方程为12(2)24k y x k

+=+-,联立得4,

2 1.

x k y k =-??

=+? 因此(4,21)Q k k -+,又1(,0)P k -.所以1

(,0)(4,21)4OP OQ k k k ?=--+=.

故OP OQ ?为定值.

13.解:(1)(,).P x y 设 (,2),(0,4),(,2),MP x y MN PN x y =+==--由已知

2248||||4(2)MP MN y PN MN x y ?=+?=+-,,

22||||,484(2).MP MN PN MN y x y ?=?∴+=+-

整理,得:2

8.x y =

即动点P 的轨迹C 为抛物线,其方程为.82

y x =

(2)由已知N (0,2)设1122(,),(,).,,,A x y B x y AN NB A N B λ=由知三点共线。

∵直线AB 与x 轴不垂直,可设直线AB 的方程为: 2.y kx =+,

222,81601.8y kx x kx y x =+??--=?=??

由可得:

则:1621-=x x . 抛物线方程为.4

1

,812x y x y ='=

求导得 所以过抛物线上A 、B 两点的切线方程分别是:

11122211

(),(),44y x x x y y x x x y =

-+=-+ 22

11221111,.4848

y x x x y x x x =-=-即

121212(,)(,2)282

x x x x x x

Q ++-解出两条切线的交点的坐标为即

122112(,4)(,)

2

x x

NQ AB x x y y +?=-?--所以0)8

181(4)(2121222122=---=x x x x 所以AB NQ ?为定值,其值为0.

14.解:(1)22

143

x y += (2)设000(,)(2)M x y x ≠±,则22

00143

x y +=……① 且0000(,),(2,)MP t x y MH x y =--=--

由MP MH ⊥可得0MP MH ?=,即:2

000()(2)0t x x y --+=……②

由①②消去0y 得:2

0001(2)234

t x x x -=-

+- 02x ≠

有001342

2221

t x x t =--

-<<-<<-

15. 解:⑴ 2m =,椭圆方程为2

214

x y +=,413c =-= ∴ 左、右焦点坐标为(3,0),(3,0)-。

⑵ 3m =,椭圆方程为2

219

x y +=,设(,)P x y ,则 22

2

2

2

2891

||(2)(2)1()(33)9942

x PA x y x x x =-+=-+-=-+-≤≤

∴ 9

4

x =

时,min 2||2PA =;3x =-时max ||5PA =。

⑶ 设动点(,)P x y ,则

2222

2

2

2

2

22

22124||(2)(2)1()5()11

x m m m PA x y x x m x m m m m m -=-+=-+-=--+-≤≤-- ∵ 当x m =时,||PA 取最小值,且

22

10m m ->,∴ 2

221m m m ≥-且1m > 解得112m <≤+。

16.(1)证明:在△F 1PF 2中,MO 为中位线,

∴|MO |=

|PF 2|2=2a -|PF 1|

2

=a -|PF 1|2=5-12

|PF 1|.

(2)解:∵ |PF 1|+|PF 2|=10,

∴|PF 1|2+|PF 2|2=100-2|PF 1|·|PF 2|,

在△PF 1F 2中,cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|2

2|PF 1|·|PF 2|

∴|PF1|·|PF2|=100-2|PF1|·|PF2|-36,

∴|PF1|·|PF2|=64 3.

(3)解:设点P(x0,y0),则x20

25+y20

16=1.①

易知F1(-3,0),F2(3,0),故PF1=(-3-x0,-y0),PF2=(-3-x0,-y0),

∵PF1·PF2=0,∴x20-9+y20=0,②

由①②组成方程组,此方程组无解,故这样的点P不存在.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

(word完整版)2019高考全国各地数学卷文科解答题分类汇编-解析几何,推荐文档

2019高考全国各地数学卷文科解答题分类汇编-解析几何 1.〔天津文〕18、〔本小题总分值13分〕 设椭圆2 2 22 1(0)x y a b a b +=>>的左、右焦点分别为F 1,F 2。点(,)P a b 满足212||||.PF F F = 〔Ⅰ〕求椭圆的离心率e ; 〔Ⅱ〕设直线PF 2与椭圆相交于A ,B 两点,假设直线PF 2 与圆 22(1)(16x y ++-=相 交于M ,N 两点,且 5 |||| 8 MN AB =,求椭圆的方程。 【解析】〔18〕本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公 式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,总分值13分。 〔Ⅰ〕解:设12(,0),(,0)(0)F c F c c ->,因为212||||PF F F =, 2c =,整理得 2 210,1 c c c a a a ?? +-==- ???得〔舍〕 或11,.22 c e a ==所以 〔Ⅱ〕解:由〔Ⅰ〕知 2,a c b ==,可得椭圆方程为2223412x y c +=,直线FF 2的方 程为).y x c =- A ,B 两点的坐标满足方程组 222 3412,). x y c y x c ?+=??=-??消去y 并整理,得2580x cx -=。解 得 1280,5x x c == ,得方程组的解21128,0,5,.5x c x y y ?=?=??? ??=??? =?? 不妨设 85A c ?? ? ??? , (0,)B , 所以 16||.5AB c ==

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

2013年全国各地高考文科数学试题分类汇编10:平面解析几何

2013年全国各地高考文科数学试题分类汇编10:平面解析几何 一、选择题 1 .(2013年高考重庆卷(文))设P 是圆2 2 (3)(1)4x y -++=上的动点,Q 是直线3 x =-上的动点,则PQ 的最小值为( ) A .6 B .4 C .3 D .2 【答案】B 2 .(2013年高考江西卷(文))如图.已知l 1⊥l 2,圆心在l 1上、半径为1m 的圆O 在t=0 时与l 2相切于点A,圆O 沿l 1以1m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧 长记为x,令y=cosx,则y 与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为 【答案】B 3 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与 直线10ax y -+=垂直, 则a =( ) A .1 2 - B .1 C .2 D . 12 【答案】C

4 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1 与圆O 的位置关系是( ) A .相切 B .相交 C .相离 D .不确定 【答案】B 5 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆2 2 1x y +=相切于第一象限的 直线方程是( ) A .0x y += B .10x y ++= C .10x y +-= D .0x y ++= 【答案】A 二、填空题 6 .(2013年高考湖北卷(文))已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π 02 θ<< ).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.【答案】4 7 .(2013年高考四川卷(文))在平面直角坐标系内,到点 (1,2A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是__________ 【答案】(2,4) 8 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆 C 的方程是_________. 【答案】2 2325 (2) ()24 x y -++= 9 .(2013年高考湖北卷(文))在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数, 则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是__________; (Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边 形对应的71N =,18L =, 则S =__________(用数值作答).

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

人教版2018最新高考文科数学解析几何练习题Word版

解析几何单元易错题练习 (附参考答案) 一.考试内容: 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求: 掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用. 【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F . 2.椭圆的标准方程:12222=+b y a x (a >b >0),122 22=+b x a y (a >b >0). 3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2 x 项的分母大于2 y 项的分母, 则椭圆的焦点在x 轴上,反之,焦点在y 轴上. 4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 椭圆的简单几何性质 椭圆的几何性质:设椭圆方程为122 2 2=+b y a x (a >b >0). ⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ). 线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. ⑷ 离心率:椭圆的焦距与长轴长的比 a c e = 叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接 近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2020年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 第九篇:解析几何 一、选择题 1.【2018全国一卷4】已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为 A .1 3 B .12 C D 2.【2018全国二卷6】双曲线22 221(0,0)x y a b a b -=>> A .y = B .y = C .y = D .y = 3.【2018全国二11】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥, 且2160PF F ∠=?,则C 的离心率为 A .1 B .2 C D 1 4.【2018全国三卷8】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆 () 2 222x y -+=上,则ABP △面积的取值范围是 A .[]26, B .[]48, C . D .?? 5.【2018全国三卷10】已知双曲线22 221(00)x y C a b a b -=>>:,,则点(4,0) 到C 的渐近线的距离为 A B .2 C . 2 D . 6.【2018天津卷7】已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1 d

和2d ,且126d d +=,则双曲线的方程为 A 22 1412 x y -= B 22 1124 x y -= C 22 139 x y -= D 22 193 x y -= 7.【2018浙江卷2】双曲线2 21 3=x y -的焦点坐标是 A .(?2,0),(2,0) B .(?2,0),(2,0) C .(0,?2),(0,2) D .(0,?2),(0,2) 8.【2018上海卷13】设P 是椭圆 25x + 23 y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.2 B.2 C.2 D.4 二、填空题 1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线 段长为4,则抛物线的焦点坐标为_________. 3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为 5 2 ,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22 221(0,0)x y a b a b -=>>的右焦点

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

20112017高考全国卷文科数学解析几何汇编

新课标全国卷Ⅰ文科数学汇编 解 析 几 何 一、选择题 【2017,5】已知F 是双曲线2 2 :13 y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ?的面积为( ) A . 13 B .12 C .23 D .32 【解法】选D .由2 2 2 4c a b =+=得2c =,所以(2,0)F ,将2x =代入2 2 13 y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为13 3(21)22 ??-=,选D . 【2017,12】设A 、B 是椭圆C :22 13x y m +=长轴的两个端点,若C 上存在点M 满足∠AMB =120° ,则m 的取值范围是( ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞U D .(0,3][4,)+∞U 【解法】选A . 图 1 图 2 解法一:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只 需使0120AEB ∠≥. 1.当03m <<时,如图1,03 tan tan 6032AEB a b m ∠=≥=,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,0tan tan 60323 AEB a m b ∠==≥9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 解法二:设E F 、是椭圆C 短轴的两个端点,易知当点M 是椭圆C 短轴的端点时AMB ∠最大,依题意只

需使0120AEB ∠≥. 1.当03m <<时,如图1,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得1m ≤,故01m <≤; 2. 当3m >时,如图2,01 cos ,cos1202EA EB ≤=-u u u r u u u r ,即12EA EB EA EB ?≤-u u u r u u u r u u u r u u u r , 带入向量坐标,解得9m ≥. 综上可知,m 的取值范围是(0,1][9,)+∞U ,故选A . 【2016,5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1 4 ,则该椭圆的离心率为( ) A .13 B . 12 C .23 D . 3 4 解析:选B . 由等面积法可得 1112224bc a b ?=???,故1 2 c a =,从而12c e a ==.故选B . 【2015,5】已知椭圆E 的中心为坐标原点,离心率为 1 2 ,E 的右焦点与抛物线C : y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12 解:选B .抛物线的焦点为(2,0),准线为x =-2,所以c=2,从而a=4,所以b 2=12,所以椭圆方程为 22 11612 x y +=,将x =-2代入解得y=±3,所以|AB |=6,故选B 【2014,10】10.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |= 05 4 x ,则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=0015 44 x x + =,解之得x 0=1. 故选A 【2014,4】4.已知双曲线)0(13 2 22>=- a y a x 的离心率为2,则a=( ) D A .2 B . 26 C .2 5 D .1 解:2c e a ====,解得a=1,故选D 【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).

2019年高考数学理科全国1卷19题-解析几何说题

2019年高考数学理科全国1卷19题说题 已知抛物线2:3C y x =的焦点为F ,斜率为3 2 的直线l 与C 的交点分别为,A B ,与x 轴 的交点为P 。 (1)若||||4AF BF +=,求l 的方程. (2)若3AP PB =u u u r u u u r ,求||AB 【背景】本题是2019年高考数学理科全国1卷19题。对比往年的圆锥曲线大题,可见今年理科的圆锥曲线大题有降低难度、减少运算量的趋势。 【分析】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用。解题的第一个关键是能通过直线与抛物线方程的联立,通过韦达定理构造等量关系;第二个关键是要善用转化与化归思想:用抛物线的定义转 化||||4AF BF +=,用相似三角形或线性运算破译3AP PB =uuu r uu u r 。本题的第一问来自于教材, 稍高于教材,是2018年全国二卷圆锥曲线大题的改编题,第二问是个常规题型,在椭圆、双曲线及抛物线都出过很多类型题: 题源1:【2018年全国I 理8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且 斜率为2 3的直线与C 交于M ,N 两点,则FM FN ?u u u u r u u u r = ( ) A 。5 B 。6 C 。7 D 。8 题源2:【2018年全国Ⅱ卷理】设抛物线24C y x =:的焦点为F ,过F 且斜率为 (0)k k >的直线l 与C 交于A ,B 两点,||8AB =。 (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程。 【解法分析】 (1)设直线l :3,2y x t = +1122(,),(,),A x y B x y 由抛物线定义得1252 x x +=;

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

全国高考文科数学试题解析几何

高考文科数学真题分类汇编:解析几何 H1 直线的倾斜角与斜率、直线的方程 6.[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y =2=0 C .x +y -3=0 D .x -y +3=0 20.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22 . (1)求该椭圆的标准方程. (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由. 图1-5 H2 两直线的位置关系与点到直线的距离 18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43 . (1)求新桥BC 的长. (2)当OM 多长时,圆形保护区的面积最大? 图1-6

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

高三文科数学解析几何专题

高三文科数学解析几何专题 一、选择题:(本大题12个小题,每小题5分,共60分)在每小题给出的四个备选项中,只有一项是符合题目要求的. 1直线1:1+=mx y l ,直线2l 的方向向量为)2,1(=a ,且21l l ⊥,则=m ( ) A . 2 1 B .2 1 - C .2 D .-2 2双曲线12 102 2=-y x 离心率为 ( ) A . 5 6 B . 5 5 2 C . 5 4 D . 5 30 3直线x 3+1=0的倾斜角是( ) A .30° B .60° C .120° D .150° 4抛物线22(0)y px p =>的准线经过等轴双曲线221x y -=的左焦点,则p =( ) A . 2 2 B 2 C .22 D .425已知点)0,1(M ,直线1:-=x l ,点B 是l 上的动点, 过点B 垂直于y 轴的直线与线段 BM 的垂直平分线交于点P ,则点P 的轨迹是 ( ) (A )抛物线 (B )椭圆 (C )双曲线的一支 (D )直线 6已知倾斜角0≠α的直线l 过椭圆122 22=+b y a x )0(>>b a 的右焦点F交椭圆于A、B两 点,P为右准线上任意一点,则APB ∠为 ( ) A .钝角 B .直角 C .锐角 D .都有可能 7经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 ( ) A .30x y -+= B .30x y --= C .10x y +-= D .30x y ++= 8直线1:20l kx y -+=到直线2:230l x y +-=的角为45 ,则k =( )

高三文科数学解析几何专题

2008届高三文科数学第二轮复习资料 ——《解析几何》专题 1.已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程; (2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ?=?若存在,求出直线l 的方程;若不存在,说明理由. 2.如图,设1F 、2F 分别为椭圆 C :22 221x y a b += (0a b >>)的左、右焦点. (Ⅰ)设椭圆C 上的点3 (1,)2 A 到F 1、F 2两点距离之和等于4,写出椭圆C 的方程和离心率; (Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在,说 明理由 4.已知圆C :224x y +=. (1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+, 求动点Q 的轨迹方程,并说明此轨迹是什么曲线. 5.如图,已知圆A 的半径是2,圆外一定点N 与圆A 上的点的最短距离为6,过动点P 作A 的切线PM (M 为切点),连结PN 使得PM : ,试建立适当 的坐标系,求动点P 的轨迹 6.已知三点P (5,2)、1F (-6,0)、2F (6,0).

(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程; (Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程. 7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车,有10名驾驶员,每辆卡车每天往返次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的成本费用为A 型卡车320元,B 型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低. 8.曲线03622=+-++y x y x 上两点P 、Q 满足:①关于直线04=+-y kx 对称;②OQ OP ⊥.求直线PQ 的方程. 9 情况下的两类药片怎样搭配价格最低?

相关文档
相关文档 最新文档