文档库 最新最全的文档下载
当前位置:文档库 › 数学模型 第四版 课后答案 姜启源 谢金星 叶俊编

数学模型 第四版 课后答案 姜启源 谢金星 叶俊编

数学模型 第四版 课后答案 姜启源 谢金星 叶俊编
数学模型 第四版 课后答案 姜启源 谢金星 叶俊编

数学模型习题解答

(第三版)

作者:姜启源谢金星叶俊

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

数学模型第四版习题3-1答案

1.在3.1节存贮模型的总费用增加购买货物本身的费用,重新确定最优订货周期和订 货批量,证明在不允许缺货模型和允许缺货模型中结果都与原来的一样。 问题分析:增加购买货物本身的费用后,仍符合增加前生产规律,所以必存在一个最佳的周期,使总费用最小。 一般的考察这样的不允许缺货的存货模型:产品需求稳定不变,生产准备费和产品储存费为常数,生产能力无限,不允许缺货,确定生产周期和产量,使总费用最小。 模型假设:为了处理的方便,考虑连续模型,即设生产周期T和产量Q均为连续量。根据问题性质作如下假设: 1.产品每天的需求量为常数r 2.每件产品的购买费用为p. 3.每次生产准备费为c1,每天每件产品贮存费为c2 4.生产能力为无限大(相对于需求量),当贮存量降到零时,Q件产品立即生产 出来供给需求,即不允许缺货 模型建立:将贮存量表示为时间的函数q(t),t=0生产Q件,贮存量q(0)=Q,q(t)以需求速率递减,直到q(t)=0,如图所示 Q=rT 一个周期内的贮存费是c2∫0T q(t)dt,其中积分恰等于图中三角形A的面积QT/2,因为一个周期的准备费为c1,所以可以得到一个周期的总费用为 C=c1+c2QT/2+PQ=c1+c2rT2+prT 于是每天的平均费用为 C=C/T=c1/T+c2rT/2+pr

这就是这个优化模型的目标函数。 模型求解:求T使目标函数的C最小 C′=-c1/T2+c2r/2 令C′=0 T=√2c1/c2r 带入可得Q=√2c1r/c2 所以可以得到C=√2c1c2r 结果解释:当准备费c1增加时,生产周期和产量都变大;当贮存费c2增加时,生产周期和产量都变小;当需求量r增加时,生产周期变小而产量变大。当生产周期T=√2c1/c2r时,总费用最小。

数学建模习题与答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学模型第四版(姜启源)作业对于6.4节蛛网模型讨论下列问题:

对于6.4节蛛网模型讨论下列问题: (1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数 量1+k x 和k x 决定。如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并 与6.4的结果进行比较。 (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和 1-k y 决定,试分析稳定平衡的条件是否还会放宽。 解:(1) 设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为: )2 (11k k k x x f y +=++ 则 0),2 (0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k 消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,…. 该方程的特征方程为 022=++αβαβλλ 与6.4节中 )2 (11-++=k k k y y g x 时的特征方程一样, 所以0<αβ<2, 即为0p 点的稳定条件。

(2)设 )2 (11k k k x x f y +=++ )2 (11-++=k k k y y g x , 则有 0),2 (0101>-+-=-++ααx x x y y k k k 0),2 (0101>-+=--+ββy y y x x k k k 消去y,得到 0123)1(424x x x x x k k k k +=++++++αβαβαβαβ 该方程的特征方程为 02423=+++αβαβλαβλλ 令λ=x ,αβ=a , 即求解三次方程 0a 2ax ax 4x 23=+++ 的根 在matlab 中输入以下代码求解方程的根x : syms x a solve(4*x^3+a*x^2+2*a*x+a==0,x) 解得 1x = (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 2x = -(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3) - 3^(1/2)*a*24*i - 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i +

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

数学建模第四版答案

数学建模第四版答案 【篇一:数学建模课后答案】 t>第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分 较大者; (2). 1中的q值方法; (3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍 分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将 3种方法两次分配的结果列表比较. 解:先考虑n=10的分配方案, p1?235,p2?333,p3?432,方法一(按比例分配) ?p i?1 3 i ?1000. q1? p1n ?p i?1 3 ?2.35,q2? p2n i ?p i?1 3 ?3.33, q3? p3n i

?p i?1 3 ?4.32 i 分配结果为: n1?3, n2?3, n3?4 方法二(q值方法) 9个席位的分配结果(可用按比例分配)为: n1?2,n2?3, n3?4 第10个席位:计算q值为 235233324322 q1??9204.17, q2??9240.75, q3??9331.2 2?33?44?5 q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5 方法三(d’hondt方法) 此方法的分配结果为:n1?2,n2?3,n3?5 此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍). pi 是ni 每席位代表的人数,取ni?1,2,?,从而得到的近. pip 中选较大者,可使对所有的i,i尽量接nini 再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本. 考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得 vdt?(r?wkn)2?kdn,两边积分,得 ? t vdt?2?k?(r?wkn)dn n 2?rk?wk22n2 2vv 第二章(2)(2008年10月9日)

数学建模课后答案

第一章 4.在1、3节“椅子能在不平的地面上放稳不”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之与分别定义为)()(a g a f 和。f 与g 都就是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题: 已 知 a a g a f 是和)()(的连续函数,对任意 0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也就是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8 第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 就是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--=

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

数学模型(第四版)课后详细答案

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1 L3,因此,模型为: 33 111 M V k l K L ρρ ===……………………………模型一 利用Eviews软件,用最小二乘法估计模型中的参数K 1 ,如下图1所示: 图1 从图1结果可以得到参数K 1 =0.014591,所以模型为: 3 1 M0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成 正比,即:V=k 2 d2L,因此,模型为: 身长 /cm 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量 /g 765 482 1162 737 482 1389 652 454 胸围 /cm 24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6

22222M V k d K d L L ρρ===……………………………… 模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 实际数 据M 765 482 1162 737 482 1389 652 454 模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.960 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系: 2 5

(整理)作业1数学建模,姜启源版.

实验一动力系统 一、实验目的与要求 掌握运用软件求解动态系统模型,通过研究散点图得到动态系统的内在性质和长期趋势。通过对数据进行处理,归纳出动态系统模型。 1、用Excel对数据进行处理,建立动态系统模型并且进行验证; 2、用Excel画散点图,对动态系统模型解的长期趋势进行分析; 3、用Excel求解动态系统模型并估计均衡点; 4、用Excel分析多元动态系统模型。 二、实验内容 Example 1.1 P9 研究课题第一题 随着汽油价格的上涨,今年你希望买一辆新的(混合动力)汽车。你把选择范围缩小到以下几种车型:2007Toyota Camry混合动力汽车2007Saturn混合动力汽车2007Honda Civic混合动力汽车2007Nissan Altima 混合动力汽车2007Mercury Mariner混合动力汽车。每年公司都向你提供如下的“优惠价”。你有能力支付多达60个月的大约500美元的月还款。采用动力系统的方法来确定你可以买那种新的混合动力系统汽车。 混合动力汽车“优惠价”(美元)预付款(美元)利率和贷款持续时间Saturn 22045 1000 年利率5.95%,60个月Honda Civic24350 1500年利率5.5%,60个月Toyota Camry26200 750年利率6.25%%,60个月Mariner27515 1500年利率6%%,60个月 Altima24900 1000年利率5.9%%,60个月 解答如下,对五家公司分别建立动力系统模型: Saturn:Δb n=b n+1-b n=0.0595b n-6000 b n+1= b n+0.0595b n-6000 b0=21045 Honda Civic:Δb n=b n+1-b n=0.055b n-6000 b n+1= b n+0.055b n-6000 b0=22850 Toyota Camry: Δb n=b n+1-b n=0.0625b n-6000 b n+1= b n+0.0625b n-6000 b0=25450 Mariner:Δb n=b n+1-b n=0.06b n-6000 b n+1= b n+0.06b n-6000 b0=26015

第四版姜启源数学模型复习总结(2015年春)

第四版姜启源数学模型复习总结(2015年春) 【内容总结与思考】 第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。建模的一般方法及其在建模中的应用。建模的一般步骤(每步的主要内容与问题)。建模的全过程(框图)4个环节的含义。模型的特点(技艺性)。模型分类(表现特征),建模中的能力培养。 数学建模实例的建模思想及其步骤 §1 数学模型的概念: 模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。 模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。 数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。 1-1-1 模型是为了特定的目的,将原型的()而得到的原型替代物。 1-1-2数学模型可以描述为:对于一个现实对象,( )。

1-1-3 关于数学模型的如下论述中正确的是() A。数学模型是以现实世界的特定问题为研究对象。 B。数学模型只是对实际问题的近似表示,其中包含一些简化假设。C。数学模型表示是某一特定问题的内在规律的数学表示,是以方程和函数关系表示的数学结构。 D。数学模型是现实问题的真实的描述,不能做任何假设和简化。 1-1-4 关于数学建模的如下论述中正确的是() A。数学模型和数学建模是完全相同的概念。 B。数学建模是一个全过程,包括表述、求解、解释和验证四个环节。C。数学建模全过程涉及两个世界是现实世界和虚拟世界,涉及的“双向翻译”是同声翻译和文献翻译。 D.数学建模过程是一个从理论-实践-再理论-再实践不断改进的过程。 §2 建模的重要意义 (1)数学以空前的广度和深度向一切领域渗透 在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了;数学进入一些新领域,为数学建模开辟了许多处女地. 数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。 例1-2-1 数学建模的具体应用为()。§3实例1:椅子问题:实际问题转换为数学问题的方法:位

数学模型第四版作业对于6.4节蛛网模型讨论下列问题

对于节蛛网模型讨论下列问题: (1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数 量1+k x 和k x 决定。如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并 与的结果进行比较。 (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和 1-k y 决定,试分析稳定平衡的条件是否还会放宽。 解:(1) 设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为: )2 (11k k k x x f y +=++ 则 0),2 (0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k 消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,…. 该方程的特征方程为 022=++αβαβλλ 与节中 )2 (11-++=k k k y y g x 时的特征方程一样, 所以0<αβ<2, 即为0p 点的稳定条件。

(2)设 )2 (11k k k x x f y +=++ )2 (11-++=k k k y y g x , 则有 0),2 (0101>-+-=-++ααx x x y y k k k 0),2 (0101>-+=--+ββy y y x x k k k 消去y,得到 0123)1(424x x x x x k k k k +=++++++αβαβαβαβ 该方程的特征方程为 0242 3=+++αβαβλαβλλ 令λ=x,αβ=a , 即求解三次方程 0a 2ax ax 4x 2 3=+++ 的根 在matlab 中输入以下代码求解方程的根x : syms x a solve(4*x^3+a*x^2+2*a*x+a==0,x) 解得 1x = (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 2x = -(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3) - 3^(1/2)*a*24*i - 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i + (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -

数学模型(第四版)课后详细答案

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV 。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1L 3,因此,模型为: 33111M V k l K L ρρ===……………………………模型一 利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示: 图1 从图1结果可以得到参数K 1=0.014591,所以模型为: 31M 0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:

22222M V k d K d L L ρρ===………………………………模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系:

数学模型姜启源第四版答案

数学模型姜启源第四版答案 【篇一:姜启源数学模型课后答案(3版)】 t>第二章(1)(2008年9月16日) 1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分 较大者; (2). 1中的q值方法; (3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍 分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将 3种方法两次分配的结果列表比较. 解:先考虑n=10的分配方案, 3 p1?235,p2?333,p3?432, ?pi?1000. i?1 方法一(按比例分配) q1? p1n 3 ?2.35,q2? p2n 3 ?3.33, q3? p3n 3 ?4.32 ? i?1 pi ? i?1 pi

i?1 pi 分配结果为: n1?3, n2?3, n3?4 方法二(q值方法) 9个席位的分配结果(可用按比例分配)为: n1?2,n2?3, n3?4 第10个席位:计算q值为 q1? 235 2 2?3 ?9204.17, q2? 333 2 3?4 ?9240.75, q3? 432 2 4?5 ?9331.2 q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5 方法三(d’hondt方法) 此方法的分配结果为:n1?2,n2?3,n3?5 此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍). pini pini pini 是 每席位代表的人数,取ni?1,2,?,从而得到的近. 中选较大者,可使对所有的i,尽量接 再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本. 考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得 vdt?(r?wkn)2?kdn,两边积分,得 ?vdt?2?k?(r?wkn)dn t

姜启源《数学模型》第三版课件

第一章建立数学模型1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例 1.4 数学建模的方法和步骤1.5 数学模型的特点和分类1.6 怎样学习数学建模

1.1从现实对象到数学模型 我们常见的模型 玩具、照片、飞机、火箭模型… …~ 实物模型水箱中的舰艇、风洞中的飞机… …~ 物理模型地图、电路图、分子结构图… …~ 符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征

你碰到过的数学模型——“航行问题” 用x 表示船速,y 表示水速,列出方程: 75050)(750 30)(=?-=?+y x y x 答:船速每小时20千米/小时. 甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少? x =20y =5求解

航行问题建立数学模型的基本步骤?作出简化假设(船速、水速为常数); ?用符号表示有关量(x, y表示船速和水速); ?用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程); ?求解得到数学解答(x=20, y=5); ?回答原问题(船速每小时20千米/小时)。

数学模型(Mathematical Model) 和 数学建模(Mathematical Modeling) 对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型 数学 建模

数学建模习题及答案

第1 页共22 页 第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d'Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表: 234578.358.75117.5 83.25111166.5 108 216144 86.4 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的 3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8 条鱼的如下数据(胸围指鱼身的最大周长):

数学建模课后习题答案

方程及方程组的求解 1、路灯照明问题。在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw 的路灯, 它们离地面的高度分别为5m 和6m 。在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何? 解: 根据题意,建立如图模型 P1=2kw P2=3kw S=20m 照度计算公式: 2 sin r p k I α= (k 为照度系数,可取为1; P 为路灯的功率) (1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为 21111sin R p k I α= 22 2 22 sin R p k I α= 2 21 21 x h R += 1 1 1sin R h = α 2 22 2 2)(x s h R -+= 2 22sin R h = α Q 点的照度: 323 23 222 2 23 221 11) )20(36(18) 25(10) )((() (()(x x x s h h P x h h P x I -++ += -++ += X S P1 P2 R1 α1 α2 Q y x O R2 h1 h2

要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点 5 25 25 222225 22111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-+ +-= -+-+ +-= 利用MATLAB 求得0)(' =x I 时x 的值 代码: s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1 运行结果: s1 = 19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i 因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表: x 0 0.028489970 9.3382991 19.976695 20 I(x) 0.08197716 0.08198104 0.01824393 0.08447655 0.08447468 综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。 (2)路灯2的高度可以变化时,Q 点的照度为关于x 和h 2的二元函数: 3 222 2 3 23 222 223 221 112) )20((3) 25(10) )(() (),(x h h x x s h h P x h h P h x I -++ += -++ += 与(1)同理,求出函数I(x,h 2)的极值即为最暗点和最亮点 0) )((3))((52222 2 2322222=-+--+=??x s h h P x s h P h I 利用matlab 求得x : solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20-x)^2)^(5/2))=0') ans = 20+2^(1/2)*h 20-2^(1/2)*h 即x1=20+2^(1/2)*h (舍去) x2=20-2^(1/2)*h 0) )20(()20(9)25()220(30-))(()(3)(35222252522222522111=-+-++-=-+-++-=??x h x h x h x s h x s h P x h x h P x I 利用matlab 求解h 2

数学建模课后习题答案

方程及方程组的求解 1路灯照明问题。在一条 20m 宽的道路两侧,分别安装了一只 2kw 和一只3kw 的路灯, 它们离地面的高度分别为 5m 和6m 。在漆黑的夜晚,当两只路灯开启时 (1) 两只路灯连线的路面上最暗的点和最亮的点在哪里? (2) 如果3kw 的路灯的高度可以在 3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3) 如果两只路灯的高度均可以在 3m 到9m 之间变化,结果又如何? 解: 根据题意,建立如图模型 P1=2kw P2=3kw S=20m 照度计算公式: i k^2- r (k 为照度系数,可取为 1 ; P 为路灯的功率) (1 )设Q (x,O )点为两盏路灯连线上的任意一点,则两盏路灯在 Q 点的照度: I 1 k P 1sin R 2 1 I 2 k P z Sin 2 R 12 h.2 2 x sin 1 R 1 ?2 , 、2 sin h 2 h 2 (s x) 2 R 2 Q 点的照度分别为 I(x) Ph (s x)2 )3 . (25 x 2 ) 10 18 -2)3 . (36 (20 x)2)3 S

要求最暗点和最亮点,即为求函数 l(x)的最大值和最小值,所以应先求出函数的极值点 I ’ 3RAX 3P 2h 2 (s x) 30x 54(20 x) X J(h 2 X 2)5 7(h^ (s x)2)5 J(25 x 2)5 J(36 (20 x)2)5 利用MATLAB 求得l '(x) 0时x 的值 代码: s=solve('(-30*x)/((25+xA2)A(5/2))+(54*(20-x))/((36+(20-x)A2)A(5/2))'); s1=vpa(s,8); s1 运行结果: s1 = 19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012* 因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的l(x)的值,如下表: 综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。 (2)路灯2的高度可以变化时, Q 点的照度为关于x 和h 2的二元函数: 利用matlab 求得x : solve('3/((h A 2+(20-x)A 2)A (3/2))-3*(3*h A 2)/((h A 2+(20-x)A 2)A (5/2))=0') ans = 20+2A(1/2)*h 20-2A(1/2)*h 即 x1=20+2A(1/2)*h (舍去) x2=20-2A(1/2)*h 丄 3F (h 1x 3F 2h 2(s x) -30(20 2h) 9h 2(20 x) x x 2)5 J (忙(s x)2)5 J(25 x 2)5 J (忙(20 x)2)5 利用matlab 求解h 2 R h 1 l(x ,h2) (h 2 x 2)3 Rd 10 3h 2 .(h ; (s x)2)3 (25 x 2)3 ..(h (20 x)2)3 与(1)同理,求出函数 I h 2 ,(hf (s x)2)3 I(x,h 2)的极值即为最暗点和最亮点 2 3F^h 2 (h f (s x)2)5

相关文档
相关文档 最新文档