文档库 最新最全的文档下载
当前位置:文档库 › 运动学、动力学知识要点

运动学、动力学知识要点

运动学、动力学知识要点
运动学、动力学知识要点

《直线运动》知识要点

一、基本概念:时间、位移、速度、加速度

位移x ?——路程l

速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t

v a ??=??,物理意义 二、基本模型

质点

匀速直线运动

匀变速直线运动(自由落体运动、竖直抛体运动)

三、基本规律(模型草图)

1.匀速直线运动:vt x =

2.匀变速直线运动:

at v v ±=0,202

1at t v x ±=,ax v v 2202±=-,220

t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距)

四、基本方法(过程草图)

比例法——相等时间、相等位移

逆向运动法——末速度为零的匀减速运动,其它

对称法——往返运动(竖直上抛运动)

平均速度法

逐差法

图象法

五、基本实验

打点计时器

纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法)

六、难点题型

1.刹车问题——刹车时间

2.追击、相遇问题(草图、图象)

(1)相遇问题——同一时刻、同一地点

(2)追击问题——关键:速度相等;

分析:速度相等前后;

结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+=

七、易错点汇集

1.纸带处理:2naT x x m n m =-+,21234569)()(T

x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向)

3.图象问题:用图象解决追击相遇问题

4.答题技巧:抓关键词,统一单位,字母区别

画过程草图,灵活选取公式——平均速度法

《动力学》知识要点

一、分析基础

1.受力分析

物质性 力的概念 相互性——牛顿第三定律

作用效果——静力学效果:形变;动力学效果:加速度

(1)力 重力——重心

三种性质力 弹力——产生、方向、胡克定律、轻绳轻弹簧中的弹力

摩擦力——产生、方向、静摩擦与滑动摩擦、作用效果(阻碍)

(2)受力的分析

①研究对象的选取——整体法与隔离法

②受力分析的顺序——先主动力,后被动力(重力→弹力→摩擦力) 从受力较为简单的分析起

③产生条件法、假设法、平衡条件或动力学条件

(3)受力的计算——平行四边形定则、三角形定则、正交分解法

2.运动分析

(1)分析:过程草图——各阶段特点、各转折点状态

(2)计算(矢量性)

at v v ±=0,202

1at t v x ±=,ax v v 2202±=-,220

t v v v v =+=,2aT x =? (3)方法:比例法、逆向运动法、对称法、平均速度法、逐差法、图象法

二、分析依据

1.牛顿第一定律:惯性——无力,保持速度不变;有力,使速度只能渐变,不能突变

2.牛顿第二定律:ma F =合

(1)瞬时性——力变,加速度变

(2)矢量性——a 的方向与合F 方向相同 ——分解式 x x ma F =

(力的独立作用原理) y y

ma F = *(3)系统的牛顿第二定律:x x x x a m a m a m F 332211++=

(整体法) y y y y a m a m a m F 332211++=

3.牛顿第三定律:转换研究对象;区别一对作用力反作用力和一对平衡力

三、基本思路

力←——

物体牛顿运动定律——→运动

受力分析←—→a F ?=合←———→运动分析

高一年级物理运动学知识点总结

高一年级物理运动学知识点总结 【一】 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。 7.质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动 8.动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。 9.质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。 【二】 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的

描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 5.加速度 (1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率. (2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示. (3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致. 【三】 6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直

飞行器动力学与控制复习要点new

1. 卫星轨道六要素是哪些P2-7 ),,,,,(p t i e a ωΩ,其中a 半长轴,e 偏心率,i 轨道倾角,Ω升交点赤经,ω近地点幅 角,p t 卫星经过近地点时刻。 2. 卫星发射三要素是什么P17-18 ),,(L t A ?,其中?发射场L 的地心纬度,A 发射方位角,L t 发射时刻。 3. 什么是太阳同步轨道P23 选择轨道半长轴a 和倾角i 的组合使d /)(9856.0?=?Ω,则轨道进动方向和速率,与地球绕太阳周年转动的方向和速率相同(即经过365.24平太阳日,地球完成一次360°的周年运动),此特定设计的轨道称为太阳同步轨道。 4. 什么是临界轨道、冻结轨道P24-25 若远地点始终处在北极上空,即拱线不得转动,轨道倾角满足02sin 5.22 =-i ,即 ?=43.63i 或?=57.116i 。此值的倾角称为临界倾角,此类轨道称为临界轨道。若选择合 适的偏心率及合适的近地幅角,使0==e ω ,近地点幅角ω被保持,或称被冻结在90°。轨道的倾角和高度可以独立选择,此类轨道称作冻结轨道。 5. 回归轨道的回归系数是什么P26 轨道经过N 天回归一次,在回归周期内共转R 圈,每天的轨道圈数(非整数)Q 称为回归系数。R C Q I N N ==±,+表示轨迹东移,-表示轨迹西移。I 为接近一天的轨道圈数, 为正整数。 6. 静止轨道的特点、三要素是什么P28 (1) 轨道的周期与地球自旋周期一致 (2) 轨道的形状为圆形,偏心率0e = (3) 轨道处在地球赤道平面上,倾角0i = 7. 星座轨道的全球覆盖公式 相邻卫星星下点之间的角距为2b ,覆盖带宽度为2c ,

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

运动学知识点整理

运动学知识点与公式整理 一、速度、时间、加速度 1、平均速度定义式:t x ??=/υ ① 当式中t ?取无限小时,υ就相当于瞬时速度。 ② 如果是求平均速率,应该是路程除以时间。请注意平均速率是 标量;平均速度是矢量。 2、两种平均速率表达式(以下两个表达式在计算题中不可直接应用) ① 如果物体在前一半时间内的平均速率为1υ,后一半时间内的平均 速率为2υ,则整个过程中的平均速率为22 1υυυ+= ② 如果物体在前一半路程内的平均速率为1υ,后一半路程内的平均 速率为2υ,则整个过程中的平均速率为2 1212υυυυυ+= 3、加速度的定义式:t a ??=/υ ● 在物理学中,变化量一般是用变化后的物理量减去变化前的物理量。 ● 应用该式时尤其要注意初速度与末速度方向的关系。 ● a 与υ同向,表明物体做加速运动;a 与υ反向,表明物体做减速运动。 ● a 与υ没有必然的大小关系。 匀变速直线运动 1、匀变速直线运动的三个基本关系式 ① 速度与时间的关系at +=0υυ ② 位移与时间的关系202 1at t x +=υ (涉及时间优先选择,必须注意对于匀减速问题中给出的时间不一定就是公式中的时间,首先运用at +=0υυ,判断出物体真正的运动时间) ③ 位移与速度的关系ax t 2202=-υυ (不涉及时间,而涉及速度) 一般规定0v 为正,a 与v 0同向,a >0(取正);a 与v 0反向,a <0 (取负) 同时注意位移的矢量性,抓住初、末位置,由初指向末,涉及到x 的正负问题。 注意运用逆向思维: 当物体做匀减速直线运动至停止,可等效认为反方向初速为零的

空气动力学前六章知识要点

空气动力学基础前六章总结 第一章 空气动力学一些引述 1、 空气动力学涉及到的物理量的定义及相应的单位 ①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。 0,lim →?? ? ??=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa ②密度:定义为单位体积内的质量,具有点属性。 0,lim →=dv dv dm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡ ③温度:反应平均分子动能,在高速空气动力学中有重要作用。单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。单位:m/s ⑤剪切应力:dy dv μ τ= μ:黏性系数 ⑥动压:212 q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法 空气动力及力矩的来源只有两个: ①物体表面的压力分布 ②物体表面的剪应力分布。 气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。力矩与所选的点有关系,抬头为正,低头为负。 cos sin L N A αα=- , s i n c o s D N A αα=+ 3、 气动力系数的定义及其作用 气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),c q L c l ∞=' (2D )

L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C 4、 压力中心的定义 压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。 5、 什么是量纲分析,为什么要进行量纲分析,其理论依据,具体方法 在等式中,等号左边和等号右边各项的的量纲应相同,某些物理变量可以用一些基本量(质量,长度,时间等)来表达,据此有了量纲分析法,量纲分析可以减少方程独立变量个数,其理论依据是白金汉π定理。白金汉π定理:一个含有N 个变量的等式,可以写成N-K 个π积的函数形式,K 表示用K 个基本量纲来化简,每个非独立变量只出现在一个π积中,最终每个π积中K 个量纲的幂指数分别等于0,方程得到化简。通过量纲分析法引出了雷诺数Re 和马赫数M ,这两个参数被称作相似参数。自由来流的马赫数Re=∞∞∞μρ/c V =惯性力/黏性力,马赫数M=∞∞a /V ,马赫数可以度量压缩性。 6、 流动相似 判断流动动力学相似的标准是: ①两流体的表面和所有固体边界是几何相似的 ②相似参数相同,即马赫数和雷诺数。 7、 流动问题的分类,判断标准,各有什么样的特点; (连续介质与自由分子;有粘无粘;可压不可压;根据马赫数的分类) 流动类型:当分子对物体表面的碰撞很频繁以致于物体不能分辨出单个分子碰撞(平均自由程很小),对物体表面而言流体是连续介质,这样的流动成为连续流动。如果流动中没有摩擦、热传导或者扩散,那么这样的流动被称为无黏流动。密度是常数的流动称作不可压缩流动(M<0.3)。 马赫数区域:如果流动中任意一点的马赫数都小于1,那么流动是亚音速的(M<0.8)。既有M<1的区域又有M>1的区域成为跨音速区域(0.8

张力减径机的动力学和运动学的分析详细版

文件编号:GD/FS-1093 (解决方案范本系列) 张力减径机的动力学和运动学的分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

张力减径机的动力学和运动学的分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。 张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。随着我国钢管工业的发展张力减径机组正被广泛运用。对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。以下分析张力减径机的运动学

和动力学原理。 1.张力减径机的运动学特征 1.1.运动学特征 在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。 在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的复杂关系中减径过程仍然能够在任一瞬间保持秒流量相等。但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得

运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动 专题一:运动的描述 1.质点 (1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。 (4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系 ④比较两物体运动时,要选同一参考系。 3.位置、位移和路程 (1)位置是空间某个点,在x 轴上对应的是一个点 (2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。 (3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间 时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. A B A B C 图1-1

(精编!)高一物理《运动学知识点归纳》

运动学知识点归纳(必修一第一、二章) 【考试说明】 【知识网络】 【考试说明解读】 1.参考系 *⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵运动学中的同一公式中涉及的各物理量必须选择同一参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 *⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 物体可视为质点的主要三种情形: ①物体只作平动时; *②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。 ⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)

相对应。 4.位移和路程 *⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置指向末位置的 有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 *⑵路程:路程等于实际运动轨迹的长度,是一个标量。 *只有在单方向的直线运动中,位移的大小才等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移 所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速 度,即 t s v = ,平均速度是矢量,其方向就是相应位移的方向。 *公式V =(V 0+V t )/2只对匀变速直线运动适用。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有 一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度, 即t v v t v a t 0 -=??= ⑶速度、速度变化、加速度的关系: *①方向关系:加速度的方向与速度变化的方向一定相同,加速度方向和速度方向没有必 然的联系。 *②大小关系:V 、△V 、a (F 合)无必然的大小决定关系!! *③*只要a 与v 方向相同,无论加速度在减少还是在增大,物体的速度一定增大,若加速 度减小,速度增大得越来越慢(仍然增大)!! *只要a 与v 方向相反,物体的速度一定减小!! *7、运动图象:s —t 图象与v —t 图象的比较 (深刻把握!!) 下图和下表是形状一样的图线在s —t 图象与v —t 图象中的比较. s — t 图 v —t 图 图A-2-6-1

空气动力学部分知识要点

空气动力学部分知识要 点 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

空气动力学及飞行原理课程 空气动力学部分知识要点 一、流体属性与静动力学基础 1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力 和产生剪切变形能力上的不同。 2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要 不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。 3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗 压缩变形的能力和特性称为弹性。 4、当马赫数小于时,气体的压缩性影响可以忽略不计。 5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘 性,相对错动流层间的一对摩擦力即粘性剪切力。 6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层 间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有

关 7、按照作用力的性质和作用方式,可分为彻体力和表面力(面 力)两类。例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。 8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小 与流体团块表面积成正比的接触力。由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力: 9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内 法线方向,压强的量纲是[力]/[长度]2 10、标准大气规定在海平面上,大气温度为 15℃或 T0 = , 压强 p0 = 760 毫米汞柱 = 101325牛/米2,密度ρ0 = 千克/米3 11、从基准面到 11 km 的高空称为对流层,在对流层内大气密度 和温度随高度有明显变化,温度随高度增加而下降,高度每增加 1km,温度下降 K。从 11 km 到 21km 的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为 K。 普通飞机主要在对流层和平流层里活动。 12、散度、旋度、有旋流、无旋流。 13、描述流体运动的方程。低速不可压缩理想流体:连续方程+动 量方程(欧拉方程);低速不可压缩粘性流体:连续方程+动

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

运动学知识点总结

运动学知识点总结 一,质点、参考系、坐标系 1,机械运动:物体相对于其它物体位置发生变化,称为机械运动,简称运动 2,运动是绝对的,静止是相对的 3,质点:用来代替物体的有质量、无大小的点(理想化模型,为简化问题研究方便而引入)物体看成质点的条件:物体本身形状大小相对于研究问题是次要的,可忽略。 (物体本身大小远小于研究距离) 4,参考系:为研究物体运动而选为标准的物体(就是假设不动的物体) 参考系可任意选取,应尽量使得研究问题简化 5,坐标系:为定量描述质点位置的变化而建立的坐标 轴 二,时间和位移 1,时刻:对应某一位置,某一瞬间,是一个点 时间间隔,简称时间:对应一段位移、一段过程 时间轴:(要能看懂,哪个是时间?哪个是时刻?) 2,标量和矢量 标量:只有大小没有方向的量。如“路程、速率、时间” 矢量:既有大小又有方向的量。如“位移、速度、加速度” 3,路程:通过路径的长度。标量,可以是直线、也可以是曲线。只能粗略反映物体的运动 4,位移:表示物体位置变化的物理量。是从初位置指向末位置的有向线段。能精确反映物体运动矢量,线段长度表示位移大小,箭头表示位移方向 5,路程位移关系:路程和位移是两个不同类型的物理量,绝不能说“位移等于路程”! 单向的直线运动:“位移大小”才等于路程。 其它运动中,“位移大小”小于路程 三,速度:是描述物体运动快慢的物理量 1,定义式:(发生位移与所用时间的比值) 比值定义:V等于位移与时间的比值,和单独的位移或时间没有关系的! 2,矢量:速度方向就是运动方向 3,分类:平均速度:一段时间内的速度,只能粗略反映运动快慢 瞬时速度:某一时刻、某一位置的速度,能精确反映物体运动 4,瞬时速率:瞬时速度的大小,简称“速率” 平均速率:路程与所用时间的比值 5注意:平均速度、瞬时速度都是矢量, 瞬时速率、平均速率都是标量 平均速率不是平均速度的大小! 匀速直线运动中,平均速度等于瞬时速度

航模基础知识空气动力学

航模基础知识空气动力学 一章基础物理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学,请跳过这一章直接往下看。第一节速度与加速度速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是负数,则代表减速。第二节牛顿三大运动定律第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。第二定律:某质量为m 的物体的动量(p = mv)变化率是正比于外加力F 并且发生在力的方向上。此即著名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。第三定律:作用力与反作用力是数值相等且方向相反。你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z 三个轴力的平衡及绕X、Y、Z 三个轴弯矩的平衡。轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z 方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x 方向阻力与推力大小相同方向相反,故x 方向合力为零,飞机速度不变,y 方向升力与重力大小相同方向相反,故y 方向合力亦为零,飞机不升降,所以会保持等速直线飞 弯矩不平衡则会产生旋转加速度,在飞机来说,X 轴弯矩不平衡飞机会滚转, Y 轴弯矩不平衡飞机会偏航、Z 轴弯矩不平衡飞机会俯 第四节伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力 越小,速度越小,静压力越大,这里说的流体一般是指空气或水,在这里当然是 指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢, 静压力较大,两边互相较力,于是机翼就被往上推去,然后飞机就 飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流 经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无 法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上 缘的质点会比流经机翼的下缘质点先到达后缘 我曾经在杂志上看过某位作者说飞机产生升力是因为机翼有攻角,当气流 通过时机翼的上缘产生”真空”,于是机翼被真空吸上去﹝如图1-6﹞,他的真 空还真听话,只把飞机往上吸,为什么不会把机翼往后吸,把你吸的动都不能动, 还有另一个常听到的错误理论有时叫做***理论,这理论认为空气的质点如同子 弹一般打在机翼下缘,将动量传给机翼,这动量分成一个往上的分量于是产生升 力,另一个分量往后于是产生阻力﹝如图1-7﹞,可是克拉克Y 翼及内凹翼在攻 角零度时也有升力,而照这***理论该二种翼型没有攻角时只有上面”挨子 弹”,应该产生向下的力才对啊,所以机翼不是风筝当然上缘也没有所谓真空。 伯努利定律在日常生活上也常常应用,最常见的可能是喷雾杀虫剂了﹝如

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

电动力学_知识点总结

第一章电磁现象的普遍规律一、主要内容: 电磁场可用两个矢量—电场强度和磁感应强度来完全 描写,这一章的主要任务是:在实验定律的基础上找出, 所满足的偏微分方程组—麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。在电磁学的基础上从实验定律出发运用矢量分析得出电磁场运动的普遍规律;使学生掌握麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到一般,由实验定律加假设总结出麦克斯韦方程。完成由普通物理到理论物理的自然过渡。 二、知识体系: 三、内容提要:

1.电磁场的基本实验定律: (1)库仑定律: 对个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和,即: (2)毕奥——萨伐尔定律(电流决定磁场的实验定律) (3)电磁感应定律 ①生电场为有旋场(又称漩涡场),与静电场本质不同。 ②磁场与它激发的电场间关系是电磁感应定律的微分形式。 (4)电荷守恒的实验定律 , ①反映空间某点与之间的变化关系,非稳恒电流线不闭合。 ② 若空间各点与无关,则为稳恒电流,电流线闭合。 稳恒电流是无源的(流线闭合),,均与无关,它产生的场也与无关。 2、电磁场的普遍规律—麦克斯韦方程

其中: 1是介质中普适的电磁场基本方程,适用于任意介质。 2当,过渡到真空情况: 3当时,回到静场情况: 4有12个未知量,6个独立方程,求解时必须给出与,与的关系。介质中: 3、介质中的电磁性质方程 若为非铁磁介质 1、电磁场较弱时:均呈线性关系。

向同性均匀介质: ,, 2、导体中的欧姆定律 在有电源时,电源内部,为非静电力的等效场。 4.洛伦兹力公式 考虑电荷连续分布, 单位体积受的力: 洛伦兹认为变化电磁场上述公式仍然成立,近代物理实验证实了它的正确。 说明:① ② 5.电磁场的边值关系 其它物理量的边值关系:

空气动力学基础知识及飞行基础原理

-/ M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括 A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。

-/ D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度

飞行动力学知识点

《飞行动力学》掌握知识点 第一章 掌握知识点如下: 1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局 2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等 3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线. P8 答:转速特性是在给定调节规律下,高度和速度一定时,发动机推力和耗油率随转速的变化关系。速度特性是在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系。高度特性是在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系。 第二章 掌握知识点如下: 1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。 2)飞机定直平飞的最小速度受到哪些因素的限制?

答:允许升力系数,抖动升力系数,最大平尾偏角,发动机可用推力。 3)为提高飞机的续航性能,飞机设计中可采取哪些措施?答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。 第三章 掌握知识点如下: 1)了解飞机机动性的基本概念。答:飞机机动性是指飞机在一定时间内改变飞行速度,飞行高度和飞行方向的能力,相应的分为速度机动性,高度机动性和方向机动性。按航迹特点分为铅垂平面内,水平平面内和空间的机动飞行。 2)了解飞机敏捷性的基本概念和目前用来评价敏捷性的指标。答:飞机的敏捷性是指飞机在空中迅速精确的改变机动飞行状态的能力。选用状态变化和时间两个属性来衡量飞机敏捷性。敏捷性按照时间尺度分为瞬态敏捷性,功能敏捷性和敏捷性潜力;按照飞机运动形式分为轴向敏捷性,纵向敏捷性和滚转敏捷性。第四章 掌握知识点如下: 1)了解“方案飞行”和“飞行方案”的基本概念。答:

大学物理(上)知识点整理

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:;

经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关

相关文档
相关文档 最新文档