文档库 最新最全的文档下载
当前位置:文档库 › 指数式对数式的运算练习

指数式对数式的运算练习

指数式对数式的运算练习
指数式对数式的运算练习

指数式、对数式的运算

1.化简4a 2

3·b -1

3÷? ??

??-23a -13b 23的结果为( ) A .-2a 3b B .-8a b C .-6a b D .-6ab

2.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )

A .[9,81]

B .[3,9]

C .[1,9]

D .[1,+∞)

3.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是( )

A .a >b >c

B .a >c >b

C .c >a >b

D .b >c >a

4.函数y =? ??

??12x x 221+-的值域是( ) A .(-∞,4) B .(0,+∞) C .(0,4] D .[4,+∞)

5..若函数f (x )=a x

(a >0,且a ≠1)的图象经过点A ? ????2,13,则f (-1)=________. 6.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],则实数a =________.

7.不等式2x x 22-+>? ??

??12x +4的解集为________. 8.lg 427-lg 823+lg 75=________.

9. 235log 25log 4log 9??= ________

10.4839(log 3log 3)(log 2log 2)+-= ________

11.(1)计算:[(338)-23-(549)0.5+(0.008)-23÷(0.02)-12×(0.32)12]÷0.062 50.25;

(2)化简:a 43-8a 13b 4b 23+23ab +a 23÷(a -23-23b a )×a ·3a 25a ·3a

(式中字母都是正数).

指数式、对数式的运算答案

1. 解析:选C 原式=4÷????-23a ??-- ???2133b 1--233 =-6ab -1=-6a b

,故选C. 2. 解析:选C 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数, 所以f (x )min =f (2)=1,f (x )max =f (4)=9.故f (x )的值域为[1,9].

3. 解析:选A 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ; 因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .

4. 解析:选C 设t =x 2+2x -1,则y =????12t . 因为0<12

<1,所以y =????12t 为关于t 的减函数. 因为t =(x +1)2-2≥-2,所以0<y =????12t ≤????12-2=4,故所求函数的值域为(0,4].

5. 解析:依题意可知a 2=13,解得a =33,所以f (x )=????33x ,所以f (-1)=????33-1= 3.答案: 3

6. 解析:当a >1时,f (x )=a x -1在[0,2]上为增函数,则a 2-1=2,所以a =±3.又因为a >1,所以a = 3. 当0<a <1时,f (x )=a x -1在[0,2]上为减函数,又因为f (0)=0≠2,所以0<a <1不成立.综上可知,a = 3. 答案: 3

7. 解析:不等式2x x 22-+>????12x +4可化为????12x x 22- >????12x +4,等价于x 2-2x

8.【解析】 原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5

=2lg 2+12(lg 2+lg 5)-2lg 2=12.

11.【解】 (1)原式=[(827)23-(499)12+(1 0008)23÷50×4210]÷(62510 000)14=(49-73+25×152

×4210)÷12 =(-179+2)×2=29.

(2)原式=a 13[(a 13)3-(2b 13)3](a 13)2+a 13·(2b 13)+(2b 13)2÷a 13-2b 13a ×(a ·a 23)1

2(a 12·a 13)15 =a 13(a 13-2b 1

3)×a a 13-2b 13×a 56a 16 =a 13×a ×a 23=a 2.

高中数学,指数式与对数式的运算考点题型总结

第八节指数式、对数式的运算 ?基础知识 1.指数与指数运算 (1)根式的性质 ①(n a)n=a(a使 n a有意义). ②当n是奇数时,n a n=a; 当n是偶数时,n a n=|a|= ?? ? ??a,a≥0, -a,a<0. (2)分数指数幂的意义 分数指数幂的意义是解决根式与分数指数幂互化问题的关键. ①a m n= n a m(a>0,m,n∈N*,且n>1). ②a - m n= 1 a m n = 1 n a m (a>0,m,n∈N*,且n>1). ③0的正分数指数幂等于0,0的负分数指数幂没有意义. (3)有理数指数幂的运算性质 ①a r·a s=a r+s(a>0,r,s∈Q); ②a r a s=a r-s(a>0,r,s∈Q); ③(a r)s=a rs(a>0,r,s∈Q); ④(ab)r=a r b r(a>0,b>0,r∈Q). (1)有理数指数幂的运算性质中,要求指数的底数都大于0,否则不能用性质来运算. (2)有理数指数幂的运算性质也适用于无理数指数幂. 2.对数的概念及运算性质 一般地,如果a(a>0,且a≠1)的b次幂等于N,就是a b=N,那么,数b就叫做以a 为底N的对数,记作:log a N=b. 指数、对数之间的关系

(1)对数的性质 ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1. (2)对数的运算性质 如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a (N n )=n log a N (n ∈R). ? 常用结论 1.换底公式的变形 (1)log a b ·log b a =1,即log a b = 1 log b a (a ,b 均大于0且不等于1); (2)log am b n =n m log a b (a ,b 均大于0且不等于1,m ≠0,n ∈R); (3)log N M =log a M log a N =log b M log b N (a ,b ,N 均大于0且不等于1,M >0). 2.换底公式的推广 log a b ·log b c ·log c d =log a d (a ,b ,c 均大于0且不等于1,d >0). 3.对数恒等式 a log a N =N (a >0且a ≠1,N >0). 考点一 指数幂的化简与求值 [典例] 化简下列各式:

100道指数和对数运算

指数和对数运算 一、选择题 1.log ( ). A .-12 D .12 2.已知 3log 2 a =,那么 33log 82log 6 -用a 表示是( ) A .52a - B .2a - C .2 3(1)a a -+ D . 2 31a a -- 3.1 2lg 2lg 25 -的值为 A .1 B .2 C .3 D .4 4.已知4213 5 3 2,4,25a b c ===,则( ) A. c a b << B. a b c << C.b a c << D. b c a << 5.设3 .02.03.03.0,3.0,2.0===z y x ,则z y x ,,的大小关系为( ) A.x z y << B. y x z << C. y z x << D. z y x << 6.设0.2 1.6 0.2 2,2,0.4a b c ===,则,,a b c 的大小关系是() A c a b <<. B .c b a << C .a b c << D .b a c << 二、填空题 7.7 33log 8lg 125lg ++= . 8.2 log 510+log 50.25=_________. 9.22log 12log 3-= . 10.若lg2 = a ,lg3 = b ,则lg 54=_____________. 11.若2log 31x =,则3x 的值为 。 12.化简2 log 2 lg5lg2lg2+-的结果为__________. 13.计算=÷--21 100)25lg 41 (lg _______. 三、解答题 14.(本小题满分12分)计算 (Ⅰ)2 221 log log 6log 282 -; (Ⅱ)213 4 270.00818-?? -+ ? ?? 15. lg(x 2 +1)-2lg(x+3)+lg2=0

指数式和对数式比较大小

指数式和对数式比较大 小 Document number:WTWYT-WYWY-BTGTT-YTTYU-

指数式和对数式比较大小五法 方法一:利用函数单调性 同底的指数式和对数式以及同指数的指数式的大小,可以利用函数的单调性来比较. 核心解读: 1.比较形如m a 与n a 的大小,利用指数函数x y a =的单调性. 2.比较形如log a m 与log a n 的大小,利用对数函数log a y x =的单调性. 3.比较形如m a 与m b 的大小,利用幂函数m y x =的单调性. 例1:比较下列各组数的大小 (1)0.30.3,30.3 (2)2log 0.8,2log 8.8 (3)0.30.3,0.33 [解](1)利用函数0.3x y =的单调性. 因为函数0.3x y =在R 上单调递减,<3,所以0.30.3>30.3. (2)利用函数2log y x =的单调性. 因为函数2log y x =在(0,)+∞单调递增,<,所以2log 0.8<2log 8.8. (3)利用函数0.3y x =的单调性. 因为函数0.3y x =在(0,)+∞单调递增,<3,所以0.30.3<0.33. 方法二:中间桥梁法 既不同底又不同指的指数式、对数式比较大小,不能直接利用函数的单调性来比较,可利用特殊数值作为中间桥梁,进而可比较大小. (1)比较形如m a 与n b 的大小,一般找一个“中间值c ”,若m a c <且m c b <,则m n a b <;若m a c >且n c b >,则m n a b >.常用到的特殊值有0和1.(0log 1a =,1log a a =,01a =) (2)比较形如m a 与n b 的大小,一般可以取一个介于两值中间且与题目中两数都能比较大小的一个中间值,即n a 或者m b ,进而利用中间值解决问题. 例2:比较下列各组数的大小 (1)0.41.9, 2.40.9 (2)124()5,139()10 [解](1)取中间值1. 因为0.4 01.9 1.91>=, 2.400.90.91<=,所以0.4 2.41.90.9>. (2)取中间值1 29()10 . 利用函数910 x y =()的单调性比较139()10和129()10的大小,易知139()10>129()10.利用函数12y x =单调性比较124()5和129()10的大小,易知124()5<129()10.所以139()10>1 24()5. (补充:对于指数相同底数不同的两指数式比较大小,也可以通过做比与1比较大小的方法比较两数的大小.)

指数式、对数式的运算

预习 1.化简下列各式: (1)0.027-13-????17-2+????27912-(2-1)0; (2)????56a 13b -2·(-3a -12b -1)÷(4a 23b -3)1 2·ab . (3)g 25+lg 2·lg 50+(lg 2)2; (4)(log 32+log 92)·(log 43+log 83). (5)a ·1a +(5a )5-6a 6 (6) 4a 23·b -13÷? ????-23a -1 3b 23 2.计算:-????32-2+????-278-23+(0.002) -1 2=____________. 课堂讲解 1.计算2log 63+log 64的结果是_____________. 2.若x log 23=1,则3x +3- x =_____________. 3.计算log 5????412log 2 10-(33)23-7log 72=____________. 4.设2a =5b =m ,且1a +1b =2,则m =________. 5.a 3 a ·5a 4(a >0)的值是____________. 6.已知2x =3,log 483 =y ,则x +2y 的值为____________. 7.(1-log 63)2+log 62·log 618log 64 =____________.

2 / 2 课后练习1. ()2a 23b 12()-6a 12b 13÷()-3a 16b 56 =_________________. 2.如果2log a (P -2Q )=log a P +log a Q ,那么P Q 的值为_________________. 3.若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于_________________. 4.已知函数f (x )=? ????log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ????log 312的值是_________________. 5.定义a ·b =? ????a ·b ,a ·b ≥0,a b ,a ·b <0,设函数f (x )=ln x ·x ,则f (2)+f ????12=_________________. 6.化简:(a 23·b -1)-12·a -12·b 136a ·b 5 =____________. 7.若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =____________. 8.若67x =27,603y =81,则3x -4y =____________. 9.化简下列各式: (1)????2790.5+0.1-2+????21027-23-3π0+3748 ; (2) 3 a 72·a -3÷ 3a -3·a - 1; (3)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27 .

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

指数与对数运算练习题

1、用根式的形式表示下列各式)0(>a (1)51a = (2)34 a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4 y x = (2))0(2>=m m m (3 = (4 = ; (5)a a a = ; 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)31()4-= ;(4)3 416()81 - = (5)12 2 [(]- = (6)(12 2 1??-???? = (7)=3 264 4.化简 (1)=??12 74331a a a (2)=÷?654323 a a a (3)=÷-?a a a 9)(34 323 (4)322 a a a ?= (5)3 1 63)278(--b a = (7)()0,053542 15 65 8≠≠÷???? ? ? ?- -b a b a b a = 5.计算 (1) 43 512525÷ - (2) (3)21 0319)41 ()2(4)21(----+-?- ()5.02 1 20 01.04122432-?? ? ???+??? ??-- (5)48 37 3271021.097203 225 .0+ -? ? ? ??++? ?? ??- -π (6)241 30.75 3323(3)0.04[(2)]168 ----++-+ (7)( ) 3 263 425.00 3 1323228765 .1?? ? ??--?+?+?? ? ??-?- 6.解下列方程 (1)13 1 8 x - = (2)151243 =-x (3)1321(0.5)4x x --= 7.(1).已知112 2 3a a -+=,求下列各式的值(1)1a a -+= ;(2)22 a a -+= (2).若1 3a a -+=,求下列各式的值:(1)112 2 a a - += ; (2)22 a a -+= ; (3).使式子34 (12) x --有意义的x 的取值范围是 _. (4).若32a =,1 35b -=,则323 a b -的值= .

指数式与对数式的运算

指数式与对数式的运算 指数与指数幂的运算 教学目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算. 知识点回顾: 1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈.(n 叫做根指数,a 叫做被开方数)n 次方根具有如下性质: (1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零. (2)n 次方根(*1,n n N >∈且)有如下恒等式: ()n n a a =;,||,n n a n a a n ?=?? 为奇数为偶数;np n mp m a a =,(a ≥0). 2.规定正数的分数指数幂:m n m n a a = (0,,,1a m n N n *>∈>且); 注意口诀:(根指 数化为分母,幂指数化为分子), 11 ()()(0,,,m m m n n n a a m n N a a -+==>∈且1)n >. 注意口诀:底数取倒数,指数取相反数.0的负分数指数幂没有意义。 3.指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 范例解析 例1求下列各式的值: (1)3n n π-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33n n ππ-=-(); 当n 为偶数时,3|3|3n n πππ-=-=-(). (2)2()||x y x y -=-. 当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-. 例2已知221n a =+,求33n n n n a a a a --++的值. 解:332222()(1)1121122121 n n n n n n n n n n n n a a a a a a a a a a a a ------++-+==-+=+-+=-+++. 例3化简:(1)2 115113366 22(2)(6)(3)a b a b a b -÷-; (2)3322 114 4 23 ()a b ab b a b a ?(a >0,b >0); (3)24 3 819?.

指数对数基本运算

2016-2017学年度???学校9月月考卷 1.计算:________. 2.已知666log log log 6a b c ++=,其中*,,a b c N ∈,若,,a b c 是递增的等比数列,又b a -为一完全平方数,则a b c ++=___________. 3.已知3log 21x =,则42x x -=________. 4.lg83lg5+的值是 . 5.lg0.01+log 216=_____________. 6= . 7.已知,53m b a ==且,则m 的值为 . 8.已知y x y x y x lg lg 2lg )2lg()lg(++=++-,则 9,0a b c <<<,0)()()(;③c d <;④c d >.其中可能成立的是 (填序号) 10. 11 12.如果22log log 4,那么m n m n +=+的最小值是 . 13.若log 21a <,则a 的取值范围是 14的定义域为 . 15.32-,三个数中最大数的是 . 16.若log 4(3a +4b)=log a +b 的最小值是 .

参考答案 1.1 【解析】=lg10=1. 2.111 【解析】 试题分析:66666log log log log 6,6a b c abc abc ++===, 2b ac =,所以366,36b b ==.46ac =,因为b a -为一完全平方数,所以27,48,111a c a b c ==++=. 考点:1.对数运算;2.数列. 【思路点晴】本题涉及很多知识点,一个是对数加法运算,用的是公式 log log log a a a b c bc +=.然后,,a b c 是递增的等比数列,可得2b ac =,接下来因为b a -为一完全平方数,比36小的完全平方数只有25,16,9,故可以猜想27a =,通过计算可得27,48,111a c a b c ==++=.有关几个知识点结合起来的题目,只需要对每个知识点逐个击破即可. 3.6 【解析】 试题分析:由条件可知2log 3x =,故222log 3log 34222936x x -=-=-=. 考点:对数运算的基本性质. 4.3 【解析】 试题分析:3lg83lg5lg8lg5lg10003+=+==。 考点:对数运算法则的应用。 5.2 【解析】lg0.01+log 216=-2+4=2 考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力. 6【解析】 考点:指数和对数的运算法则。 7【解析】略 8.2 【解析】略

高中数学指数对数的运算

高中数学指数、对数的运算一.选择题(共28小题) 1.(2014?济南二模)log2+log2cos的值为() A.﹣2B.﹣1C.2D.1 2.(2014?成都一模)计算log5+所得的结果为() A.1B.C.D.4 3.若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.2 4.(2014?泸州二模)式子log2(log216)+8×()﹣5=() A.4B.6C.8D.10 5.(2014?泸州一模)的值为() A.1B.2C.3D.4 6.(2015?成都模拟)计算21og63+log64的结果是() A.l og 2B.2C.l og63D.3 6 7.(2014?浙江模拟)log212﹣log23=() A.2B.0C.D.﹣2 8.(2014?浙江模拟)下列算式正确的是() A.l g8+lg2=lg10B.l g8+lg2=lg6C.l g8+lg2=lg16D.l g8+lg2=lg4 9.(2014?和平区二模)已知3x=5y=a,且+=2,则a的值为() A.B.15C.±D.225 10.(2013?枣庄二模)已知函数,则的值是()A.9B.﹣9C.D.

11.(2013?婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=() A.2B.﹣2C.D. ﹣ 12.(2013?泸州一模)log2100+的值是() A.0B.1C.2D.3 13.(2013?东莞一模)已知函数f(x)=,则f(2+log32)的值为()A. B.C.D.﹣54 ﹣ 14.(2013?东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2B.2C.﹣4D.4 15.(2012?安徽)(log29)?(log34)=() A.B.C.2D.4 16.(2012?北京模拟)函数y=是() B.区间(﹣∞,0)上的减函数 A.区间(﹣∞,0) 上的增函数 D.区间(0,+∞)上的减函数 C.区间(0,+∞) 上的增函数 17.(2012?杭州一模)已知函数则=()A.B.e C.D.﹣e 18.(2012?北京模拟)log225?log34?log59的值为() A.6B.8C.15D.30 19.(2012?北京模拟)实数﹣?+lg4+2lg5的值为()A.2B.5C.10D.20

指数对数运算经典习题及答案.doc

指数对数运算 一、选择题 1.3 log 9log 28的值是 ( ) A . 3 2 B .1 C . 2 3 D .2 2.设a,b,c 都是正数,且3a =4b =6,那么 ( ) A . b a c 1 11+= B . b a c 122+= C . b a c 2 21+= D . b a c 212+= 3.已知==)5(,)10(f x f x 则 ( ) A .5 10 B . 10 5 C. 10log 5 D. 5lg 4.若a>1,b>1,a a p b b b log )(log log =,则a p 等于 ( ) A .1 B .b C .log b a D .a b a log 5.设15 112 1)3 1 (log )3 1 (log --+=x ,则x 属于区间 ( ) A .(-2,-1) B .(1,2) C .(-3,-2) D .(2,3) 6.若32x +9=10·3x ,那么x 2 +1的值为 ( ) A .1 B .2 C .5 D .1或5 7.已知2lg(x -2y)=lgx+lgy ,则y x 的值为 ( ) A .1 B .4 C .1或4 D . 4 1 或4 8.方程log 2(x+4)=2x 的根的情况是 ( ) A .仅一个正根 B .有两正根 C .有两负根 D .有一正根和一负根 9.下列各式中成立的一项是 ( ) A .7177)(m n m n = B. 3124 3)3(-=- C. 43 433)(y x y x +=+ D. 33 39= 10. 化简??? ? ??÷???? ??-???? ??656131 21213231 3b a b a b a 的结果是 ( ) A .a 6 B. a - C. a 9- D. 2 9a 11.若x x 则,0)](log [log log 25.02=等于 ( ) A .2 B. 2 C. 2 1 D. 1

指数式、对数式的运算

指数式、对数式的运算 一、基础知识 1.指数与指数运算 (1)根式的性质 ①(n a)n=a(a使 n a有意义). ②当n是奇数时,n a n=a; 当n是偶数时,n a n=|a|= ?? ? ??a,a≥0, -a,a<0. (2)分数指数幂的意义 分数指数幂的意义是解决根式与分数指数幂互化问题的关键. ①a m n= n a m(a>0,m,n∈N*,且n>1). ②a - m n= 1 a m n = 1 n a m (a>0,m,n∈N*,且n>1). ③0的正分数指数幂等于0,0的负分数指数幂没有意义. (3)有理数指数幂的运算性质 ①a r·a s=a r+s(a>0,r,s∈Q); ②a r a s=a r-s(a>0,r,s∈Q); ③(a r)s=a rs(a>0,r,s∈Q); ④(ab)r=a r b r(a>0,b>0,r∈Q). (1)有理数指数幂的运算性质中,要求指数的底数都大于0,否则不能用性质来运算. (2)有理数指数幂的运算性质也适用于无理数指数幂. 2.对数的概念及运算性质 一般地,如果a(a>0,且a≠1)的b次幂等于N,就是a b=N,那么,数b就叫做以a 为底N的对数,记作:log a N=b. 指数、对数之间的关系

(1)对数的性质 ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1. (2)对数的运算性质 如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a (N n )=n log a N (n ∈R). 二、常用结论 1.换底公式的变形 (1)log a b ·log b a =1,即log a b = 1 log b a (a ,b 均大于0且不等于1); (2)log am b n =n m log a b (a ,b 均大于0且不等于1,m ≠0,n ∈R); (3)log N M =log a M log a N =log b M log b N (a ,b ,N 均大于0且不等于1,M >0). 2.换底公式的推广 log a b ·log b c ·log c d =log a d (a ,b ,c 均大于0且不等于1,d >0). 3.对数恒等式 a log a N =N (a >0且a ≠1,N >0). 考点一 指数幂的化简与求值 [典例] 化简下列各式: (1)????2 350+2-2·??? ?2 14-1 2-(0.01)0.5; (2)56 a 1 3·b -2·????-3a -12b -1÷(4a 2 3·b -3)1 2. [解] (1)原式=1+14×????4912-????11001 2=1+14×23-110=1+16-110=1615 .

指数式与对数式

1.指数、对数的运算法则; 2.指数式与对数式的互化:log b a a N N b =?=. 指数式与对数式的底a 取值范围为(0,1)∪(1,+∞). 在底确定的前提下,指数运算与对数运算互为逆运算. 1.重视指数式与对数式的互化; 2.不同底的对数运算问题,应化为同底对数式进行运算; 3.运用指数、对数的运算公式解题时,要注意公式成立的前提. (三)例题分析: 例1.计算:(1)12131 6 32 4 (1243)27162(8)--+-+-; (2)2(lg 2)lg 2lg 50lg 25+?+; (3)3948(log 2log 2)(log 3log 3)+?+. 解:(1)原式12 1 33(1)246 3 2 4 (113 2 28 ? -?-?? =+-+-? 2133 3 2 113222 118811? =++-?=+-=.

(2)原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=. (3)原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3 ( )()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2 =+?+=+?+ 3lg 25lg 35 2lg 36lg 24 =?=. 例2.已知112 2 3x x - +=,求 22332 2 23 x x x x --+-+-的值. 解:∵112 2 3x x -+=,∴112 2 2()9x x - +=,∴129x x -++=,∴17x x -+=, ∴12()49x x -+=,∴2247x x -+=, 又∵331112 2 2 2 ()(1)3(71)18x x x x x x -- -+=+?-+=?-=, ∴22332 22472 3183 3 x x x x -- +--= =-+-. 例3.已知35a b c ==,且11 2a b +=,求c 的值. 解:由3a c =得:log 31a c =,即log 31c a =,∴1log 3c a =; 同理可得 1log 5c b =,∴由11 2a b += 得 log 3log 52c c +=, ∴log 152c =,∴215c =,∵0c > ,∴c =. 例4.设1x >,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值. 解:令 log x t y =,∵1x >,1y >,∴0t >. 由2log 2log 30x y y x -+=得2 230t t -+=,∴22320t t +-=, ∴(21)(2)0t t -+=,∵0t >,∴12t =,即1 log 2 x y =,∴1 2y x =, ∴222244(2)4T x y x x x =-=-=--, ∵1x >,∴当2x =时,min 4T =-.

高中数学g3.1016指数式与对数式

g3.1016指数式与对数式 一、知识回顾: 指数式与对数式的底a 取值范围为(0,1)∪(1,+∞). 在底确定的前提下,指数运算与对数运算互为逆运算. 二、基本训练: 1、下列各式:(1)2 1) (x x -=- (2)33 1x x -=- (3) )0()()(43 43 >=-xy x y y x (4)3 1 62 y y = ,其中正确的是______________ 2、= ++- 31 021 )64 27()5(lg )972(___________, =-2lg 9lg 2 1 100 _________________ 3、____________50lg 2lg 5lg 2=?+ =+-)223(log ) 12( _____________

4、设,213 3=+ x x 求x x 1 + 的值 5、已知,518,9log 18==b a 求45log 36 三、例题分析 例1、(1)若0)](log [log log 432=x ,则x =___________ (2 )对于 1,0≠>a a ,下列说法中,正确的是 ( ) (A)N M N M a a log log ,==则若 (B) N M N M a a ==则若,log log (C) N M N M a a ==则若,log log 22 (D) 22log log ,N M N M a a ==则若 (3)已知n m <<1,令)(log log ,log ,)(log 22m c m b m a n n n n ===,则( ) (A)a

指数与对数运算练习题

指数运算与对数运算练习题 基础题 1、用根式的形式表示下列各式)0(>a (1)51a = (2)34 a = (3)35 a - = (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4 y x = (2))0(2>=m m m (3= (4= ; (5)a a a = ; 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)31()4-= ;(4)3 4 16()81 -= (5)12 2 [(]- = (6)(12 2 1?????? = (7)=3 264 一、选择题 1、以下四式中正确的是( ) A 、log 22=4 B 、log 21=1 C 、log 216=4 D 、log 221=4 1 2、下列各式值为0的是( ) A 、10 B 、log 33 C 、(2-3)° D 、log 2∣-1∣ 3、2 5 1 log 2 的值是( ) A 、-5 B 、5 C 、 51 D 、-5 1 4、若m =lg5-lg2,则10m 的值是( ) A 、 2 5 B 、3 C 、10 D 、1 5、设N = 3log 12+3 log 1 5,则( ) A 、N =2 B 、N =2 C 、N <-2 D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( ) A 、 a >5或a <2 B 、 25<

指数式与对数式的互化式

指数式与对数式的互化式: log b a N b a N =?=(0,1,0)a a N >≠>. 指数性质: (1)1、1p p a a -= ; (2)、01a =(0a ≠) ; (3)、()m n m n a a = (4)、(0,,)r s r s a a a a r s Q +?=>∈ ; (5) 、m n a = ; 指数函数: (1)、 (1)x y a a =>在定义域内是单调递增函数; (2)、 (01)x y a a =<<在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1) 对数性质: (1)、 log log log ()a a a M N M N += ;(2)、 log log log a a a M M N N -= ; (3)、 log log m a a b m b =? ;(4)、 log log m n a a n b b m = ? ; (5)、 log 10a = (6)、 log 1a a = ; (7)、 l o g a b a b = 对数函数: (1)、 log (1)a y x a => 在定义域内是单调递增函数; (2)、log (01)a y x a =<<在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0) (3)、 l o g 0,(0,1), (1, a x a x a x >?∈ ∈+∞或 (4)、log 0(0,1)(1,)a x a x ,且1a ≠,0m >,且1m ≠, 0N >). 对数恒等式:log a N a N =(0a >,且1a ≠, 0N >). 推论 log log m n a a n b b m = (0a >,且1a ≠, 0N >). 对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈; (4) log log (,)m n a a n N N n m R m =∈。 和角与差角公式 sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ; tan tan tan()1tan tan αβαβαβ ±±= . sin cos a b αα+ )α?+ (辅助角?所在象限由点(,)a b 的象限决定,tan b a ?= ). 二倍角公式及降幂公式

指数对数运算习题

第1节 实数指数幂的运算(2课时) 考试要求 2.会进行有理指数幂的计算。 知识精讲 1.有理指数幂的有关概念。 (1)零指数幂:0 a = (0≠a )。 (2)负整数指数幂:n a -= (0,≠∈+a N n )。 (3)分数指数幂: n m a = (n m a ,,0>互质+∈N n m ,)。 n m a - = (n m a ,,0>互质+∈N n m ,)。 2.幂的运算性质:(R n m b a ∈>>,,0,0) (1)n m a a = , (2)n m a a = , (3)n m a )(= , (4)m ab )(= , (5)n b a )(= 。 3.根式的概念 (1)式子n a 叫做根式,这里n 叫做 ,a 叫做 。 (2)n n a )(= (N n n ∈>,1)。 (3)当n 为奇数时,n n a = ,当n 为偶数时, n n a =||a =) 0() 0(__________________<≥?? ?a a 。 基础训练 1.有下列运算结果(1)1)1(0 -=-;(2)a a =2;(3)a a =-22 1 )(; (4)3 13 13 2 a a a =÷;(5)3333 55 3=?,则其中正确的个数是( )。 A.0 B.1 C.2 D.3 2.把下列各式化成分数指数幂的形式 (1)32a = , (2) 3 1a = ,

(3)b a 3 = , (4)332b a += , (5)5 3151)(-?b a = , (6)432b a = 。 3.比较下列各题中的两个数值的大小(用“>”“<”“=”填空) (1)0 )100(- 2 12 (2)3 227- 23- (3)31 )8 1(- 31 )27 1(- (4)4116 4 181- 典型例题 1】化简计算 (1)43 )81 16(- (2)03 31)5(])4 3[(--- (3)633333?? (4)40242)()32()2(--?÷a b a b a b 变式训练 计算:1. 21 21 1 001.0)4 9(4)817(-?+-- 2. 443 2733?? 3. 03 23 11 )53(2764 2+++?- 4. 7 77?

第11讲 指数与对数的运算(解析版)2021届新课改地区高三数学一轮专题复习

第11讲:指数与对数的运算 一、课程标准 1、理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 2、理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数; 3、了解对数的发现历史以及对简化运算的作用 二、基础知识回顾 1. 有关指数幂的概念 (1)n次方根 正数的奇次方根是一个正数,负数的奇次方根是一个负数,0的奇次方根是__0__;正数的偶次方根是两个绝对值相等、符号相反的数,0的偶次方根是__0__,负数没有偶次方根. (2)方根的性质 ①当n为奇数时,n a n=a; ②当n为偶数时,n a n=||a= ,0 -a0. a a a ? ? ? ≥, ,< (3)分数指数幂的意义 ①m n a (a>0,m、n都是正整数,n>1); ②m n a-= 1 m n a (a>0,m、n都是正整数,n>1). 2. 有理数指数幂的运算性质 设s,t∈Q,a>0,b>0,则:(1)a s a t=as+t; (2)(a s)t=ast;(3)(ab)t=a t b t. 3. 对数的相关概念 (1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底数N的对数,记作log a N=b. (2)常用对数和自然对数:①常用对数:以10为底N的对数,简记为:lg N;②自然对数:以e为底N 的对数,简记为:ln N. (3)指数式与对数式的相互转化:a b=N?log a N=b(a>0,a≠1,N>0). 4. 对数的基本性质 设N>0,a>0,a≠1,则:(1)log a a=1;(2)log a1=0;

(3)log a a N =N ;(4)a log aN =N . 5. 对数运算的法则 设M >0,N >0,a >0,a≠1,b >0,b≠1,则: (1)log a (MN)= log a M +log a N ; (2)log a M N =log a M -log a N ; (3)log a M n = n log a M . 6. 对数的换底公式 设N >0,a >0,a≠1,b >0,b≠1,则log b N =log a N log a b . 三、自主热身、归纳总结 1、化简4a 23 ·b -13÷???? -23a -13b 23的结果为( ) A .-2a 3b B .-8a b C .-6a b D .-6ab 【答案】C 【解析】原式=-6a 23-????-13b -13-23=-6ab -1 =-6a b . 2、(log 29)(log 32)+log a 54+log a ???? 45a (a >0,且a ≠1)的值为( ) A .2 B .3 C .4 D .5 【答案】B 【解析】 原式=(2log 23)(log 32)+log a ???? 54×45a =2×1+log a a =3. 3、 若lg 2,lg (2x +1),lg (2x +5)成等差数列,则x 的值等于( ) A . 1 B . 0或18 C . 1 8 D . log 23

相关文档
相关文档 最新文档