文档库 最新最全的文档下载
当前位置:文档库 › 数学建模习题及答案课后习题

数学建模习题及答案课后习题

数学建模习题及答案课后习题
数学建模习题及答案课后习题

第一部分课后习题

1. 学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生们要组织

一个10人的委员会,试用下列办法分配各宿舍的委员数:

(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。

(2) 2.1节中的Q值方法。

(3)d' Hondt方法:将A , B, C各

宿舍的人数用正整数n=1 , 2, 3,…相除,其商数如下

表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A, B, C行有横

线的数分别为2, 3, 5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。

(4)你能提出其他的方法吗。用你的方法分配上面的名额。

2. 在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g

装的每支1.50元,120g装的3.00元,二者单位重量的价格比是 1.2: 1。试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决

定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关

系,画出它的简图,说明w越大c越小,但是随着w 的

增加c减少的程度变小。解释实际意义是什么。

3. 一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一

把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且

得到8条鱼的如下数据(胸围指鱼身的最大周长) :

4. 用宽

w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角应多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响) 。如果管道是其他形状呢。

5. 用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工 出尽可能多的圆盘。

6. 动物园里的成年热血动物靠饲养的食物维持体温基本不变,在一些合理、简化的假设下 建立动物的饲养食物量与动物的某个尺寸之间的关系。

7. 举重比赛按照运动员的体重分组,你能在一些合理、简化的假设下建立比赛成绩与体重 之间的关系吗。下面是一届奥员会的竞赛成绩,可供检验你的模型。

组别

最大体重 (kg )

抓举 (kg )挺举 (kg )总成绩(kg )

1 54 132.5 155 287.5

2 59 137.5 170 307.5

3 6

4 147.

5 187.5 335 4 70 162.5 195 357.5 5 7

6 167.5 200 367.5 6 83 180 212.5 392.5

7 91 187.5 213 402.5

8 99

185

235

420

9

1

10

〉108

197.5 260 457.5

第一部分 课后习题答案

1.

2. ( 1)生产成本主要与重量 w 成正比,包装成本主要与表面积 s 成正比,其它成本也

包含与w 和s 成正比的部分,上述三种成本中都含有与

w ,s 均无关的成分。又因为

基本上满意。 4. 将管道展开如图:

可得w d cos ,若d 一定,w 趋于0, 趋于 /2; w 趋于 d , 趋于0。若管道

形状一定时一般有 2/3

,故商品的价格可表为 C w

w 2/3

大于0的常数)。

(2)单位重量价格c

显然c 是W 的减函数, 减少值随着包装的变大是逐渐降低的,不要追求太大包装的商品。

3. 对于同一种鱼不妨认为其整体形状是相似的,密度也大体上相同,所以重量

说明单价的 w 与身

长I 的立方成正比,即 w k 1l 3, k 1为比例系数。

常钓得较肥的鱼的垂钓者不一定认可上述模型,因为它对肥鱼和瘦鱼同等看待。如果只 假定鱼的横截面积是相似的,则横截面积与鱼身最大周长的平方成正比,于是

2

w k 2d I , k 2为比例系数。

利用数据估计模型中的系数可得 k

1 =0.014,k

2 =0.0322,将实际数据与模型结果比较如

表:

实际重量 (g )

w k 113

模型

w k 2d 2

l

765

727 73 482

1162

737

469 1226 727 482

1389

652

483 1339 675 483 1471 607 454

483

483

1/3 1

w w ,其简图如下:

说明大包装比小包装的商品便宜, ;曲线是下凸的,

长度为I ,不考虑两端的影响时布条长度显然为 d |/w ,若考虑两端影响,则应加上

dw/sin 。对于其它形状管道,只需将 d 改为相应的周长即可。

5.

设圆盘半径为单位 1矩形板材长 a ,宽b ;可以精确加工,即圆盘之间及圆

盘与板

材之间均可相切。

方案一:圆盘中心按正方形排列,如下图 1,圆盘总数为 叫=口/2][引2]

方案二:圆盘中心按六角形排列,如下图 2,行数 m 满足2+( m-1)

3 a ,于是

3

5 8 10 14 20 4 2/2 4/4 8/7 10/9 14/13 20/19 7 3/3 6/

6 12/11 15/14 21/20 30/29 10 5/5 10/10 20/18 25/23 35/33 50/48 15

7/8 14/16 28/28 35/36 49/52 70/76 20

10/11

20/22

40/39

50/50

70/72

100/105

当a ,b 较大时,方案二优于方案一。

其它方案,方案一、二混合,若 a=b=20,3行正方形加8行六角形,圆盘总数为 106。 6.

假设处于静止状态的动物的饲养食物量主要用于维持体温不变,

且动物体内热量主要

通过它的表面积散失,对于一种动物其表面积

S 与某特征尺寸|之间的关系是

列数(按图2第1行计数)n

[b]为偶数,则奇数行圆盘数为

图2

[b]为奇数,则各行圆盘数相同为([b]-1)/2;若

满足:若 [b]/2,偶数行圆盘数为[b]/2-1。

圆盘总数为

N 2

m([b] 1)/2 (1) m([b] 1)/2 1/2 (2)

其中(1)为:m 为偶数。(2)为:

m 为奇数,[b]为偶数。

两个方案的比较见下表(表中数字为 N 1/N 2):

S I 2,所以饲养食物量w

l 2。

2

m=

尺寸),体重w l3,于是y w2/3

用举重总成绩检验这个模型,结果如下图3;如果用举重总成绩拟合y w ,可得

图3 图4

第二部分课后习题

1. Malthus模型预测的优缺点。

2. 阻滞增长模型预测的优缺点。

3. 简述动态模型和微分方程建模。

4. 按照你的观点应从那几个方面来建立传染病模型。

5. 叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。

6. 试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散

形式阻滞增长模型平衡点及其稳定性。

第二部分课后习题答案

1. 优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没

有考虑环境对人口增长的制约作用。

2. 优点:中期预报比较准确;缺点:理论上很好,实用性不强;原因:预报时假设固有人口增长率

以及最大人口容量为定值。实际上这两个参数很难确定,而且会随着社会发展情况变化而变化。3. 动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特

征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。

4. 描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防

传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型。

5.不同年龄组的繁殖率和死亡率不同 ,以雌性个体数量为对象(假设性别比为 1:1),是一种

差分方程模型。 6.连续形式:

y (t )表示某种群t 时刻的数量(人口)

离散形式: y n 表示某种群第n 代的数量(人

y n 1 y n ry n (1 护),n 1,2,|||

N

m

*

r

* r

1

衡点为y N m ? y n 1 (r 1)y n 1

y n 的平衡点为x

1 —,其中

(r 1)N m

r 1 b

b 1 r,X n ry n /(1 r)N m ,f(x) bx(1 x),此时的差分方程变为

X n 1 bX n (1 X n )

f (X n ) n 1,2,川

* 1 * 由 x f (x) bx(1 x)可得平衡点 x * 1 , x * 0.

b

在平衡点x * 0处,由于f (0) b 1 ,因此,x * 0不稳定.

I

*

*

在在平衡点x 1

—处,因f (x )

b(1 2x )

2 b ,所以

b

* I

*

1 (i)

f (x ) 1 b 3 当b 3时,平衡点x 1 —不稳定; b *

* 1

(ii)

f (x )

1

1 b 3 当1 b 3时,平衡点x 1 —不稳定.

b

第三部分课后习题

1.判断下列数学模型是否为线性规划模型。 (a,b,c 为常数,x,y 为变量)

dy dt ry(1 y

N m

若 y n

N m

则 y n1,y n2,||| N m , y N m 是平衡点 y n 1 y n

ry n (1

)的平

N m

数学建模竞赛的准备、技巧、选题、写作等各方面得总结

数学建模竞赛的准备、技巧、选题、写作等各方面得总结 一、如何准备数学建模 下面结合我的建模经历给建模新手一些指导,顺便给大家一些建议和推荐些好书,本文属本人原创若要转载请注明出自:校苑资源网。 我是从大一下学期开始接触数学建模的,当时我的感觉就是一个字——晕,自己什么都不懂,想学习却又无从下手。记得我一次接触的数学建模题目是艾滋病的传播,当时就吓蒙了,这样的东西也能建模,艾滋病怎么能和数学联系到一起了呢?硬着头皮听完学长的一堂讲座,什么也没听懂,只是朦胧的记得有说什么微分方程,还有什么马尔萨斯之类,看他们说的像是家常便饭,而我却是在听天书。尤其是问了数学建模的论文一般写多少页,一位学长告诉我说20多页吧,至少也得15页多,听完以后真的吓坏了,要写15页的论文这是从来也没敢想过的事情。 我相信好多同学也都像我这样迷茫过,不知该从什么地方抓起。当时就想要放弃,但是看到那么多同学都坚持了,自己也就跟着每天去学习,半途而废太丢人了,只好一直往前走,糊里糊涂的参加了全国竞赛,结果和想象的一样,奇迹终究还是没有发生,呵呵,什么奖也没拿到。回头一想,自己就没付出什么这样的结果也是应该的,就是那三天三夜的煎熬,还有在做建模的过程中学到的知识还是记忆犹新。也是从此我就深深的迷上了数学建模,主动找学长请教,最终加入学校的数学建模工作室(相当于社团),和同学老师一起系统的学习数学建模。 1.先是从看优秀论文学起,起初先看一些简单的全国论文,比如:易拉罐的设计、手机套餐的设计,雨量预报等专科生论文(可以到这里下载),通过这个先熟悉建模题目、了解建模的一些方法; 2.然后就是建模方法的学习,用的教材当然是姜启源的数学模型了(【推荐】数学模型姜启源第三版),同时我还发现了一本更简单点的建模书:数学建模引论,唐焕文和贺明峰教授主编的,这本书页里面的内容非常好也很易学,推荐建模新手去参考一下(在网上搜索了好长时间还没有找到电子书,希望有的同学共享给大家,或者也可以参考这本书:数学建模引论阮晓青周义仓主编,数学建模引论--新手推荐书)。看书每周看1-2章的内容,看完后大家组织在一起讨论、评讲。 3.与此同时还有每周的Matlab讲座和作业(【推荐】大连大学数学建模工作室matlab讲座提要与练习),都是有精通Matlab的同学讲的,然后下来自己做练习题;不会时候就去查书,或者在百度上搜索,其实百度是个非常大的资源应该好好利用,有什么不懂的先百度一下,然后再问别人或者查书。个人感觉Matlab学习还是比较简单的关键看你自己用不用功,不是学不懂而是自己不知道,我认为很好的书在校苑数模论坛2009年全国数学建模培训一(初级入门辅导)里面已经说过了,可以点击去看看,还有这里校苑数模论坛2009 年全国竞赛培训二(Matlab强化训练)也都推荐了好书。 4.最后一个环节就是真题实战了,可以组队也可以单独做,仍然是从简单题目练起,一般都是全国赛的大专组题目,比如手机套餐资费问题、DVD在线租赁、体检时间安排问题等

数学建模作业

数学建模作业 姓名:李成靖 学号:1408030311 班级:计科1403班 日期:2015.12。30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57”5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i 加泳姿j 的比赛,记x i j=1, 否则记xi j=0 目标函数: 即m in=66.8*x11+75.6*x12+87*x13+58.6*x14+57。2*x21+66*x22+66.4*x 23+53*x24+78*x31+67.8*x32+84。6*x33+59.4*x34+70*x 41+74。2*x42+69.6*x 43+57。2*x44+67。4*x51+71*x52+83。8*x53+62.4*x54; 约束条件: x 11+x12+x13+x14〈=1; x 21+x22+x23+x 24〈=1; x 31+x32+x33+x34<=1; x 41+x42+x 43+x44〈=1; x 51+x52+x53+x54<=1; x11+x 21+x31+x41+x51=1; x 12+x22+x32+x42+x52=1; x13+x 23+x33+x43+x53=1; x14+x24+x 34+x44+x54=1; 甲 乙 丙 丁 戊 蝶泳 1′06"8 57”2 1′18” 1′10” 1′07"4 仰泳 1′15"6 1′06" 1′07”8 1′14"2 1′11" 蛙泳 1′27” 1′06"4 1′24"6 1′09"6 1′23"8 自由泳 58"6 53” 59”4 57”2 1′02”4 ∑∑=== 415 1j i ij ij x c Z Min

数学建模竞赛题目

西安科技大学第二届数学建模竞赛题目 A题:垃圾分类处理与清运方案设计 垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。 在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。其中对于居民垃圾,基本的分类处理流程如下:

在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。2)可回收垃圾将收集后分类再利用。 3)有害垃圾,运送到固废处理中心集中处理。 4)其他不可回收垃圾将运送到填埋场或焚烧场处理。 所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。 本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是: 1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。以期达到最佳经济效益和环保效果。 2)假设转运站允许重新设计,请为问题1)的目标重新设计。 仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。其他所需数据资料自行解决。 附录1 1)大型厨余垃圾处理设备(如南山餐厨垃圾综合利用项目,处理能力为200吨/日,投资额约为4500万元,运行成本为150元/吨。小型餐厨垃圾处理机,处理能力为200-300公斤/日,投资额约为28万元,运行成本为200元/吨。橱余垃圾处理后产物价格在1000-1500元/吨。 2)四类垃圾的平均比例 橱余垃圾:可回收垃圾:有害垃圾:其他不可回收垃圾比例约为4:2:1:3。可回收垃圾划分为纸类、塑料、玻璃、金属四大类,大概比例分别是:55%、35%、6%、4%。纸类、塑料、玻璃、金属四类的废品回收价格是每公斤:1元、2.5元、0.5元、2.5元。

数学模型习题解答解读

上机练习题一 班级: 姓名: 学号: 1.建立起始值=3,增量值=5.5,终止值=44的一维数组x 答案: x=(3:5.5:44) 2.写出计算 Sin(30o )的程序语句. 答案: sin(pi*30/180) 或 sin(pi/6) 3.矩阵??????????=187624323A ,矩阵???? ??????=333222111B ;分别求出B A ?及A 与B 中对应元素之间的乘积. 答案:A = [3,2,3; 4,2,6; 7,8,1] B = [1,1,1; 2,2,2; 3,3,3] A*B ;A.*B 4计算行列式的值1 876243 23=A 。答案:det(A) 5对矩阵 ???? ??????=187624323A 进行下述操作。 (1)求秩。答案:rank(A) (2)求转置。答案:A' (3) 对矩阵求逆,求伪逆。答案:inv(A) ,pinv(A) (4) 左右反转,上下反转。答案:fliplr(A),flipud(A) (5) 求矩阵的特征值. 答案:[u,v]=eig(A) (6) 取出上三角和下三角. 答案:triu(A) tril(A) (7)以A 为分块作一个3行2列的分块矩阵。答案:repmat(a) 6 计算矩阵??????????897473535与???? ??????638976242之和。 >> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b 7 计算??????=572396a 与?? ????=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8];

数学建模作业43508

数学建模作业

1、在甲乙双方的一场战争中,部分甲方部队被乙方部队包围长达4个月,乙方封锁了所有 水陆交通通道,因此被包围的甲方只能依靠空中交通维持补给,运送4个月的供给依此分别 需要2次、3次、3次、4次飞行,每次飞行编队由50架飞机组成,每架飞机都需要3名飞 行员,每架飞机每月只能飞行一次,每名飞行员每月也只能飞行一次,每次执行完运输飞行 任务后的返回途中有20%的飞机被乙方部队击落,导致机上的飞行员也牺牲或失踪。在第 一个月开始时,甲方拥有110架飞机和330名熟练的飞行员,每个月开始时,甲方可以招聘 新飞行员和购买新飞机,新飞机必须经过一个月的检查磨合后才可以投入使用,新飞行员也 必须在熟练飞行员的指导下经过一个月的训练才能成为熟练飞行员而投入飞行(作为教练的 熟练飞行员本月不能参与飞行任务),每名熟练飞行员作为教练每月指导20名飞行员(包括 自己在内)进行训练,每名飞行员在完成本月的飞行任务后必须有一个月的带薪休假,然后 返回待命可再次投入飞行,已知各项费用平均单价如下表所示(单位:千元)。 第一个月第二个月第三个月第四个月新飞机价格200 195 190 185 闲置的熟练飞行员报酬7 6.9 6.8 6.7 10 9.9 9.8 9.7 教练及飞行员报酬和训练 费用 执行飞行任务的飞行员报 9 8.9 9.8 9.7 酬 休假期的飞行员报酬 5 4.9 4.8 4.7 (1)为甲方安排一个总费用最小的飞行计划。 (2)如果每名熟练飞行员作为教练每月指导不超过20名飞行员(包括自己在内)进行训练, 相应的模型和安排将会发生怎样的改变? 解:(1) 设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量为 y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟练 飞行员的数量为b1,b2,b3,b4人。由于每月执行任务的飞行员和休假期的飞行员 的数量是固定的,即这部分的花费是固定的,所以在优化目标中可以不必考虑。 模型建立: 决策变量:设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量 为y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟 练飞行员的数量为b1,b2,b3,b4人。 目标函数:设总费用为z元,则由价格平均表可知: z=200d1+195d2+190d3+185d4+10a1+9.9a2+9.8a3+9.7a4+7b1+6.9b2+6.8b3+ 6.7b4 约束条件包括: (1)飞机数量限制:四个月中出去执行任务的飞机数量分别为100,150,150,200架次,每次安全返回的数量为80,120,120,160架次。 根据每个月的实际情况可得方程: 100+y1=110; 150+y2=80+y1+d1; 150+y3=120+y2+d2; 200+y4=120+y3+d3;

2016年数学建模大赛试题B题

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题小区开放对道路通行的影响 2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。 除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。 城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题: 1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。 2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。交通流分配模型 3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学模型课后答案

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q值方法; (3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, , 432 ,333 ,235321 ===p p p ∑==3 1 . 1000i i p 方法一(按比例分配) , 35.23 1 11 == ∑=i i p N p q , 33.33 1 22 == ∑=i i p N p q 32 .43 1 33 == ∑=i i p N p q 分配结果为: 4 ,3 ,3321 ===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分 配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π ) 2 2 2 n wk k(r n πvt +=∴ . 2 2 2n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日) 1. 在 3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

数学建模竞赛前的学习与准备

1.数学建模竞赛的概述 数学建模竞赛是由美国工业与应用数学学会在1985 年发起的一项大学生竞赛活动,自1989 年起我国陆续有高校参加美国大学生数学建模竞赛。从1992 年开始由教育部高教司和中国工业与应用数学学会(CSIAM)举办我国自己的全国大学生数学建模竞赛、面向全国高等院校不分专业的、每年一届的通讯竞赛,比赛时间一般为每年9 月。其宗旨是:创新意识、团队精神、重在参与、公平竞争。 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,没有事先设定的标准答案,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其聪明才智和创造能力。竞赛形式是三名大学生组成一队,参赛者根据题目要求,可以自由地收集、查阅资料,调查研究,使用计算机、互联网和任何软件(但是不能与队外的任何人讨论问题)在三天时间内分工合作完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的检验和评价、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 2.赛前学习内容 2.1建模基础知识、常用工具软件的使用 一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。 二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。 例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。 (1)已经还贷整6 年。还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。 (2)此人忘记这笔贷款期限是多少年,请你告诉他。

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

数学建模每年比赛介绍

苏北数学建模联赛 比赛时间:5月1日—5月4日 苏北数学建模联赛是由江苏省工业与应用数学学会、中国矿业大学、徐州市工业与应用数学学会联合主办,中国矿业大学理学院协办及数学建模协会筹办的面向苏北及全国其他地区的跨校、跨地区性数学建模竞赛,目的在于更好地促进数学建模事业的发展,扩大中国矿业大学在数学建模方面的影响力;同时,给全国广大数学建模爱好者提供锻炼的平台和更多的参赛机会,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识。 联赛由中国矿业大学数学建模协会组织,苏北数学建模联赛组织委员会负责每年发动报名、拟定赛题、组织优秀答卷的复审和评奖、印制获奖证书、举办颁奖仪式等。竞赛分学校组织进行,每个学校的参赛地点自行安排,没有院校统一组织的参赛队可以向苏北数学建模联赛组委会报名参赛。每个参赛队由三名具有正式学籍的在校大学生(本科或专科)组成,参赛队从A、B、C 题中任选一题完成论文,本科组和专科组分开评阅。竞赛按照全国大学生数学建模竞赛的程序进行,报名时间为每年4月1日—4月29日(直接由学校统一报名),竞赛时间为5月1日—5月4日,网址:https://www.wendangku.net/doc/6b11929846.html, , 苏北数学建模联赛组委会聘请专家组成评阅委员会,评选一等奖占报名人数的5%、二等奖15%、三等奖25%,

如果有突出的论文将评为竞赛特等奖,凡成功提交论文的参赛队均获成功参赛奖。对于获奖队伍将给予一定的奖品奖励并颁发获奖证书。 全国大学生数学建模大赛 比赛时间:9月的第三个星期五上午8时至下一个星期一上午8时“全国大学生数学建模大赛”全称为“高教社杯全国大学生数学建模竞赛” 全国大学生数学建模大赛竞赛每年举办一次,每年的竞赛时间为9月的第三个星期五上午8时至下一个星期一上午8时。 报名时间:从大赛的通知文稿发出后,就可以报名了,报名截止时间一般在开始比赛的前7-10天。 大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组)。 考核内容(竞赛内容): 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。

数学建模习题指导

数学建模习题指导 第一章 初等模型 讨论与思考 讨论题1 大小包装问题 在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。 (1)分析商品价格C 与商品重量w 的关系。 (2)给出单位重量价格c 与w 的关系,并解释其实际意义。 提示: 决定商品价格的主要因素:生产成本、包装成本、其他成本。 单价随重量增加而减少 单价的减少随重量增加逐渐降低 思考题2 划艇比赛的成绩 赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。各种艇虽大小不同,但形状相似。T.A.McMahon 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。建立数学模型解释比赛成绩与浆手数量之间的关系。 各种艇的比赛成绩与规格 γβα++=3 2w w C w w c γβα++=-3 123 431w w c γβ--='-3 2943 4w w c γβ+=''-

第二章 线性代数模型 森林管理问题 森林中的树木每年都要有一批砍伐出售。为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。被出售的树木,其价值取决于树木的高度。开始时森林中的树木有着不同的高度。我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。 思考: 试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。 练习: 将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存 达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 第三章 优化模型 讨论题 1)最优下料问题 用已知尺寸的矩形板材加工半径一定的圆盘。给出几种加工排列方法,比较出最优下料方案。 2)广告促销竞争问题 甲乙两公司通过广告竞争销售商品,广告费分别为 x 和 y 。设甲乙公司商品的售量在两公司总售量中所占份额是它们的广告费在总广告费中所占份额的函数 又设公司的收入与售量成正比,从收入中扣除广告费后即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。 (1)令 (2)写出甲公司的利润表达式 对一定的 y ,使 p (x ) 最大的 x 的最优值应满足什么关系。用图解法确定这个最优值。 练习1 三个家具商店购买办公桌:A 需要30张,B 需要50张,C 需要45张。这些办公桌由两个工厂供应:工厂1生产70张,工厂2生产80张。下表给出了工厂和商店的距离(单位公里) , 857.0=n R ) (),(y x y f y x x f ++的示意图。。画出则)()()(,t f t f t f y x x t 11=-++= 。 )(t p

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

(完整版)数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系. 解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲. 量纲矩阵为: A=) ??????? ???---ρ()() ()()()()(001310013212s v P T M L 齐次线性方程组为: ?? ? ??=--=+=-++0 30 32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得 1131ρπs v P -=, 1 13ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系 数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0 , [μ]=MLT -2 (LT -1L -1 )-1L -2 =MLL -2T -2 T=L -1 MT -1 ,[g ]=LM 0T -2 ,其中L ,M ,T 是基本量纲. 量纲矩阵为 A=) ()()()()()() (210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即 ??? ??==+=+0 2y -y - y -0 y y 0y y -3y -y 431 324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得 g v μρπ1 3 --=. 3 ρ μλg v =∴,其中λ是无量纲常数.

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模课后答案

第一章 4.在1、3节“椅子能在不平的地面上放稳不”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之与分别定义为)()(a g a f 和。f 与g 都就是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题: 已 知 a a g a f 是和)()(的连续函数,对任意 0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也就是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8 第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 就是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--=

相关文档
相关文档 最新文档